
Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1

Table of Contents
1. Intro-fossgis-umass .. 1

1.1. Author Attribution ... 1
1.2. Module Licensing Information ... 1
1.3. Reviewed by .. 1

2. Analyzing attribute data in PGAdmin and QGIS (Part I: SELECT statements) 2
2.1. Prerequisites ... 2
2.2. Introduction ... 2
2.3. SQL .. 2

SQL: Connecting to the database .. 3
SQL: Staring the Query Tool ... 5
Select Statement ... 6
Conclusion .. 22
Additional materials .. 22

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 ii

1. Intro-fossgis-umass

1.1. Author Attribution
Major contributors to this curriculum include (alphabetical):

Maria Fernandez

Michael Hamel

Quentin Lewis

James Peters

Charlie Schweik

Alexander Stepanov

1.2. Module Licensing Information
Version 1.0.

This tutorial is licensed under a Creative Commons Attribution-No Derivative Works 3.0 License
(http://creativecommons.org/licenses/by-nd/3.0/). This means that users are free to copy and share this material with
others. Requests for creating new derivatives should be sent to the primary author.

1.3. Reviewed by
Michael Hamel

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 1

2. Analyzing attribute data in PGAdmin
and QGIS (Part I: SELECT statements)

2.1. Prerequisites
This module implies that you:

1. Have an Internet connection and

2. Have a client program pgAdmin3 [http://pgadmin3.org/] installed or you have PostGIS running on your local
machine/network

if not please refer to the module(s) Installing_client_software_to_work_with_SDE
[http://linuxlab.sbs.umass.edu/intro-fossgis-umass/index.php?title=Installing_client_software_to_work_with_SDE]

Note for the instructors: text file with SQL statements/demo can be found here

2.2. Introduction
As you remember, GIS data consists of two major (almost non-separatable) components describing objects in space:
spatial and attriute component. General datasets, available to you (your organization), can be massive. For purpose
of analysis you will need a subset of data to work with, to run your analytical tools over, etc. In this section, we will
give you an overview of the tools and methods used for selecting and summarizing such manageble subsets of
"general data". You can do analysis of gis data in two major ways:

1. working with spatial elements (polygons, lines, points, regions, etc) or

2. working with the attribute data.

For example, doing some planning analysis, you can try to find all houses located closer than 1 mile to a railroad
(spatial query) or to find all houses which were built in a specific year (attribute data query). So we will review the
query components used to look at attribute data. To perform this task, we will work with attribute data using SQL
language.

2.3. SQL
SQL, which stands for Structured Query Language, was developed in 1970s by IBM and was recognized as a
standard language to work with relational databases. There are two standards of the SQL language: SQL92 and
SQL99. One of main ideas in relational database theory, is to store information about objects in relations (tables),
which comprise of columns (attributes) and rows (records). In addition, the database structure should be designed in
such way that tables don't keep repetitive/excessive information and so that information from several tables can be
merged. For example, one table can consist of landuse codes and assessor codes for a parcel map. Another table can
consist of landuse codes and their descriptions. Such separation avoids keeping landuse code descriptions in the first

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 2

http://pgadmin3.org/
http://pgadmin3.org/
http://linuxlab.sbs.umass.edu/intro-fossgis-umass/index.php?title=Installing_client_software_to_work_with_SDE
http://linuxlab.sbs.umass.edu/intro-fossgis-umass/index.php?title=Installing_client_software_to_work_with_SDE

table. (We will illustrate this example during this lab session). We can define two subsets of the SQL language; they
are Data Definition Language (DDL) and Data Manipulation Language (DML). The first allows you to create tables,
set user permissions, etc. The DML is to query data. The most common DML SQL statements are SELECT,
INSERT, UPDATE and DELETE. We will review these statement in detail.

SQL: Connecting to the database

As you remember from the previous modules, we set a spatial database "TestGIS" on the FossGIS server. This
spatial database, which runs with PostgreSQL and PostGIS, consists of several spatial layers: landuse layers for the
Towns of Amherst and Hadley and the political boundary layer for Massachusetts. You can connect with QGIS to
the PostGIS server to look at the layers. Current abilities of QGIS to work with attribute data are limited, so we will
work directly with the PostGIS database using a client application/front-end pgAdminIII. Please start pgAdmin with
set connection (if you didn't configure pgAdmin to connect to the FossGIS server please refer to module).

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 3

Figure 1

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 4

From a list of servers on the left side of the pgAdmin, select lambda.sbs.umass.edu server. Then click on the
"TestGIS" database and expand the list of database objects. Click on Tables (you will need to expland the objects
tree from TestGIS -> Schemas -> Public) , to see a list of tables. You can click on a table to see the list of columns
(attributes). The following tables:

• ma_lu_amherst

• ma_lu_hadley

• matowns

are the attribute tables of the spatial layers we used: landuse layers for the Towns of Amherst and Hadley, and a
layer representing town boundaries for the State of Massachusetts. Other tables containing attribute data are
ma_lu_codes and ma_attr_censusblocks. The table ma_lu_codes consists of fields for landuse codes and their
description. The second table consists of Census 2000 data. We will start with simple SQL queries to pull/a?alyze
some data from these tables.

