

OSGeo Journal Volume 6

From the Editor...
by Tyler Mitchell

Welcome to the first edition of the OSGeo Journal for
2010! As a good kick-off to the new year this vol-
ume takes a few different perspectives on software
development and design. Naturally the various is-
sues related to typical development projects applies
quite well to our open source geospatial specific in-
terests. The articles cover a range of topics from a
review of various software to a discussion of user-
centered design. Along the way you’ll also get to
read some more technically meaty articles and some
perspective pieces.

Each volume of the Journal takes several months
of concerted effort by many individuals. Landon
Blake played a lead editorial role in getting this vol-

ume pulled together so you can read it - thank you
Landon! It’s always a pleasure to have more section
editors, LaTeX masters and reviewers come to help.
Thank you to all the volunteers.

With our new online management system, any
potential article can be submitted at anytime by sim-
ply filling in a form at http://osgeo.org/ojs. As
well, over the next couple of months keep one eye
open for the OSGeo 2009 Annual Report. Get your
articles in soon if you have not already. Enjoy the
articles!

Tyler Mitchell
Editor in Chief, OSGeo Journal
http: // osgeo. org

tmitchell@osgeo.org

Contents of this volume:

Editorial 1
From the Editor... 1

News 2
Brief News from the OSGeo Community 2

Event Reports 6
CASCADOSS International Symposium and

International Information Workshop 7
Summer Training Courses on FOSS4G, 2007-2009 14

Topical Interest 18
Why Every Open Source Project Needs a Good

Dictator . 18

Programming Tutorials 20
GPGPU With GDAL 20

Case Studies 23
gvSIG is a viable robust alternative to commer-

cially available GIS packages 23

Project Introductions 26
GRASS Image Processing Environment 27
SEXTANTE, a Free Platform for Geospatial

Analysis . 32

Peer-review Papers 40
Usability Trumps Features 40

Volunteer Recognition 53
. 53

Page 1 of 57

http://osgeo.org/ojs
http://osgeo.org
mailto:tmitchell@osgeo.org

OSGeo Journal Volume 6 GPGPU With GDAL

Programming Tutorials

GPGPU With GDAL
Basics of GPGPU Interfacing

By Yann Chemin

Introduction

The new generation of graphic cards have Graphi-
cal Processing Units (GPU) installed on-board. These
GPUs commonly have hundreds of processing cores,
high speed parallel architecture, and RAM in the Gi-
gabyte range. Development of GPUs was driven pri-
marily by the processing power required to create
and display virtual reality environments in the gam-
ing industry. Now they are used to compute gen-
eral physics accelerated algorithms for environmen-
tal modelling like fluids dynamics.

General-Purpose computation on GPUs
(GPGPU) is a relatively new type of computation
made possible by the increasingly varied types of
computations available on those graphic cards. They
are called “coprocessors” in computer engineering.
Their high-speed high-parallel architecture makes
them very attractive for computations requiring
large amounts of operations on each dataset units.

The main point of GPGPU is to manage the mem-
ory allocation in the GPU itself. To do this, copy
the data into the GPU memory before processing and
copying it back to the computer resources outside of
the GPU after processing is complete.

In this article we will consider an example of GPU
programming. In this example we will use a lan-
guage for NVIDIA GPUs called Compute Unified
Driver Architecture (CUDA).

GPGPU Programming Example

This is a C/C++ language addendum that enables
the code to send your data to your GPGPU-enabled
NVIDIA graphic card for processing, after which you
can retrieve your results from the graphic card RAM
and send it to the computer hard disk.

For your computer to understand this code, it
needs an additional compiler to be used with your
C/C++ compiler. This is not your standard C or
C++ compiler. The NVIDIA compiler can be down-
loaded from http://www.nvidia.com, Look for it in
the “CUDA Zone”. Read the documentation for
your graphic card’s driver to see if it already has the
CUDA functionality. ION-based laptops are CUDA
enabled too.

