
 Printed on 20 March, 2009

User's Guide

CS-MAP User's Guide

Copyright (c) 2008, Autodesk, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of the Autodesk, Inc. nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS DOCUMENTATION AND THE SOFTWARE IT DOCUMENTS IS PROVIDED BY Autodesk, Inc. ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL Autodesk, Inc. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 i

Contents

Chapter 1 Chapter 1 -- Distribution/Release Notes 9
Current Manual Status ..10
The Distribution..12

Include Directory...13
Library Source Code..13
Dictionary Source Code and Data ...14
Test Source Code and Data ...15
Documentation Directory ..16
Data Directory ...16
Make Procedure...16

Release Notes for CS-MAP 12 ...20

Chapter 2 Chapter 2 -- Descriptions and Discussion 21
Overview ..21

Initialization...22
High Level Interface..22
Coordinate System Dictionary...23
Other Interfaces ...24
Other Dictionaries ...24
Cartographic vs. Geodetic Referencing of Coordinate Systems..25
Latitudes and Longitudes...26
Coordinate Arrays ...27
Selected Source Code ..28

Naming Conventions ..28
Name Collisions ..28
Projection Code Names ...30

High Level Interface ...32
Basic Coordinate Conversion -- CS_cnvrt...33
Grid Scale Factor -- CS_scale ...34
Convergence Angle -- CS_cnvrg...34
Data Directory -- CS_altdr ..35
Recover System Resources -- CS_recvr ..35
Get Error Message Text -- CS_errmsg ..35
Compute Azimuth and Distance -- CS_llazdd...35
Unit Lookup -- CS_unitlu..35
Coordinate System Name Verification – CS_csIsValid ..36
Datum Name Verification – CS_dtIsValid..36
Ellipsoid Name Verification – CS_elIsValid...36

Low Level Functions ..36
Cartographic Projections ...36
Geodetic Datum Shift Functions ...42
General Utility Functions ..43

Error Handling ..47
Data Structures..48

Ellipsoid Definition Structure..48
Datum Definition Structure ...48

ii Contents

Datum Composite Structure ..49
Coordinate System Definition Structure..49
Preprocessed Projection Structures..49
Coordinate System Parameter Structure ..50
Projection Name Table Structure...50
Datum Shift Definition Structure...51

The Data Dictionaries ...51
The Coordinate System Dictionary ...52
The Datum Dictionary...52
The Ellipsoid Dictionary ...53
Dictionary Encryption ...53
Dictionary Definition Protection ...54
Byte Ordering ..55
Dictionary Compiler ..55
Multiple Regression Datum Transformation Files ..55
Default Datums, Ellipsoids, and Units ..56

High Performance Interface..57
The Functions ..57
Coordinate System to Coordinate System ...60
The LL Coordinate System..61
Multiple Conversions ..61
Adding Datum Conversions to the Interface ...62
Geodetically Referenced Coordinate Systems...63
Cartographically Referenced Coordinate Systems ..63
Cartographic Projections ...64

Program Environments ..64
Multi-Threaded Programming...65
GUI Considerations ...66

Customization ...66
Tuning the Protection System..66
Turning of Unique Names ...67
Eliminating a Projection ..67
Data Dictionary Directory ...67
Dictionary File Names...67
Adding Units ...67
Language Translation ..68

Chapter 3 Chapter 3 -- Executables 69
CS_COMP—Coordinate System COMPiler ..69

Byte Ordering ..70
Source File Formats...70

TEST -- TEST program ..78
Individual Tests ...78
Test Data..81
Other Command Line Options ..81
BUGS ..82