SQL: Staring the Query Tool

pgAdmin has a special tool for performing SQL queries, called “ the Query Tool”. To start the tool, select “Tools >
Query Tool” from the menu or click the sql query tool button on the tool panel (Figure 2).

Figure 2

The new window of the Query Tool will appear (Figure 3). The tool has two major working areas: query input area
and sql query output area.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 5

Figure 3

The query input area is an area where you type your SQL queries. Then the query should be run or executed. To run
the query, click on the "Execute Query" button, or select "Query > Execute" from the menu bar (a strike of F5 on
your keyboard will do the same - execute the query). The results of the SQL statement will be shown in the output
area. Let's start with the SELECT SQL query.

Select Statement

Perhaps, the SELECT [http://www.w3schools.com/sql/sql_select.asp] statement is the most used among all SQL
commands. The purpose of the statement is to generate/retrieve a subset of data. For example, you can select subset
of one table, choosing columns/fields and records by specific conditions. Also, you can create a subset of data from
several tables, merging them on specific criteria/attributes.

The SQL commands have well defined structure. The syntax for SQL command is presented below:

SELECT (ALL/DISTINCT) <column(s)|*>

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 6

http://www.w3schools.com/sql/sql_select.asp
http://www.w3schools.com/sql/sql_select.asp

FROM table(s)
WHERE <search-condition>
GROUP BY <group-column(s)>
HAVING <search-condition>
ORDER BY <sort-column(s)>

The basic SELECT SQL command starts with "SELECT ... FROM" and then you can elaborate the query adding
logical conditions with the WHERE clause, as well as group or sort data with "GROUP BY" and "ORDER BY"
clauses. We will start with the simplest form of SELECT statement and then will move gradually to more
sophisticated statements.

Example 1

To illustrate the basic SQL statement, let's retrieve all data from the table ma_lu_codes. We will retrieve all
columns/attributes and all records from the table. To perform this operation please type the following command in
the input area of the query tool:

SELECT *
FROM ma_lu_codes;

The asterisk (*) in the statement means "all columns". So this statement selects "all columns" (and all records) from
the table ma_lu_codes. After entering the command into the input area of the query tool, execute the query (Figure
4).

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 7

Figure 4

Let's analyze the output of this operation. The results of the SQL operation are presented in the "Output Pane". The
output pane contains four tabs: "Date Output", "Explain", "Messages" and "History". The "Date Output" tab shows
the results of the query. You may have noted that, in general, results of the SQL query is a relation/table: where a set
of columns and records satisfies conditions of the SQL query (Figure 5). Take a moment and check how many
columns and records were returned with the query.

Figure 5

The tab "History" keeps record of all your queries, which were performed during the "Query Tool" session. It
shows, for example, the query, time of execution and the the number of records returned (or satisfying selection

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 8

criteria). In our case, the statement/command returned 37 records. In other words, the table "ma_lu_codes" consists
37 different code definitions (Figure 6).

Figure 6

Example 2

In the previous example, we retrieve the whole dataset: all columns and all records. Let's limit our selection to two
columns from the table "ma_lu_table". Such selection can be generated with the following SQL query:

SELECT code, category
FROM ma_lu_codes

We use a comma-separated list of columns after the "SELECT" keyword to specify what columns/fields should be
retrieved from the whole dataset. Compare this statement with the statement from the previous example. Enter the
statement into the input area of the Query tool and run it.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 9

Figure 7

Results of this query are presented in Figure 7. As you can see the SQL statement returned 2 columns out of 4 and
the same number of records: 37.

Example 3: Specifying logical conditions with the WHERE clause

The previous statements returned all records from the dataset/table(s). In real application, it means that information
on all parcels from the landuse layer were retrieved or on all books from the library catalog, etc. How could we get
only specific records which have particular interest for our research/task? Selection based on logical conditions can
be performed with the WHERE clause. You just add WHERE keyword to a SQL statement specifying logical
conditions based on one or several attributes.

