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Young French SME specialised in Open Source GIS
PostGIS experts: Vincent Picavet & Olivier Courtin

- Mainly Focuses on:
- Spatial Databases (PostGlIS, Spatialite)
- OGC, ISO, INSPIRE Standards and SDI architecture
- Complex analysis : Routing, Network and Graphs Solutions
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Running long and complexes processes with PostGIS
Vincent Picavet, Wednesday - 12h00 - Sala 6

PostGIS meets the third dimension
Olivier Courtin, Wednesday - 12h30 - Sala 6

State of the Art of FOSSA4G for Topology and Network Analysis
Vincent Picavet, Thursday - 14h30 - Sala 5

P/ N 1 Breakout Session: Spatial Databases
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=Step 1 : Use case presentation

= Step 2 : Special use characteristics
= Step 3 : Issues and solutions

= Step 4 : Conclusion

= Step 5 : Perspectives

= Step 6 : Stay here for Olivier's presentation

= Step 7 : Run for lunch
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Step 1 : Use case
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= Road network data (TA)
= + Custom client data linked to the network
= |[nitial network data imported in 2004

= Parallel evolution during 4 years
= Client modified road network data
= TA modified road network data

= No ID stability on TA data
— data de-synchronization
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Use case

JUVIGNAC *

Red : custom data
Background : road network (rasterized)
Left 2004 right 2008

Desynchronization
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= Re-synch custom data with up-to-date network
= Graph pairing
= match networks streets, nodes, road sections
= Re-link or rebuild custom data on new network
= Have a full road network data update process
= Automate this process
= Enable fully automated and regular data update
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Process

Our process
Load data

Graph pairing modules
(nodes, streets, sections)
Semantic,

topological
and geometrical subprocesses
Export output data
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= Our data set

70% of french population (~40M)

50 Tables
10M rows
150G0 at end of process

30'( SQL and plpgsql lines

3000 queries, 6000 Python lines

= OQur dev team OSILANDIA

N
3 Mapinfo users and 1 PostGIS expert @



=2004 - 2008 :

= 70% road sections pairing
= 93% custom data pairing

=2008 —» 2009 :

= 99% road sections pairing
= 99,95% custom data pairing

= Less difference between networks
= Custom data have been cleaned
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=«ELT» : Extract, Load, Transform
= PostgreSQL + PostGIS + external tools

= Big volumes

= Long, heavy and complex computation process
= Global production time ~ 20 days
= Pairing : 5 days

 Long SQL transactions
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Step 3 :
Issues and solutions
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#1 — Hardware and server configuration
#2 — Testing ==
#3 — Monitoring -=—
#4 — Dealing with corner cases
#5 — Splitting process

#6 — Stability <«
#7 — Optimization
#8 — Process improvement
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= Almost all of this is linked to the

way you design your process. OSILANDIA
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= Adapted hardware is essential
- Buy RAM I
= Buy more RAM
= Buy more RAM
= Buy disks
= Buy faster disks

= Server configuration is hard
= System monitoring

Depends on the process

Dynamic configuration
= Fine-tune according to query plan
Needs experience i A ——

Needs testing @}@

- And use it!
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= Testing for correctness
= Ok on sample for development
= Corner case problems on full data

= Testing for performance
= Meaningless on samples
= Very long on real data
= Solutions
= Split process
= «Unit test» modules
= Guess and oversize everything
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= MVCC = Multi-View Concurrency Control

= = conhcurrent access on data
= - Transactions isolated until committed

== NO easy way to access a running transaction

= Use smaller transactions

= Sequence monitoring : sequences live out of MVCC

= nextval('myseq') in query

- currval(‘myseq') gets progression ITransaction
.—i_] Data
n+1 Sequence
Time




= System monitoring
= Memory, disk access
= Shows process stability and steps

= Post-process monitoring and validation
= Log analysis
= Validation processes on result tabley
= Statistics on result tables «=—

= Intra-process monitoring and validation
= = Split process
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= Computations with geometry is

not an exact science

<= Data error & imprecision
<= Floating point models limits
<= Robustness of algorithms
<= Error propagation
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99.999999% success | |
~ 1 Geometry computation error

1M rows
transaction fails ! 4)

= Every additional «9» costs a lot more than precedent
= Performance-wise, code complexity-wise

= Success rate drops with computation complexity
<= Error propagation

- Impossible to predict all corner cases OSLANDIA



= Split process in chunks =

= Preprocess and simplify data =
= Snap to grid (= reduce input precision)
= Simplify
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= Catch errors to ignore them
= Using exception catching in plpgsql
= = Not precise enough (catch all)
= = Less stability

OSLANDIA

Co



= Finely handle errors
= Specific exceptions
= Discuss use cases to decide returning NULL or error

= Change floating point models
= Enable custom FP models (In JTS and GEOS, not PostGIS)
= Dynamic floating point precision model
= Exact computation (costs a lot)

= More robust algorithms
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= Split computations
= Split data -
= Not possible in plpgsql
= <= no nested transaction
= Needs a process driver =
= Python is our driver

= Enables

= Intra-process operations
Backup, validate, stats, monitor...)

= partial computation & diff updates ’
= // computation ;
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#5 — Split your process .. ..

Input data

split

Agglomerate

Result data

Transaction
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= Memory management in PG is smart

= Memory allocated and freed per transaction context
= PostGIS uses it, not GEOS

-~

= Longer transactions increase
a Some.GEOS memory leaks g instability
= Catching geometric errors D

= Use recent PostgreSQL release
= Do. Not. Use. Windows. Servers. Ever. (we did)
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= Indexes
= Necessary for geometric operations
= Must be finely tuned
= Drop, modify, recreate (automated in plpgsql)

= Constraints \/
= Same : drop, modify, recreate

= Or replace by validation steps

= Maintenance
= Vacuum vs autovacuum

= Quit plpgsal

= PostgreSQL C modules are fun ! — and efficient
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= Less geometry computation
= More topology and attribute-based processes
= Base computation on input data

= Less computation errors

= Less error propagation \

= Use original cleaned data

= Use PostGIS mainly :
= In data preparation
= geometry rebuilding at the end
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Step 4 : Conclusion
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= |t works !
= Good results at the end

= Ease of use for PostgreSQL/PostGIS newbie
developers
= With expert assistance on problematic points

* Designing the process workflow carefully and
thoroughly is the key
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= PostgreSQL improvement
= HOT standby => parallel work
= Nested transaction support ?
= Better autovacuum

=|n our case
= Horizontal process split effort
= Parallel processing
= Differential work

= NoSQL «DB» ?
= Map/Reduce system
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Want to know more ?
Ask now or write to :

Vincent Picavet
vincent.picavet@oslandia.com

www.oslandia.com
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mailto:vincent.picavet@oslandia.com
http://www.oslandia.com/
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