
istSOS:
Sensor Observation Service

in Python
Massimiliano Cannata, Milan Antonovic

Institute of Earth sciences

Land Planning

Hydrogeology

GeomaticsGeology

Hydrology

SOS service
(quick intro)

Sensor Observation Service

• It is a standard interface defined by the OGC
for the management and distribution of
observations. The current the version is the
1.0 as defined by the “OGC 06-009r6”
document.

SOS v1.0 requests

(transactional profile)
4. RegisterSensor
5. InsertObservation

(core profile)
1. GetCapabilities
2. DescribeSensor
3. GetObservation

(enhanced profile)
6. GetFeatureOfInterest
7. GetResult
8. GetObservationByID

M
an

da
to

ry
O

ptional
O

ptional

9. GetFeatureOfInterestTime
10. DescribeFeatureType
11. DescribeObservationType
12. DescribeResultModel

Data consumer
C

o
n

s
u
m

e
r

S
O

S
 s

e
rv

ic
e

GetCapabilities

Capabilities

DescribeSensor

Sensor description

GetObservation

Observations

Data producer
P

ro
d
u
c
e
r

S
O

S
 s

e
rv

ic
e

RegisterSensor

SensorID

InsertObservation

ObservationID

InsertObservation

ObservationID

istSOS
(technology)

istSOS

is the SOS implementation by the
Istituto scienze della Terra

(Institute of Earth sciences)

http://istgeo.ist.supsi.ch/software/istSOS

• This program is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License as
published by the Free Software Foundation;
either version 2 of the License, or (at your
option) any later version.

Licence

technology

istSOS is entirely developed in Python
and rely on Apache/ModPython,

PostgreSQL/PostGIS and
GDAL/OGR

design pattern

istSOS has been implemented with a
factory method as design pattern

this particular pattern
allows the automatic
instantiation of the
required objects or
functions depending on
the request type.

workflow

istSOS
(package)

package

SOS libraryistSOS

Web interfacesos.py

configuration filesosConfig.py

PostGIS schemasos_schema.sql

1. Install dependencies
2. Install istSOS schema
3. Install istSOS libraries
4. Configure apache/mod_python
5. Configure istSOS

installation

1. dependencies
• Base requirements:

– Python (2.6 >)
– PostgreSQL/PostGIS
– Apache (2.x >) con mod_phyton

• Python packages:
– psycopg2
– isodate
– GDAL

2. istSOS schema

3. istSOS libraries

4. configure mod_python

<Directory "/var/www/sos">

AddHandler mod_python py

DirectoryIndex sos.py

PythonHandler mod_python.publisher

PythonDebug On

PythonPath "['//var/www/sos/istSOSconfig']+sys.path"

</Directory>

5. configure istSOS

#database properties

connection = {

"user" : “postgres",

"password" : “1234",

"host" : "localhost",

"dbname" : "sos",

"port" : "5432"

}

schema="istsos“

#define the authority and version of your institution

#x- denote a not registered authority

authority="x-ist"

version=""

istSOS
(features &

characteristics)

• CoreProfile:
– GetCapabilities
– DescribeSensor
– GetObservation

• Transactional Profile:
– RegisterSensor
– InsertObservation

• Enhanced profile:
– GetFeatureOfInterest

Supported requests
Not yet 

• Enhanced profile:
– GetResult
– GetObservationByID
– GetFeatureOfInterestTime

– DescribeFeatureType
– DescribeObservationType

– DescribeResultModel

For istSOS the

sensor == time serie
thus it is:

“one set of values at one time”

sensor

T,P Sensor R Sensor XYZ Sensor

• According the SOS it may be whatever you
want but for istSOS it is the
observed geometry and not the medium
(e.g.: a point, a network, a region)

• istSOS schema allows only
one FOI for each Procedure

FOI: featureOfInterest

• Data are different for different sensor,
so istSOS decided to distinguish sensors
based on :
–observation type:

• Discrete (point, arc, area) – distributed
– sensor stationary:

• fixed – mobile
– sampling mode:

• in situ - remote

sensor types

Up to now two supported sensor types

sensor types

“fixpoint"
=

in situ – fixed – discrete point

sampling location
is given by the FOI

[2010-09-05T12:10+02:00,
127,0.44]

"mobilepoint“
=

in situ – mobile- discrete point

sampling location
is given by x,y,z triplet

with the SRS adv in field description

[2010-09-05T12:10+02:00,
697812,78562,873.23,12.7]

1. In the response the time has the same
timezone of the first element of the
requested eventTime, (if missing it is
assumed to be UTC)

2. If no eventTime is requested only the
latest available observation is returned

getObservation

3. Result parameter (filters on values) is
not supported yet! 

4. featureOfInterest does not yet support
spatial constrains! 

5. Non standard aggragateInterval and
aggregateFunction parameters allow
for data aggregation requests

getObservation

regular time series

time

11:00

2010-05-10T12:00, 0.6

2010-05-10T12:00, 0.6

2010-05-10T12:00, 0.6

?

] ----------] = open lower bound<gml:timeInterval > PT1H </gml:timeInterval>

• istSOS uses backward, open lower bound
intervals with frequency defined by
<gml:timeInterval>

11:30

12:00 12:30
13:00

13:30

14:00

6. responseFormat support also text/csv
and application/Json formats

7. Support of irregular time series (“ad
eventum” observation) and
discrimination of no data and no
event!

getObservation

• istSOS uses <om:samplingTime> to
communicate the observed period, not the
returned observations interval (min-max)

Irregular time series

time

observed period = istSOS <om:samplingTime>

Requested eventTime

NO EVENT

NO DATA

52°North <om:samplingTime>

last communication

between Sensor and SOS

first communication

between Sensor and SOS

1. Automatically detect the sensor type
(fixpoint or mobilepoint) depending on the
presence of fields x,y,z in the provided
observation template.

2. All new procedures are registered to a
temporary offering

3. Return the sensorID: this is the only time
this value is accessible trough internet!

registerSensor

1. Allows to insert multiple values and returns as
a response an identifier that is the
concatenation of observation id with the @
symbol. (1@2@3@4@5..)

2. Time-value constrain: one procedure has one
property with one value for each instant

3. In case of error no observation is registered and
the service answers with an exception
(following the SOS specifications).

insertObservation

4. Observed period is updated accounting for
submitted <om:samplingTime> (time of
observation of submitted data)

5. forceInsert: non standard parameter for data
management; in this case the
insertObservation substitutes all the
observation within the <om:samplingTime>
with the new observations (if any provided)

insertObservation

• NON standard request: allows for
submission of a new sensor description that
substitutes the current one

• this is to account for historical changes of
instruments or particular maintenance tasks

UpdateSensorDescription

• istSOS allows to define virtual procedures
extending the base class virtualProcess that
has a method for retrieving of classic
procedure data based on submitted filters
parameters.

 data may reside wherever you want, just
read the filter, get the data and return the
record in a few lines of code !!

virtual process

virtual process
FILENAME == PROCEDURE NAME in reserved FOLDER

from istSOS.responders.GOresponse import VirtualProcess
import datetime, decimal

class istvp(VirtualProcess):
def __init__(self,filter,pgdb):

VirtualProcess.__init__(self,filter,pgdb)

#SET THE INPUTS
self.h = self.setSOSobservationVar("A_BRB","riverheight")

def execute(self):
data_out=[]
for rec in self.h:

newdata = rec[1]*0.25 + 124
data_out.append(rec[0], newdata)

return data_out

…Try it out …

http://istgeo.ist.supsi.ch/software/istsos/

…and join to the development