mfcTEST -- MFC Dialog TEST ...82
Dictionary Differences Program...82

Chatper 4 -- Library Functions 83
High Level Interface Functions ..83

CS_altdr ALTernate DiRectory...83

 Contents iii

CS_atof Ascii TO Floating point...84
CS_azddll LatLong Azimuth Distance calculator ...86
CS_azsphr AZimuth on a SPHeRe..87
CS_cnvrg CoNVeRGence function...87
CS_cnvrt generalized CoNVeRT function ..88
CS_cnvrt3D 3D generalized CoNVeRT function..88
CS_csEnum Coordinate System ENUMerator ..88
CS_csIsValid Coordinate System key name Is Valid..89
CS_csRangeEnum Coordinate System Useful Range Enumerator ..90
CS_csRangeEnumSetup Coordinate System Range Enumeration Setup90
CS_dtEnum DaTum ENUMerator ..91
CS_dtIsValid DaTum key name Is Valid ..92
CS_elEnum ELlipsoid ENUMerator ...92
CS_elIsValid ELlipsoid key name Is Valid...93
CS_errmsg ERRor MeSsaGe...93
CS_erpt Error RePorT ...94
CS_fast FAST mode..94
CS_ftoa Floating point TO Ascii...94
CS_geoctrSetUp GEOCenTRic setup ..96
CS_geoctrGetXyz GEOCenTRic GET XYZ ...97
CS_geoctrGetLlh GEOCenTRic GET LatLongHgt ...97
CS_getCountyFips Get County Federal Information Processing Standard code............................97
CS_getDataDirectory GET DATA DIRECTORY ..98
CS_getDatumOf Get Datum of a Coordinate System ..98
CS_getDescriptionOf Get Description of a Coordinate System...98
CS_getEllipsoidOf Get Ellipsoid Of a Coordinate System ..99
CS_getReferenceOf Get Reference Of a Coordinate System...99
CS_getSourceOf Get Source Of Coordinate System..99
CS_getUnitsOf Get Units of a Coordinate System...100
CS_getElValues Get Ellipsoid Values..100
CS_getCurvatureAt get CURVATURE AT specified latitude...100
CS_isgeo IS GEOgraphic ..101
CS_llazdd Lat/Long to AZimuth and Distance calculator...101
CS_llFromMgrs calculate Lat/Long FROM MGRS..102
CS_mgrsFromLl calculate MGRS FROM Lat/Long...102
CS_mgrsSetUp MGRS SETUP...102
CS_recvr RECoVeR resources ..103
CS_scale grid SCALE factor function...103
CS_scalh grid SCALE factor(H) function ...103
CS_scalk grid SCALE factor(K) function ...104
CS_setHelpPath SET HELP PATH..104
CS_spZoneNbrMap State Plane ZONE NumBeR MAPper ..104
CS_unEnum UNits ENUMerator ..105
CS_unitlu UNIT Look Up ...105

High Performance Interface..106
CS_audflt Angular Unit DeFauLT ..106
CS_cs2ll Coordinate System TO Latitude/Longitude ...107
CS_cscnv Coordinate System CoNVergence ..107
CS_csdef Coordinate System DEFinition locator..107
CS_csdel Coordinate System definition DELete...108
CS_csEnumByGroup Coordinate System ENUMerator By Group ..109
CS_csGrpEnum Coordinate System GRouP ENUMerator ...110
CS_csloc Coordinate System LOCate and initialize ...110
CS_cssch Coordinate System SCale H, along a meridian ...112
CS_cssck Coordinate System SCale K, along a parallel ...112

iv Contents

CS_csscl Coordinate System SCaLe ...112
CS_csupd Coordinate System dictionary UPDate...112
CS_dtcls DaTum conversion CLoSe ...114
CS_dtcsu DaTum Conversion Set Up ...114
CS_dtcvt DaTum ConVerT ...117
CS_dtdef DaTum DEFinition locator ..118
CS_dtdel DaTum definition DELete ...118
CS_dtdflt DaTum DeFauLT..119
CS_dtloc DaTum LOCate ...120
CS_dtupd DaTum dictionary UPDate ...120
CS_eldef ELlipsoid DEFinition locator...122
CS_eldel ELlipsoid definition DELete ..122
CS_eldflt ELlipsoid DeFauLT...123
CS_elEnum ELlipsoid ENUMerator ...124
CS_elupd ELlipsoid dictionary UPDate ..124
CS_errmsg ERRor MeSsaGe...125
CS_ll2cs Latitude/Longitude TO Coordinate System ...126
CS_llchk Lat/Long limits CHecK ...126
CS_ludflt Linear Unit DeFauLT..126
CS_xychk X and Y limits CHecK...127
CS_usrUnitPtr - Units Look Up Hook Function ...127
CS_unitAdd - ADD UNIT to Table...128
CS_unitDel -- DELete UNIT from table ...129

Low Level Interface Functions ...129
Chapter 4 Cartographic Projection Funtions ..131
Geodetic Conversion (Datum) Functions ..255

Microsoft MFC User Dialog Functions ..287
CS_csDataDir Coordinate System DATA DIRectory dialog ..287
CS_csDualBrowser Coordinate System DUAL BROWSER ..287
CS_csBrowser Coordinate System BROWSER..288
CS_csEditor Coordinate System EDITOR dialog ...289
CS_dtEditor DaTum EDITOR dialog ...289
CS_gdcEdit Geodetic Data Catalog EDITor ..290
CS_elEditor ELlipsoid EDITOR dialog ..290
CS_csTest Coordinate System TEST dialog ...291
CS_mgTest Military Grid TEST dialog ...291
CS_dtSelector DaTum SELECTOR...292
CS_elSelector ELipsoid SELECTOR...292
CSwinhlp WINdows HeLP ...293