A CUDA-enabled file cuda_ndvi.cu, can be com-
piled with the NVIDIA compiler (nvcc) like this:

nvcc -o ndvicu cuda_ndvi.cu

A CUDA-enabled file can be run like this:

./ndvicu

If you don’t have a CUDA capable GPU, compile it
in emulation mode:

nvcc -deviceemu -o ndvi_cu ndvi_cuda.cu

Example Makefile:

ndvicu: cuda_ndvi.cu

nvcc -o ndvicu cuda_ndvi.cu \

-I/usr/include/gdal/ -L/usr/lib \

-lgdal1.6.0

Page 20 of 57

OSGeo Journal Volume 6 GPGPU With GDAL

A typical raster program first loads datasets, de-
fine raster data holders for our Red (red), Near In-
frared (nir) and Normalized Difference Vegetation
Index (ndvi) image bands with GDAL. Then it loads
the red and nir bands into line buffers. Using line
buffers here is the choice, since the processing is not
col/row dependent. GPUs have clear and easy ways
to access and work with 2D and 3D pixel localization
access within the (GPU) RAM matrix.

First we allocate arrays on the host (our computer
itself) so we can fetch the data from our images.

//N = col x row

int N=nXSize*nYSize;

float *red=(float *)malloc(sizeof(float)*N);

float *nir=(float *)malloc(sizeof(float)*N);

float *ndvi=(float *)malloc(sizeof(float)*N);

//Load input datasets

GDALRasterIO(hBandRed,GF_Read,0,0,\

nX,nY,red,nX,nY,GDT_Float32,0,0);

GDALRasterIO(hBandNir,GF_Read,0,0,\

nX,nY,nir,nX,nY,GDT_Float32,0,0);

On the GPU side, we start by allocating variables
with the suffix _d (d for device) to remind us of their
location of use, in the GPU device. As everything is
a grid (2D or 3D matrix) in a GPU, we allocate an in-
teger N as our image total dimension, this is actually
the total length of the grid allocated inside the GPU
(it could be written like this: N=row_d x col_d).

/* pointers to GPU device memory */

float *red_d, *nir_d, *ndvi_d;

/* Allocate arrays on GPU device*/

cudaMalloc((void **)&red_d,sizeof(float)*N);

cudaMalloc((void **)&nir_d,sizeof(float)*N);

cudaMalloc((void **)&ndvi_d,sizeof(float)*N);

Once the data is in our computer memory and
GPU memory has been prepared to receive the data,
it is time to send the row data into the GPU. To do
that, we have to use a specific function called:

cudaMemcpy(GPU_memory,PC_memory,\

size_of_data,cudaMemcpyHostToDevice)

The last argument indicates the direction of the
copy of the data. In this case we send the data
from the computer to the GPU, so the direction is
cudaMemcpyHostToDevice, to retrieve the data af-
ter computation, we will use the opposite direction
cudaMemcpyDeviceToHost.

/* Copy data from CPU host to

GPU device memory */

cudaMemcpy(red_d,red,sizeof(float)*N,\

cudaMemcpyHostToDevice);

cudaMemcpy(nir_d,nir,sizeof(float)*N,\

cudaMemcpyHostToDevice);

When the data has reached the GPU memory, it is
time to apply calculations on it. This is done in
GPGPU computing by applying a kernel. The incan-
tation for doing so is shown below:

/* Add arrays red, nir and

store result in ndvi */

ndvi_cu<<<dimGrid,dimBlock>>>(red_d, \

nir_d, ndvi_d, N);

In this case, the kernel to be used is called ndvi_cu,
it is applied on a grid. That grid is sub-divided in
blocks, which are the units of work allocation within
the GPU. The grid in our example is N, our row-x-
col image dimension. It is visualized as a grid by the
GPU and is split into computing blocks limited by
the architecture of the GPGPU.

