OSLANDIA

Running long and complex processes with
PostGIS

Vincent Picavet FOSS4G 2010 - Barcelona

(5/0SGeo OGC'

_._a Open Geospatlal Comsor tium, Ine.

Young French SME specialised in Open Source GIS
PostGIS experts: Vincent Picavet & Olivier Courtin

- Mainly Focuses on:
- Spatial Databases (PostGlIS, Spatialite)
- OGC, ISO, INSPIRE Standards and SDI architecture
- Complex analysis : Routing, Network and Graphs Solutions

Oslandia's ecosystem:

oGC

-
m (i OSGeO OSLANDIA

3D GDAL GEOS

GRASS GraphServer INSPIRE MapServer

OGC PgRouting POStG IS

PostgreSQL spatialite TINYOWS

TileCache PyWPS QGIS

OS‘LANDIA
Co

Running long and complexes processes with PostGIS
Vincent Picavet, Wednesday - 12h00 - Sala 6

PostGIS meets the third dimension
Olivier Courtin, Wednesday - 12h30 - Sala 6

State of the Art of FOSSA4G for Topology and Network Analysis
Vincent Picavet, Thursday - 14h30 - Sala 5

P/ N 1 Breakout Session: Spatial Databases
Y a2 \/ He < , , P
J’tﬁh’«'{"ﬁ?;ﬁ*" Code Sprint on Friday: PostGIS

FOSS4G 2010 Barcelona OSILANDIA
Oslandia : Bronze Sponsor ®
Co

=Step 1 : Use case presentation

= Step 2 : Special use characteristics
= Step 3 : Issues and solutions

= Step 4 : Conclusion

= Step 5 : Perspectives

= Step 6 : Stay here for Olivier's presentation

= Step 7 : Run for lunch

OSLANDIA

Step 1 : Use case

OS‘LANDIA

e

= Road network data (TA)
= + Custom client data linked to the network
= |[nitial network data imported in 2004

= Parallel evolution during 4 years
= Client modified road network data
= TA modified road network data

= No ID stability on TA data
— data de-synchronization

OSLANDIA

Co

Same-same, but different

Use case

JUVIGNAC *

Red : custom data
Background : road network (rasterized)
Left 2004 right 2008

Desynchronization

bt |
y i
N T,
bl |
i:}‘ T
? k-
L3
L
5
[E—

= Re-synch custom data with up-to-date network
= Graph pairing
= match networks streets, nodes, road sections
= Re-link or rebuild custom data on new network
= Have a full road network data update process
= Automate this process
= Enable fully automated and regular data update

OSLANDIA

Process

Our process
Load data

Graph pairing modules
(nodes, streets, sections)
Semantic,

topological
and geometrical subprocesses
Export output data

OSLANDIA

= Our data set

70% of french population (~40M)

50 Tables
10M rows
150G0 at end of process

30'(SQL and plpgsql lines

3000 queries, 6000 Python lines

= OQur dev team OSILANDIA

N
3 Mapinfo users and 1 PostGIS expert @

=2004 - 2008 :

= 70% road sections pairing
= 93% custom data pairing

=2008 —» 2009 :

= 99% road sections pairing
= 99,95% custom data pairing

= Less difference between networks
= Custom data have been cleaned

OSLANDIA

=«ELT» : Extract, Load, Transform
= PostgreSQL + PostGIS + external tools

= Big volumes

= Long, heavy and complex computation process
= Global production time ~ 20 days
= Pairing : 5 days

 Long SQL transactions

OSLANDIA

Step 3 :
Issues and solutions

OS/[LANDIA

N

#1 — Hardware and server configuration
#2 — Testing ==
#3 — Monitoring -=—
#4 — Dealing with corner cases
#5 — Splitting process

#6 — Stability <«
#7 — Optimization
#8 — Process improvement

aif

o3
n 9
Q0
()
n

AN

= Almost all of this is linked to the

way you design your process. OSILANDIA
CE

= Adapted hardware is essential
- Buy RAM I
= Buy more RAM
= Buy more RAM
= Buy disks
= Buy faster disks

= Server configuration is hard
= System monitoring

Depends on the process

Dynamic configuration
= Fine-tune according to query plan
Needs experience i A ——

Needs testing @}@

- And use it!