SELECT *|(list of comma-separated columns)

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 10

FROM table(s)
WHERE column operator value (AND, OR additional logical conditions)

For example, let's retrieve information on residential parcels only for the Town of Amherst. This data are stored in
the table ma_lu_amherst. In particular field 'lu21_1999' consists of land use codes (assessors codes) for parcels
based on 1999 inventory. Residential parcel codes are 10, 11, 12 and 13. How do we know that? It is simple, check
the results of SQL queries in the first two examples. Now let's complete our query as follows and run it:

SELECT *
FROM ma_lu_amherst
WHERE LU21_1999 >= 10 AND LU21_1999 <=13;

The part SELECT * FROM ... should look familiar for you by now. We add the WHERE clause with the logical
condition that selected records values in field lu21_1999 should be larger or equal to 10 and smaller or equal to 13.
This logical condition assures that land use codes are 10,11,12 or 13. Try to run this query and analyze the output.
How many fields and records are in the resulting dataset? Try to specify different logical conditions using
information from different fields and different logical operators (AND, OR, <, =, etc
[http://www.w3schools.com/sql/sql_where.asp]). Don't be afraid to experiment with SQL SELECT statement, you
cannot brake anything as you read (not write or change) data.

Another approach to specify such query is to use "IN" keyword within "WHERE" clause. "IN" specifies that the
value of a specific attribute is IN INCLUSIVE RANGE. Please see an example below:

SELECT *
FROM ma_lu_amherst
WHERE lu21_1999 in (10,11,12,13);

Please try to execute this SQL statement and check results (Figure 8)

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 11

http://www.w3schools.com/sql/sql_where.asp
http://www.w3schools.com/sql/sql_where.asp

Figure 8

In particular, please note the set of values for field "lu21_1999" in the resulting field and the number of resulting
records in the recordset.

The WHERE cl?use is a very powerful tool, which allows one to put a filter on retrieving data. Later, in the next few
modules, we will use the WHERE clause to merge data from several tables into one dataset.

Example 5: Aggregate functions

For now, before reviewing GROUP BY and SORT BY statements, we would like introduce (very briefly) aggregate
functions. Aggregate functions perform calculations on column(s) and over values of all records. For example the
function SUM(column) will find the sum of all values stored in column for a specific dataset. The general format is:

SELECT FUNC(column)
FROM table(s)
[WHERE ...]

This function is useful to get the cumulative/descriptive statistics on a dataset or specific attribute. Common
aggregate functions are SUM(), MIN(), MAX(), COUNT() and COUNT(*). The list of functions and examples of
their usage can be found here [http://www.w3schools.com/sql/sql_functions.asp]. For example, the function
COUNT(*) returns the number of records in the dataset set. Combined with the WHERE clause aggregate function
it is powerful! The following example allows one to find out the number of parcels zoned for residential
development in the Town of Amherst.

SELECT COUNT(*)
FROM ma_lu_amherst
WHERE lu21_1999 IN (10,11,12,13);

Note that the WHERE clause specifies that only residential parcels are selected, the COUNT(*) function computes
the number of records. Type in this statement and run it within the Query Builder (Figure 9).

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 12

http://www.w3schools.com/sql/sql_functions.asp
http://www.w3schools.com/sql/sql_functions.asp

Figure 9

As a result of this query we find that: 410 parcels (polygons) of the Amherst landuse layer are zoned for residential
development.

Example 6: Selecting unique/distinct records

In many cases, it's necessary to retrieve only unique records without any duplicates. For example, some towns in the
spatial layer ma_towns (which represents political boundaries of towns) can be 'coded'/presented as several
polygons.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 13

Figure 10. The Western Massachusetts: town boundaries

It can happen if a town is divided by a river, or has an island part, etc. How could we retrieve data on
polygons/spatial features without duplication? At first let's get all attribute da?a from the spatial layer "ma_towns".
Please run the following SQL query in the Query Tool:

SELECT *
FROM matowns;

The resulting recordset consists of 631 records, although only 351 towns comprise The Commonwealth of
Massachusetts. (some towns are presented with several polygons). Take a moment to study columns/attributes and
check the metadata for this layer [http://www.mass.gov/mgis/towns.htm]. To get better understanding of the issue,
lets select town id (column town_id), town name (town), data on population (pop2000), code of the county
(fips_count) and area in sq. meters (shape_area). Please run the following query:

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns;

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 14

http://www.mass.gov/mgis/towns.htm
http://www.mass.gov/mgis/towns.htm

The results of the query are shown in Figure 10. You can see that, for example, there are two records for the town on
Newburyport (town_id = 206). The total population of the town is 17,189 persons (each record stores this info =
duplication), though area for each polygon representing Newburyport is unique.

Figure 11

To select unique records, we use the special keyword DISTINCT. An SQL query with the DISTINCT keyword will
return only unique records. A record is considered unique if one or more fields/attributes differ from other records.
Please try to run the following query and analyze the results (Figure 12).

SELECT DISTINCT town_id, town, pop2000
FROM matowns;

As you can see the total number of towns is 351. What will happen if you add 'shape_area' field into this query?
Could you explain the difference?

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 15

Figure 12

Example 7: Sorting data

To sort data, there is an ORDER BY clause. The usage of this clause is clear from the following two examples.
Please execute the statement below and compare with Figure 12.