General Support Functions ...293
CS_adj1pi ADJust angle to 2 PI ..293
CS_adj180 ADJust angle to 180 degrees...294
CS_adj270 ADJust angle to 270 degrees...294
CS_adj2pi ADJust angle to 2 PI ..294
CS_adj2piI ADJust angle to 2 PI Inclusive ...294
CS_adj90 ADJust angle to 90 degrees...294
CS_adjll ADJust Lat/Long ..294
CS_bins BINary Search...295
CS_bswap Byte SWAPer ..295
CS_cschk Coordinate System CHecK...297
CS_cslcl Coordinate System, LoCaL ..297
CS_erpt Error RePorT ...298
CS_fillin coordinate system definition FILL IN..299
CS_ii??? Imaginary Arithmetic Functions ..299
CS_init INITialize ...301

 Contents v

CS_ips In Place Sort ..302
CS_isHlpAvailable IS HeLP file AVAILABLE ...303
CS_lget Left justified GET..303
CS_lput Left justified field PUT..304
CS_nampp NAMe PreProcessor..304
CS_prchk Protection CHecK...305
CS_prjEnum PRoJection ENUMerator ...305
CS_prjprm PRoJection PaRaMeter usage ...308
CS_quadF QUADrant Forward ...309
CS_quadI QUADrant Inverse..310
CS_renam RENAMe a file ..310
CS_setHelpPath SET HELP PATH..311
CS_stcpy STring CoPY...311
CS_stncp STring, N characters at most, CoPy ..311
CS_stricmp STRing, case Insensitive, CoMPare...312
CS_strincmp STRing, case Insensitive, N chars max, CoMPare...312
CS_stristr find STRing, case Insensitive, in a STRing ..312
CS_swpal SWaP ALl binary data files ..312
CS_swpfl SWaP a single FiLe...313
CS_tpars Table PARSe..313
CS_trim character array TRIM..314
CS_zones extract ZONES from definition ..315
CS_znlocF ZoNe LOCator Forward..315
CS_znlocI ZoNe LOCator Inverse ..316
CSbcclu Basic Cached Coordinate system Look Up...316
CSbdclu Basic Datum Conversion Look Up ...317
CSbt???? BeTa (authalic latitude) calculation..319
CSccsphrD angular distance (CC) on SPHeRe in Degrees..320
CSccsphrR angular distance (CC) on SPHeRe in Radians ..321
CScsKeyNames Coordinate System Key Names ..321
CSchi???? CHI (conformal latitude) calculation ..322
Csdfltpro DeFaULT PROcessor ..323
CSdtKeyNames DaTum Key Names...324
CSelKeyNames ELlipsoid Key Names ...325
CSllnrml Latitude/Longitude NoRMaL ..325
CSmm???? Meridional distance functions ..326

Dictionary Access Functions ..327
CS_cscmp Coordinate System CoMPare ..327
CS_csDictCls Coordinate System DICTionary file CLoSe..328
CS_csfnm Coordinate System dictionary File NaMe..328
CS_csgrp Coordinate System dictionary GRouP ..328
CS_csopn Coordinate System dictionary OPeN..328
CS_csrd Coordinate System dictionary ReaD ...329
CS_csrup Coordinate System Release UPdate ..329
CS_cswr Coordinate System dictionary WRite...331
CS_usrCsDef ...332
CS_dtDictCls DaTum DICTionary file CLoSe ..332
CS_elDictCls ELlipsoid DICTionary file CLoSe...333
CS_dtcmp DaTum definition CoMPare ..333
CS_dtfnm DaTum dictionary File NaMe ..333
CS_dtopn DaTum dictionary OPeN ..333
CS_dtrd DaTum dictionary ReaD ...334
CS_dtrup DaTum dictionary Release UPdate ...334
CS_dtwr DaTum dictionary WRite ...335
CS_usrDtDefPtr - Datum Definition Hook Function ..336

vi Contents

CS_elcmp ELlipsoid definition CoMPare ...337
CS_elfnm ELlipsoid dictionary File NaMe...337
CS_elopn ELlipsoid dictionary OPeN...337
CS_elrd ELlipsoid dictionary ReaD ..337
CS_elrup ELipsoid dictionary Release UPdate ...338
CS_elwr ELlipsoid dictionary WRite..339
CS_usrElDefPtr - Ellipsoid Definition Hook Function ...340

Well Known Text Implementation ...340
Objects/Functions Implemented in C++..341
WKT Object Support...347
Name/Number mapping Functions..353