At the time of the writing of this document,
lower-end graphic cards are capable of 256 or 512
size blocks. The bigger the block, of course, the less
number of job distributions to complete the process-
ing of our row data. If the row data has a size of
N=nXSize*nYSize=1024, it will take 4 blocks of 256 or
2 blocks of 512 to compute it. As you can see, Block
and Grid allocation are defined into dim3. This is
because GPUs, being graphical devices, operate na-
tively in 3 dimensions.

/* Compute blocks of data to send to GPU */

// On GeForce 8600 Galaxy x=256

// On GeForce 9500 Galaxy & 9800 GT x=512

int x=512;

dim3 dimBlock(x);

dim3 dimGrid((N/dimBlock.x)+ \

(!(N%dimBlock.x)?0:1));

The kernel was initially a standard C function. It was
modified to appropriately take benefit of the GPGPU
architecture.

__global__ void ndvi_cu(float *red, \

float *nir,float *ndvi, int N)

{

int i = blockIdx.x * blockDim.x \

+ threadIdx.x ;

if (i < N)

ndvi[i]=(nir[i]-red[i])/(red[i]+nir[i]);

}

Page 21 of 57

OSGeo Journal Volume 6 Programming Tutorials

Synchronize the data movement with the job com-
pletion in the GPU to streamline the process-
ing. This is done by applying the function
cudaThreadSynchronize():

/* Block until device completed processing */

cudaThreadSynchronize();

From this point forward, data is copied back to
the computer from the device using the cudaMemcpy

function. You can then free the memory on the
GPGPU device.

/* Copy data from GPU device

to CPU host memory */

cudaMemcpy(ndvi,ndvi_d,sizeof(float)*N, \

cudaMemcpyDeviceToHost);

cudaFree(red_d);

cudaFree(nir_d);

cudaFree(ndvi_d);

After this point, our program will look like a stan-
dard C program, as seen earlier, where GDAL takes
over the row data and writes it to the disk. We then
close the output file and free the memory.

GDALRasterIO(hBandNdvi,GF_Write,0,0, \

nX,nY,nir,nX,nY,GDT_Float32,0,0);

if(red != NULL) free(red);

if(nir != NULL) free(nir);

if(ndvi != NULL) free(ndvi);

GDALClose(hDatasetRed);

GDALClose(hDatasetNir);

GDALClose(hDatasetNdvi);

Conclusion

This article is a short path to implementing GDAL-
based raster processing in the scalable and highly
parallel environment of GPUs.

More information on GPGPU in general can be
found at http://www.gpgpu.org.

Yann Chemin
International Centre of Water for Food Security
http://www.csu.edu.au/research/icwater
ychemin AT csu.edu.au

Page 22 of 57

mailto:ychemin AT csu.edu.au

This PDF article file is a sub-set from the larger

OSGeo Journal. For a complete set of articles

please the Journal web-site at:

http://osgeo.org/journal

http://osgeo.org/journal

Imprint

Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Assistant Editor:
Landon Blake

Section Editors:
Daniel Ames
Scott Mitchell
Barry Rowlingson
Jorge Sanz
Micha Silver
Zachary Woolard

Acknowledgements
Various reviewers & writers

The OSGeo Journal is a publication of the OSGeo Foundation. The
base of this journal, the LATEX 2εstyle source has been kindly pro-
vided by the GRASS and R News editorial boards.

This work is licensed under the Creative Commons Attribution-
No Derivative Works 3.0 License. To view a copy of this licence,
visit:
http://creativecommons.org/licenses/by-nd/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California 94105, USA.

All articles are copyrighted by the respective authors. Please
use the OSGeo Journal url for submitting articles, more details
concerning submission instructions can be found on the OSGeo
homepage.

Journal online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

mailto:tmitchell AT osgeo.org
http://creativecommons.org/licenses/by-nd/3.0/
http://www.osgeo.org/journal
http://www.osgeo.org

!"#$!%!&#