SELECT DISTINCT town_id, town, pop2000
FROM matowns
ORDER BY pop2000 ;

Now add the DESC keyword to sort in reverse order. Please run the query and compare it with the results of the
previous query and the query in Figure 12.

SELECT DISTINCT town_id, town, pop2000
FROM matowns
ORDER BY pop2000 DESC;

Now we will review usage of the GROUP BY and ORDER BY clauses.

Example 8: Sorting selected data by several attributes

Usually the results of the SQL query can be sorted, so (in general) the ORDER BY clause can be used in
conjunction with other keywords, e.g. WHERE clause. Let's try to run the following query. We try to get
information (data on town id, town name, population, county and area) for towns in the Western Massachusetts.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 16

Towns in Western Massachusetts have FIPS county codes of 3,11,13 or 15 (Figure 10)

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15);

The query returns 101 records. Lets modify our query to sort results by town name in ascending order:

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15)
ORDER BY town;

Bingo! Records are sorted now (Figure 13).

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 17

Figure 13.

The results of the query can be sorted by the several attributes. Please run the following query to sort data by fips
county code FIRST, and THEN by population.

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15)
ORDER BY fips_count, pop2000;

Results of the query are presented in Figure 13. Please note that both fips county code and population size are sorted
in the same order.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 18

Figure 14.

What do you think would be result of the following query:

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 19

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15)
ORDER BY fips_count DESC, pop2000 ASC;

Check your quess by executing the query with Query Tools. The goal here it to have you experiment!

Example 9. Grouping data and computing subtotals

As you could see in the part "SQL Aggregative functions", functions like SUM(), AVG(), COUNT() perform
operation on all records at once. But how could be perform such operations on a part/group of the data? For
example, we need to compute total population and total area for the counties located in the Western Massachusetts.
To perform such analysis, we need to introduce and use the GROUP BY clause. Please type and run the following
query:

SELECT fips_count, SUM(pop2000) AS POPTOTAL, SUM(shape_area) AS AREATOTAL
FROM matowns
WHERE fips_count IN (3,11,13,15)
GROUP BY fips_count
ORDER BY fips_count;

What happens here is that GROUP BY groups/combines records with the same fips_count codes and then the
SU?()function is applied to that group. In other words, we computed 'Subtotals' for each county in the Western MA.
Please check and analyze the results of the query below (Figure 14):

Figure 15.

Another new part in this statement is "AS POPTOTAL". With the AS keyword after the column name, we can
specify an alias for the resulting column (please see Figure 14, where sum of population is stored in column with

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 20

alias 'POPTOTAL').

You can argue that there is something strange about the way we calculated the total population. We showed before
that each record for the specific town consists of the same population but different area. So usage of
SUM(population) would not be correct. The correct way to go about this would be to use the AVG() function which
computes average value of the dataset. You can easily see that such a query will return the correct answer. Please try
to run the following query:

SELECT town, AVG(pop2000), fips_count, SUM(shape_area)
FROM matowns
GROUP BY town, fips_count
ORDER BY town;

Results are available in Figure 16.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 21

Figure 16.

Conclusion

In this module we introduced SELECT SQL statements. This is the fundamental statement, and is very powerful. In
the next secions we will use this statement for:

• merging data from several tables

• joining spatial and attribute data together.

Other important SQL statements are INSERT, UPDATE and DELETE. We will use the INSERT statement when
we join spatial and non-spatial data.

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 22

Additional materials

1. An article on SQL on Wikipedia http://en.wikipedia.org/wiki/Sql

2. http://www.w3schools.com/sql/default.asp

3. SQL Tutorial at http://www.sql-tutorial.com/

Analyzing attribute data in PGAdmin and QGIS (Part I:
SELECT statements)

please define productname in your
docbook file!

Exercise 10: Analyzing Attribute Data
in PGAdmin and QGIS Part 1 23

http://en.wikipedia.org/wiki/Sql
http://www.w3schools.com/sql/default.asp
http://www.sql-tutorial.com/

	Exercise 10: Analyzing Attribute Data in PGAdmin and QGIS Part 1
	Table of Contents
	1. Intro-fossgis-umass
	1.1. Author Attribution
	1.2. Module Licensing Information
	1.3. Reviewed by

	2. Analyzing attribute data in PGAdmin and QGIS (Part I: SELECT statements)
	2.1. Prerequisites
	2.2. Introduction
	2.3. SQL
	SQL: Connecting to the database
	SQL: Staring the Query Tool
	Select Statement
	Example 1
	Example 2
	Example 3: Specifying logical conditions with the WHERE clause
	Example 5: Aggregate functions
	Example 6: Selecting unique/distinct records
	Example 7: Sorting data
	Example 8: Sorting selected data by several attributes
	Example 9. Grouping data and computing subtotals

	Conclusion
	Additional materials