Legacy Functions..358
CS842grf wgs 84 TO local Geodetic ReFerence system...358
CS_bwcalc Bursa/Wolfe CALCulation...359
CS_getcs GET Coordinate System definition ...359
CS_getdt GET DaTum definition..360
CS_getel GET ELlipsoid definition...361
CSgrf284 local Geodetic ReFerence system TO wgs 84...361
CSgrfinit local Geodetic ReFerence system INITialize...362
CS_mocalc MOlodensky CALCulator ..362
CS_mrcalc Multiple Regression CALCulator ...362
CS_p7calc 7 Parameter CALCulation ...363
CS_putcs PUT Coordinate System to dictionary...363
CS_putdt PUT DaTum to dictionary ...363
CS_putel PUT ELlipsoid to dictionary..364
CS_un2d Units, Name TO Double ..364
CS842grf wgs 84 TO local Geodetic ReFerence system...364
CSgrf284 local Geodetic ReFerence system TO wgs 84...365
CSgrfinit local Geodetic ReFerence system INITialize...365
CSgeoidCls GEOID, CLoSe..366
CSgeoiddbo GEOID, DataBase Open ..366
CSgeoiddir GEOID, database DIRectory ..367
CSgeoidHgt GEOID HeiGhT..368
CSgeoidinit GEOID, INITialize ..368
CSgeoidptr GEOID, return grid cell PoinTeR...369
CShpg283 High Precision Gps network, 91 TO 83 conversion ..370
CShpg291 High Precision Gps network, (from 83) TO 91 conversion ...372
CShgndbo High Precision Gps network, DataBase Open ..373
CShpgdir High Precision Gps network database DIRectory ...374
CShpginit High Precision Gps network, INITialize ..375
CShpgptr High Precision Gps network, return grid cell PoinTeR...375
CSnad227 North American Datum, 83 TO 27 conversion ..376
CSnad283 North American Datum, (from 27) TO 83 conversion...378
CSnad83284 NAD-83 TO wgs 84..379
CSnadcls North American Datum, CLoSe ..380
CSnaddbo North American Datum, DataBase Open..380
CSnaddir NADcon database DIRectory ..381
CSnadinit North American Datum, INITialize..382
CSnadptr North American Datum, return grid cell PoinTeR...382

 Contents vii

Chapter 5 Chapter 5 -- Data Modules 385
CSdata -- general DATA module ...385
CSdataPJ -- DATA, ProJection table..388
CSdataU -- DATA module, Units table ..391

 9

This chapter contains Distribution Notes for new users of CS_MAP and Release Notes for previous
users. The Release Notes which describe recent changes in the library follow the Distribution Notes
which describe the distribution and how to build CS-MAP in some of the more common build
environments.

C H A P T E R 1

Chapter 1 -- Distribution/Release Notes

10 CS-MAP User's Guide User's Guide

Current Manual Status
AT the current time, this compilation of documentation for the Open SOurce distribution shows many
ofthe tell-tale signs of a document maintained by different people using different tools over a period of
twenty years. Thus you will enocunter several distracting formatting issues, and be displeased by the
lack of a comprehensive index. The presentation quality of the document will improve over time.

Technical content of this document was current with release 11.11 of CS-MAP. The original Open
SOurce distribution is actually deemed to be release 12. Therefore, a significant amount of writing and
editing which needs to be completed to bring this document up to date. Some of the areas in which this
document is out of date are:

Name Mapping

The original name mapping functions have been replaced with an entirely new scheme which is driven
by an external data file for maintenance convenience.

NTF to RGF93 Datum Conversion

There now exists a Geodetic Data Catalog file which controls access to the various grid shift files in
use. Particularly, NTv2 formatted grid shift files for local municipalities in France are now supported.

DHDN To ETRF89 Datum Conversion

A new Geodetic Data Catalog file is now supported to define access to the German BeTA2007.gdb
grid shift file.

ED50 To ETRF89 Datum Conversion

A new Geodetic Data Catalog file is now supported to define access to the Spanish and Portuguese
(and quite likely others in the future) datum grid shift files.

Geocentric Datum Transformation Technique

The Three Parameter Datum Transformation technique has been deprecated and replaced by a new
technique known as Geocentric Translation.

Category Dictionary

A Category DIctionary has been added which is a more flexible version of the origina CS-MAP group
concept. While a definition canonly belog to one group, a definition can belong to several categories.

Danish System 34

 Chapter 1 Chapter 1 -- Distribution/Release Notes 11

Due to distribution permission issues, it was determined that the polynomial coefficients for the System
34 coordinate conversions could not be open sourced. Thus, to properly incorporate Syatem 34
capabilities into your application, you will need to obtain a copy of these coefficients for yourself.
Refer to the source module named CSsys34KMS.c for details.

