
OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

pycsw: an OGC
CSW server
implementation
written in Python
The pycsw Development Team

Overview
pycsw is an OGC CSW server
implementation written in Python.

pycsw implements clause 10 (HTTP
protocol binding (Catalogue Services for
the Web, CSW)) of the OpenGIS
Catalogue Service Implementation
Specification, version 2.0.2. pycsw
allows for metadata publishing either
from its built-in data model, or through
configuration. In the configuration
mode the user can bind to an existing
metadata model.

pycsw is Open Source, released under
an MIT license, and runs on all major
platforms (Windows, Linux, Mac OS X).

History
pycsw is a young project. Initial
development began in 2010, with the
main focus being to provide a very
lightweight Python CSW server solution
(in comparison to many Java-based

CSW servers).

Another goal was to provide a
standalone CSW server implementation.
This means that metadata is created
and managed and updated elsewhere,
and pycsw thus acts as the publishing
component for geospatial resource
discovery.

Another focus was extensibility: OGC
Catalogue Service, by design, allows for
the definition of application profiles to
support additional metadata formats
(the core metadata model is Dublin
Core + ows;BoundingBox), so this was
an important design decision prior to
initial implementation. Features (such
as metadata formats, encodings, and
harvesting) are implemented such that
they can be extended to provide
additional variations of a given feature.

31

http://pycsw.org/
http://www.python.org/
http://en.wikipedia.org/wiki/Catalog_Service_for_the_Web
http://en.wikipedia.org/wiki/Catalog_Service_for_the_Web
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://opensource.org/licenses/MIT


OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

The OGC CITE tests were extensively
used to establish a benchmark of
compliance to the specification (pycsw
is not an OGC approved compliant
product, but does pass all the CITE
tests).

Version 1.0.0 was released in 2011,
providing initial support for basic CSW
operations, ISO Application Profile and
INSPIRE Discovery Services support.
SQLite and PostgreSQL were the initially
supported databases.

In 2012, version 1.2.0 was released,
adding additional search interfaces
(SRU implementation, OpenSearch).
MySQL database support was also
added in this version, providing further
flexibility for deployment. WMS
harvesting and GeoNode support were
also implemented, as well as the ability
to provide JSON output of search
results.

In September 2012, version 1.4.0 was
released. This release brought many
important features, including WSGI
support. The WSGI development
enabled pycsw to be integrated into
existing Python frameworks, such as
Django or Flask.

The first formal deployment of pycsw
was by INSIDE Idaho. INSIDE Idaho is

32

the official geospatial data
clearinghouse for the State of Idaho.
INSIDE Idaho serves as a
comprehensive geospatial data digital
library, providing access to, and a
context within which to use, geospatial
data and information by, for, and about
Idaho.

What makes this deployment
interesting is that pycsw, developed in
a Linux / Apache environment, was
deployed in a Windows / IIS
environment.

Design
From its inception, pycsw strived to be
lightweight, flexible, easy to install and
deploy. A typical install takes less than
10 minutes.

Simple Configuration
Configuration is governed by a simple
configuration file using the familiar
Windows INI syntax. Users simply edit
this file as required and changes are
reflected in server behavior. Python
supports this format natively with its
ConfigParser standard library. In
addition, those with customized
applications can generate their own
ConfigParser object (e.g. from an
external configuration, Python
dictionary or database) and send to
pycsw in the same fashion. XML

http://www.sqlite.org/
http://www.postgresql.org/
http://www.opensearch.org/Home
http://www.mysql.com/
http://geonode.org/
http://www.json.org/
http://flask.pocoo.org/mailinglist/archive/2010/11/8/flask-cms/
https://www.django-cms.org/
http://inside.uidaho.edu/


OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

configuration files were considered
early on in development, but it was
decided for performance reasons to
stick with a simple, plain text format.

Repository
Metadata is handled by way of a
"Repository", which is defined as a
physical database instance along with
advertised queryables. CSW requires
the advertisement of specific
queryables, and advertises these via
mappings to their underlying columns
and properties in the database.

Dispatcher
All requests are performed via HTTP
GET or HTTP POST. The dispatcher is
vital in deciphering what the interface
of the request is (CSW, SRU,
OpenSearch, etc.), and responds with
the appropriate headers and payload.

Plugin Architecture
A plugin architecture is provided for
developers to extend the codebase in
order to support additional application
profiles, formats, and repositories.

No XSLT
To avoid the overhead of XSLT
processing, pycsw was designed to
handle metadata by processing XML
elements into a relational model
(database). Thus there is almost no

33

transformation of XML within the
codebase. Metadata XML is generated
from the database.