—

= Testing for correctness
= Ok on sample for development
= Corner case problems on full data

= Testing for performance
= Meaningless on samples
= Very long on real data
= Solutions
= Split process
= «Unit test» modules
= Guess and oversize everything

aif

o3
n 9
Q0
()
n

OSLANDIA

= MVCC = Multi-View Concurrency Control

= = conhcurrent access on data
= - Transactions isolated until committed

== NO easy way to access a running transaction

= Use smaller transactions

= Sequence monitoring : sequences live out of MVCC

= nextval('myseq') in query

- currval(‘myseq') gets progression ITransaction
.—i_] Data
n+1 Sequence
Time

= System monitoring
= Memory, disk access
= Shows process stability and steps

= Post-process monitoring and validation
= Log analysis
= Validation processes on result tabley
= Statistics on result tables «=—

= Intra-process monitoring and validation
= = Split process

s

/]

v
e |
o

» 0
®
0
"))

OSLANDIA

= Computations with geometry is

not an exact science

<= Data error & imprecision
<= Floating point models limits
<= Robustness of algorithms
<= Error propagation

OSLANDIA

99.999999% success | |
~ 1 Geometry computation error

1M rows
transaction fails ! 4)

= Every additional «9» costs a lot more than precedent
= Performance-wise, code complexity-wise

= Success rate drops with computation complexity
<= Error propagation

- Impossible to predict all corner cases OSLANDIA

= Split process in chunks =

= Preprocess and simplify data =
= Snap to grid (= reduce input precision)
= Simplify

aif

o3
n 9
Q0
()
n

= Catch errors to ignore them
= Using exception catching in plpgsql
= = Not precise enough (catch all)
= = Less stability

OSLANDIA

Co

= Finely handle errors
= Specific exceptions
= Discuss use cases to decide returning NULL or error

= Change floating point models
= Enable custom FP models (In JTS and GEOS, not PostGIS)
= Dynamic floating point precision model
= Exact computation (costs a lot)

= More robust algorithms

OSLANDIA

= Split computations
= Split data -
= Not possible in plpgsql
= <= no nested transaction
= Needs a process driver =
= Python is our driver

= Enables

= Intra-process operations
Backup, validate, stats, monitor...)

= partial computation & diff updates ’
= // computation ;

aif

ubisaq
$S320.d

Python driver =>

#5 — Split your process

Input data

split

Agglomerate

Result data

Transaction

) dlpgsal)

2
>

Transactions

)

(@) b
et L
> O
a um

= Memory management in PG is smart

= Memory allocated and freed per transaction context
= PostGIS uses it, not GEOS

-~

= Longer transactions increase
a Some.GEOS memory leaks g instability
= Catching geometric errors D

= Use recent PostgreSQL release
= Do. Not. Use. Windows. Servers. Ever. (we did)

OSLANDIA

= Indexes
= Necessary for geometric operations
= Must be finely tuned
= Drop, modify, recreate (automated in plpgsql)

= Constraints \/
= Same : drop, modify, recreate

= Or replace by validation steps

= Maintenance
= Vacuum vs autovacuum

= Quit plpgsal

= PostgreSQL C modules are fun ! — and efficient

aif

o3
n 9
Q0
()
n

OSLANDIA

= Less geometry computation
= More topology and attribute-based processes
= Base computation on input data

= Less computation errors

= Less error propagation \

= Use original cleaned data

= Use PostGIS mainly :
= In data preparation
= geometry rebuilding at the end

aif

ubisaq
$S320.d

OSLANDIA

Co

Step 4 : Conclusion

OS‘LANDIA

e

= |t works !
= Good results at the end

= Ease of use for PostgreSQL/PostGIS newbie
developers
= With expert assistance on problematic points

* Designing the process workflow carefully and
thoroughly is the key

OSLANDIA

= PostgreSQL improvement
= HOT standby => parallel work
= Nested transaction support ?
= Better autovacuum

=|n our case
= Horizontal process split effort
= Parallel processing
= Differential work

= NoSQL «DB» ?
= Map/Reduce system

OSLANDIA

Want to know more ?
Ask now or write to :

Vincent Picavet
vincent.picavet@oslandia.com

www.oslandia.com

OSLANDIA

mailto:vincent.picavet@oslandia.com
http://www.oslandia.com/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