CSV File Support

Implemented as a C++ object, there now exists rather substantial support for reading and writing data
file in the CSV (comma separated value) format.

EPSG Support

Still a work inprogress, there now exists substantial support for accessing data provided by the EPSG
Parameter Dataset. As this dataset is traditionally distributed in Microsoft Access format, this facility
relies on the conversion of all EPSG data tables to .CSV format, and uses the new CSV FIle SUpport
object to access them.

WKT Flavor Support

Using the new Name Mapper facility, CS-MAP's ability to handle various flavors of WKT has been
imporved. There is lots yet to be done, but a non-trivial improvement in the accuracy and number of
flavors supported.

So, there remains much to do to bring this documentup to the standard desired by the CS-MAP
contributor team. For now, it's important to provide potential users with the basicinformation
necessary to get started using CS-MAP.

12 CS-MAP User's Guide User's Guide

The Distribution
Detailed instructions on how to obtain the distribution are available at
http://trac.osgeo.org/csmap/wiki/HowToGetTheSourceCode

The distribution includes many somewhat voluminous grid data files known to OSGeo as being in the
public domain. There are several such grid data files which are not in the public domain and which
must be obtained from the source on an individual user basis. Simple registration is all that is required
in many cases, license fees are rarely required. Mostly, the issuing authority just wants to keep track of
who is using the data in order to adhere to ISO quality control standards.

The Canadian National Transformation data file is, perhaps, the most widely used example of a grid
data file which OSGeo is not permitted to distribute. You and your clients will need to obtain this file
from the Canadian government. A license fee is no longer required, but Geomatics Canada still needs
to know who is using the data file. Contact:

 www.geod.nrcan.gc.ca

Since the distribution cannot include a copy of the Canadian National Transformation file, the test
cases for this transformation are commented out in the provided TEST.DAT file. After obtaining the
Canadian National Transformation file, you will probably want to uncomment these test cases from the
test file.

Typically, a README.txt file is placed in the folder in which an undistributable grid data files would
normally reside. THis text file will usually provide information as to how to obtain a copy of the data
file. When a CS-MAP error message which indicates that a file is missing is encountered, check to see
if there is not a README.txt file in the folder in which CS-MAP was looking for the file and examine
its contents.

The following sub-topics described the directory structure of the distribution.

 Chapter 1 Chapter 1 -- Distribution/Release Notes 13

Include Directory
You don't need to be a genius to figure out that all header files are installed into this sub-directory.
What might surprise you is that there is only one real header file: cs_map.h. While this file is quite
large, the precompiled header feature of most modern compilers make this approach most convenient.

Also, you never have to guess in which header file a specific item is defined in. They're all defined in
cs_map.h. Neither do you have to wonder which files must be included into your application; cs_map.h
is the one. There are other include files, but are those required by the rather strange environment used
for MFC development.

The cs_map.h header file will specifically include two files. The files, and exactly where they are
included, are described below. These provide a means by which users can incorporate their own
features without having to modify cs_map.h after each new release.

cs_clientBeg.h -- The inclusion of this file occurs immediately after the check for a previous include
of cs_map.h, but before the cs_map.h file does anything else. An excellent place to place defines
which control the environment of the compilation.

cs_clientEnd.h -- The inclusion of this file occurs immediately before the #endif which terminates
the multiple inclusion protection. That is, it is included after everything else in cs_map.h.

Library Source Code
The directory named Source will contain all source code to the library proper. The source code
components of CS-MAP are normally compiled and the resulting objects used to construct an object
module library. Source code to dictionary compilers and test programs are provided elsewhere. Make
files for building the library are provided in this folder.

 Library.mak can used used to build the object library in the Linux environment.
 Library.nmk can use used int the Microsoft WIndows environment using the nmake facility.

Each of the make files includes a list of all the modules that belong in the library. This list represents
most of the drudgery of creating a make file. Adjust the actual rules as necessary for your
platform/compiler. Notice that leaving the manifest constant __MFC__ undefined will cause all MFC
related code to be skipped during the compilation process. Obviously, if compiling in an environment
other than Windows 32/64, be sure to leave the __MFC__ constant undefined.

14 CS-MAP User's Guide User's Guide

Dictionary Source Code and Data
The directory named Dictionaries will contain the source code to the dictionary compiler, and the data
files which this compiler compiles to produce the binary form of the Category Dictionary, the
Coordinate System Dictionary, the Datum Dictionary, the Ellipsoid Dictionary, and the Multiple
Regression Transformation data files. Be sure to compile these dictionaries with the /t option if you
intend to run the CS-MAP test program. Refer to Chapter 3 of this manual for more information on the
dictionary compiler program.