Features
As of current writing (October 2012),
pycsw implements the following
features:

- Fully implements OGC CSW 2.0.2
- Fully passes the OGC CITE CSW test
suite (103/103)
- Implements INSPIRE Discovery
Services 3.0
- Implements ISO Metadata Application
Profile 1.0.0
- Implements FGDC CSDGM Application
Profile for CSW 2.0
- Implements the Search/Retrieval via
URL (SRU) search protocol
- Implements OpenSearch
- Supports ISO, Dublin Core, DIF, FGDC
and Atom metadata models
- CGI or WSGI deployment
- Simple configuration
- Transactional capabilities (CSW-T)
- Flexible repository configuration
- GeoNode connectivity
- Open Data Catalog connectivity
- Federated catalogue distributed
searching
- Realtime XML Schema validation
- Extensible profile plugin architecture

Technology



OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

pycsw is written in Python and
leverages the following technologies:

lxml is used for XML request parsing
and validation, as well as serializing
XML responses. lxml is a cornerstone
technology used in the codebase. lxml
is the Python binding to the libxml2 C
library.

Shapely is used for handling spatial
predicates in an independent manner.
It was decided to use Shapely to be
able to deal with geometries agnostic to
a given database environment. This
allows pycsw to bind to any database.
OGC Well Known Text (WKT) is used as
the internal geometry format.
EPSG:4326 is used as the internal
coordinate reference system. Shapely
is the Python binding to the GEOS C
library.

SQLAlchemy is used as the database
abstraction layer and provides a
Pythonic approach to working with
databases (as opposed to raw SQL
scripting).

OWSLib handles the heavy lifting of
parsing XML formats and interacting
with OGC Web Services for harvesting.

pyproj is used to handle coordinate
transformations, e.g. for CSW requests

34

which provide non-geographic
coordinates. pyproj provides Python
bindings to the proj.4 C library.

INSPIRE Support
Early versions of pycsw supported only
core CSW 2.0.2 and were able to
complete OGC CITE tests with a 100%
success rate. There was an initial goal
of the project to be able to work with
plugins, in a way that would make it
very extendable and easy to configure.
For example, the end user should be
able to install or uninstall a plugin by
adding or removing a folder within the
plugins directory.

The first metadata profile selected to be
implemented was the APISO profile of
CSW 2.0.2 since it was widely used in
current CSW implementations. This
profile was ready and stable for version
1.0.0 of pycsw.

Around that time, there was a growing
interest in Europe about Catalogue
Service implementations that would
support the draft guidelines of the
INSPIRE Discovery Service specification.
This specification was not final at that
point. However, through the INSPIRE
Directive there was a final decision
about the specification of metadata.
This specification supported ISO 19115
and 19136 with some additions and

http://lxml.de/
http://pypi.python.org/pypi/Shapely
http://trac.osgeo.org/geos/
http://trac.osgeo.org/geos/
http://pypi.python.org/pypi/OWSLib/
http://www.sqlalchemy.org/


OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

profile modifications.

Just before pycsw 1.0.0 was released,
Version 3.0 of the INSPIRE Discovery
Service specification was the first to
leave beta and become official. At this
point pycsw supported multilingual
metadata, as well as additional service
metadata needed to comply with the
directive. This was implemented within
the APISO profile and not in a separate
profile (INSPIRE is heavily based on
APISO and would make a new profile
highly redundant). The APISO plugin
was configured to have INSPIRE support
by setting a configuration switch. The
user would then provide the additional
metadata needed by the INSPIRE
specification. The final specification for
Discovery Service brought some
changes and a new XML namespace to
follow. This was added and fully
supported in pycsw 1.0.0.

The pycsw database model supported
the mandatory fields of INSPIRE for
APISO and search/read/write/update
procedures. This support was enabled
by enhancements made to the
underlying OWSLib ISO 19139
implementation. Those patches were
contributed back to OWSLib.

Integration with PythonFrameworks
35

pycsw has the ability to operate in
'library' mode by external applications.
It is also possible to use pycsw within
your application through pure Python
request and response (no HTTP)
mechanisms. This allows for easy
integration and inclusion of a CSW into
an existing website or application and
information model.

GeoNode
GeoNode is a platform for the
management and publication of
geospatial data. It brings together
mature and stable open-source
software projects under a consistent
and easy-to-use interface allowing
users, with little training, to quickly and
easily share data and create interactive
maps. GeoNode provides a cost-
effective and scalable tool for
developing information management
systems.