Make files for building the compiler are provided in this folder.

 Compiler.mak can used used to build the compiler in the Linux environment.
 Compiler.nmk can use used to build the compiler in the Microsoft WIndows environment using the

nmake facility.

The distribution also uses this directory to convey sample Geodetic Data Catalogs which you will
definitely want to inspect and perhaps modify. Geodetic data files which OSGeo believes to be in the
public domain are deposited in sub-folders of this folder in a specific hierarchy. This hierarchy is
consistent with the provided Geodetic Data Catalog (.gdc) files. There is no specific requirement for
the location of the geodetic data files other than their location must be consistent with the
specifications int he Geodetic Data Catalog files.

Also please note that the OSTN97.TXT and OSTN02.TXT data files must also reside in the primary data
directory. Again, by design, there is only one file for each of these transformations, and the
implementation of a Geodetic Data Catalog file was skipped. Also, due to the rather strange nature of
these files, most of the features of a Geodetic Data Catalog file do not apply anyway.

 Chapter 1 Chapter 1 -- Distribution/Release Notes 15

Test Source Code and Data
The directory named Test will contain the source code to the CS-MAP test program and the supporting
data file, TEST.DAT. Compilation and linking of this program will obviously require the inclusion of the
header file and library. Make files for building the test program are provided in this folder.

 Test.mak can used used to build the test program in the Linux environment.
 Test.nmk can use used int the Microsoft WIndows environment using the nmake facility.

In order to execute the entire test sequence, you will need to have compiled the dictionaries with the /t
option. This causes the retention of the test coordinate systems (not normally distributed with an
application) in the dictionary files. The test program will also expect to have access to the NADCON
and HPGN data files provided in the sub-directories of the Dictionaries directory. When executing the
test program, use the /d option to indicate the location of the directory in which the dictionaries,
NADCON, and HPGN data files reside; e.g. /d..\Dictionaries. Refer to Chapter 3 of this manual
for more detailed information on the test program.

This program performs a fairly substantial test of most all features and capabilities of CS-MAP. This
program should be used each time CS-MAP is used in a new configuration or compiled with a different
compiler.

Note that a large number of the tests encoded in the TEST.DAT file are commented out as they rely on
the existence of specific geodetic data files which OSGeo cannot distribute. For example, since
OSGeo cannot distribute the Canadian National Transformation, all test dependent upon that data file
are commented out. Upon obtaining geodetic data files which Mentor Software cannot distribute, you
should consider un-commenting the tests related to such files.

16 CS-MAP User's Guide User's Guide

Documentation Directory
The directory named Documentation is where you will find a copy of this documentation. Depending
upon the format, it may consist of a single file, or a directory containing multiple files. A prinable
version may also be present.

Additionally, this directory will contain the source code to the help file which is provided for use with
the MFC based components of CS-MAP. The source code files include an .rtf file, a contents file (.cnt),
and several screen shots in .bmp format. Again, a make file compatible with Visual C++ Version 6 (or
later) nmake is provided; it is named help.nmk. (As the help file is not generally usable in the Linux
environment, no Linux compatible make file is provided.) Note, that the CS-MAP MFC based
functions expect to find the help file in the same directory as the mapping data files. Of course, a
function exists which enables application programmers to override this default location
(CS_setHelpPath). If for any reason, the MFC based functions cannot locate the help file, the help
button on all dialogs will be grayed out.

Please note that the help file is designed for distribution with your application. It does not mention
OSGeo, CS-MAP, or the original developers of CS-MAP. It uses a rather generic term "coordinate
conversion system" to refer to that which it is describing.

Data Directory
Several data files used in the construction of CS-MAP's Name Mapper facility are included in the Data
directory. It is envisioned that these files will be replaced by a more convenient and controllable
means in the near future.

Make Procedure

Building CS-MAP on Windows and Linux

The CS-MAP distribution will produce a series of five directories (described in detail in the previous
topics):

 Include: Contains all header files referenced the source code in the Source directory.
 Source: Contains all the source code for the CS-MAP library itself.
 Dictionaries: Contains the coordinate system dictionaries in source form, and the source code for a

compiler which will convert the dictionary source to the operational binary form.
 Test: Contains the source code for a console type test program and the test data which it uses.
 Data: Contains a series of data files used to construct name mapping files.

Building the entire product is a series of five steps:

1 Build the CS-MAP library.

2 Build the dictionary compiler.

3 Run the dictionary compiler.

 Chapter 1 Chapter 1 -- Distribution/Release Notes 17

4 Build the console test program.

5 Execute the console test program.

After installation, and before building, it will be best to obtain a copy of the Canadian National
Transformation file (NTV2_0.gsb) and copy it to the Dictionaries/Canada directory. This data file may
not be distributed by OSGeo. Geomatics Canada reserves the right to distribute this file and maintain a
list of those using it. Therefore, since we do not distribute the file as part of this open source
distribution, we recommend strongly that you simply obtain a copy, even if for testing purposes only.
Chances are very good you already have a copy of this file on your system already. If not, you can
obtain one (no fee) at:

 http://www.geod.nrcan.gc.ca

The TEST.DAT data file in the Test directory contains several hundred test points which are directly
related to the above mentioned grid shift data file. To prevent confusion and unnecessary technical
support, tests related to the Canadian National Transformation data file are commented out in the
distribution. After obtaining a copy of the above mentioned data file, these test should be
"uncommented" back in, so that the test program will test this feature.

OK. Now for building on your system:

For Windows:

18 CS-MAP User's Guide User's Guide

1> Build the CS-MAP Library:

 Make the 'Source' directory your current working directory.
 Use the MSVC set variables script to set the environmental variables correctly.
 Use the 'nmake' command and supply it with the 'Library.nmk' make file. E.g. 'nmake

/fLibrary.nmk'

2> Build the Dictionary Compiler (CS_comp)

 Make the 'Dictionaries' directory your current working directory.
 Use the MSVC set variables script to set the environmental variables correctly.
 Use the 'nmake' command and supply it with the 'Compiler.nmk' make file. E.g. nmake

/fCompiler.nmk'

3> Run the Dictionary Compiler

 Make the 'Dictionaries' directory your current working directory.
 Execute the 'CS_comp' program. E.g. CS_Comp . .'
 Note that the first argument to this command is the folder containing the dictionary source, the

second argument is the directory to which the binary dictionary files are to be written.

4> Build the Console Test program (CS_Test)

 Make the 'Test' directory your current working directory.
 Use the MSVC set variables script to set the environmental variables correctly.
 Use the 'nmake' command and supply it with the 'Test.nmk' make file. E.g. 'nmake /fTest.nmk'

5> Execute the console test program

 Make the 'Test' directory your current working directory.
 Execute the 'CS_Test' program. E.g. 'CS_Test /d..\Dictionaries'
 Note that the /d argument is the directory which the test program is to look to for the dictionaries

and related data files.

For Linux:

 Chapter 1 Chapter 1 -- Distribution/Release Notes 19

1> Build the CS-MAP Library:

 Make the 'Source' directory your current working directory.
 Use the 'make' command and supply it with the 'Library.mak' make file. E.g. 'make -fLibrary.mak'

2> Build the Dictionary Compiler (CS_Comp)

 Make the 'Dictionaries' directory your current working directory.
 Use the 'make' command and supply it with the 'Compiler.mak' make file. E.g. 'make -

fCompiler.mak'

3> Run the Dictionary Compiler

 Make the 'Dictionaries' directory your current working directory.
 Execute the 'CS_Comp' program. E.g. './CS_Comp . .'
 Note that the first argument is the directory containing the dictionary source, the second argument

is the directory to which the binary dictionary files are written.

4> Build the Console Test program (CS_Test)

 Make the 'Test' directory your current working directory.
 Use the 'make' command and supply it with the 'Test.mak' make file. E.g. 'make -fTest.mak'

5> Execute the console test program

 Make the 'Test' directory your current working directory.
 Execute the 'CS_Test' program. E.g. './CS_Test -d../Dictionaries'
 Note that the /d argument is the directory which the test program is to look to for the dictionaries

and related data files.

MS VC++ 2005 (Version 8):

The CS-MAP Open Source distribution will deposit in the primary directory a Microsoft Visual C++
Version 8.0 (VC2005) solution file. This file references project files in the Source, Dictionaries, and
Test directories. This solution file and its related project files can be used to manufacture the library,
dictionary compiler, and the test module. No provisions have been made for executing the dictionary
compiler or the test module.

20 CS-MAP User's Guide User's Guide

Release Notes for CS-MAP 12
This section, and its future sub-sections will describe the recent changes made to CS-MAP for the
benefit of users of previous major releases. Recent changes to the CS-MAP trunk will be described in
this topic. As major releases are created into a branch of the source code tree, these notes should be
moved to a separate sub-topic.

 21

In Chapters 3 through 5 of this manual, you will find detailed information about the components of the
CS-MAP library and the executable modules supplied in the OSGeo distribution for testing and
maintenance purposes. The purpose of this section of the manual is to provide an overview of CS-
MAP so that you will have an idea as to which specific program elements in the remainder of this
manual you need to look at.