As part of the GeoNode 2.0 roadmap,
development was undertaken to
abstract CSW functionality to any CSW
(pycsw, GeoNetwork OpenSource,
deegree), which allows flexibility in
cataloguing in GeoNode. In addition,
GeoNode was updated to deploy pycsw
inline as a WSGI application and
working directly off the GeoNode
database (Django models), thus
reducing redundancy in metadata



OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

management and software deployment
footprint. pycsw is the default CSW
server for GeoNode 2.0.

Open Data Catalog
Open Data Catalog is an open data
catalog based on Django, Python and
PostgreSQL. It was originally developed
for http://OpenDataPhilly.org,a portal
that provides access to open data sets,
applications, and APIs related to the
Philadelphia region. The Open Data
Catalog is a generalized version of the
original source code with a simple skin.
It is intended to display information and
links to publicly available data in an
easily searchable format. The code also
includes options for data owners to
submit data for consideration and for
registered public users to nominate a
type of data they would like to see
openly available to the public.

In the same spirit as GeoNode, pycsw
was chosen as the CSW server for Open
Data Catalogue. Given the ODC's
desire to have an interoperable CSW as
part of the project, and pycsw's ability
to integrate with Django, pycsw was a
natural fit for the CSW requirements of
the project. As in the GeoNode
scenario, pycsw uses ODC's database
directly via Django models.

36

OSGeo Involvement
OSGeo Live DVD
pycsw is available on the OSGeo-Live
project. The overview and quickstart
provides further information on using
pycsw in OSGeo-Live.

Labs/Incubation
The project is currently in OSGeo Labs
and leverages various OSGeo
infrastructure, with the goal of reaching
incubation status and becoming an
approved OSGeo project.

Future Development
A few areas of interest for future
development include:

- Spatial database and geometry object
support (PostGIS, MySQL spatial):
currently pycsw works from a WKT
string column and Shapely for spatial
operations. Adding support for true
geometric objects would enable using
direct spatial support. In addition, for
non-spatial databases, WKB is being
considered as a means to improve
performance.

- Search engine support: Currently
pycsw works in a similar manner as an
OGC Web Feature Service (WFS).

http://opendataphilly.org/
http://live.osgeo.org/en/index.html


OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal

Adding support for true search engine
libraries would enable full text indexing
and search result relevance.

- Web administration/metadata editing:
Providing a front end administration
tool would allow for more user-friendly
interaction to load metadata, edit
server settings, etc.

37

- OGC Catalogue 3.0: Future versions of
the OGC Catalogue Service
Specification will require pycsw to
support multiple versions (the codebase
is currently bound to 2.0.2).

Some of the abovementioned features
will come at the cost of ease of
installment and deployment, and will be
developed as optional, configurable

pycsw Screenshot



OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal38

components.

Conclusion
pycsw is a young, lightweight, flexible
and fast CSW server implementation.
Already the project is being used as a
standalone service and in various
applications and will hopefully expand
in usage over time.

Community involvement is welcome
from users and developers. Please feel
free to visit http://pycsw.org.

References
D. Nebert, A. Whiteside, P. Vretanos
(2007)
Open Geospatial Consortium -
Catalogue Service for Web.
OGC 07-006r1 pp.204.

U. Voges, K. Senkler (2007)
Open Geospatial Consortium Inc. ISO
Metadata Application Profile
OGC 07-045 pp.125.

Directive 2007/2/EC of the European
Parliament and of the Council of 14
March 2007
http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do
?uri=CELEX:32007L0002:EN:NOT

Commission Regulation (EC) No
1205/2008
http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do
?uri=CELEX:32008R1205:EN:NOT

Technical Guidance for INSPIRE
Discovery Services
http://inspire.jrc.ec.europa.eu/document
s/Network_Services/TechnicalGuidance_
DiscoveryServices_v3.1.pdf

Tom Kralidis
http://kralidis.ca/
tomkralidis AT hotmail.com

Angelos Tzotsos
National Technical University of Athens
http://users.ntua.gr/tzotsos/
tzotsos AT gmail.com

Adam Hinz
Azavea
https://github.com/ahinz
hinz.adam AT gmail.com

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008R1205:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32007L0002:EN:NOT
http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.1.pdf
http://kralidis.ca/
http://users.ntua.gr/tzotsos/
https://github.com/ahinz
mailto:hinz.adam@gmail.com
tzotsos@gmail.com
tomkralidis@hotmail.com