Therefore, in this section we give a broad overview of the structure of CS-MAP and, usually, a simple
function name so that you can locate the specific information you need in Chapters 3, 4 and 5. It is not
the intent of this section to duplicate the information contained in the remaining chapters.

Note that the first sub-section of this Chapter is titled Overview, and is expressly designed for
Application Programmers who, like the author, don't usually read the manual until something doesn't
work. Please take the five minutes necessary to read that section before attempting to add CS-MAP to
your application.

Overview
As one programmer to another, I present this Overview Section as the manual for people who, like
myself, don't read the manual (until something doesn't work). This section contains all of the
information you'll need to get started quickly, and the specific information you'll need to stay out of
trouble. Please read this section before attempting to use CS-MAP. Refer to the remainder of the
manual as necessary.

Deferring the details to subsequent sections, it is helpful to consider CS-MAP as consisting of a
Coordinate System Dictionary and a set of functions which use the information in the dictionary to
accomplish the desired task. All coordinate systems used by CS-MAP reside in the dictionary and are
given a name, which we refer to as a key name, much like we give names to files. CS-MAP, then,
performs coordinate system conversion based on the names of the coordinate systems provided. This
technique eliminates the need to have your users process through a long list of parameters which they
(usually) don't understand whenever a conversion is necessary. All they need provide are the names of
the appropriate coordinate systems.

C H A P T E R 2

Chapter 2 -- Descriptions and Discussion

22 CS-MAP User's Guide User's Guide

Initialization
CS-MAP needs to be initialized. Initialization consists of providing CS-MAP with the directory in
which the dictionary files reside. This is accomplished by calling the CS_altdr function. This function
takes a single argument, a character string which is the path to the appropriate directory. Calling
CS_altdr with a NULL pointer as an argument will cause the value of the environmental variable named
CS_MAP_DIR to be used as the data directory. CS_altdr returns and integer zero if the initialization was
successful, -1 if not.

This was not a requirement in the past, thus the rather strange name for this initialization function.

Important Note 1: Whenever CS-MAP needs to go to disk to find something, that something often needs
to reside in the directory specified by this function call.

Important Note 2: Failing to call this function successfully prior to using CS-MAP almost always results
in an memory addressing fault.

High Level Interface
Given the name of the source and target coordinate systems, conversion of coordinate data from one to
the other is as simple as a single function call. The following example would cause the coordinate in
the array of three doubles named coordinate to be converted from NAD27 based UTM Zone 13
coordinates to NAD83 based Colorado State Plane, Central Zone, coordinates:

status = CS_cnvrt ("UTM27-13","CO83-C",coordinate);

It's that simple. The simplicity of this hides several important features. First, note that the datum shift
implied by the coordinate systems, NAD27 to NAD83 in this case, is automatically applied. Second,
you would hardly ever code an application with hard coded coordinate system names as was done in
this example. Simple character arrays that are passed by argument, providing data entered by the user
from a choice list, or providing data obtained from a database, whatever, all work just fine. These are
just very simple, case insensitive, null terminated strings. Third, the application programmer has no
need to know which projections, datums, and/or ellipsoids are involved. Fourth, the source and/or
target coordinate systems could just as easily be Latitude and Longitude coordinates, based on any of
several units, and referenced to any prime meridian.

Similarly, should your application need to know the grid scale factor at a specific point, all you need
code is a function call similar to the following:

grid_scale = CS_scale ("CO83-C",coordinate);

Coordinate in this case must be geographic, i.e. the latitude and longitude of the point at which the grid
scale is to be determined. Again, it is unlikely that the name of the coordinate system would be hard
coded as was done in this example. Need the convergence angle? You have probably figured it out
already:

convergence = CS_cnvrg ("CO83-C",coordinate);

 Chapter 2 Chapter 2 -- Descriptions and Discussion 23

Concerned about performance? Originally, the above interface was designed as a means by which
applications written in languages other than 'C' could access CS-MAP; i.e. no pointers required.
However, due to its design and the high speed processors with on-board caches which are common
today, this interface provides amazing levels of performance. It is now the interface which we
recommend for all simple applications.

Several other features are made available in what we call the High Level Interface; that is features
which are available without the use of pointers. The details of all such features are provided in the
topic named High Level Interface.

Coordinate System Dictionary
The coordinate system is the heart of the CS-MAP package. The CS-MAP distribution includes the
definition of more than 5,000 coordinate systems. Each definition includes the projection to be used,
the projection parameters, the datum or ellipsoid to which the coordinate system is referenced, and the
unit to be used. Admittedly, many of the coordinate system definitions provided are very similar to
others, differing only in the system unit or datum referenced. However, we believe your users will
appreciate the simplicity of having only to remember and enter an easy to remember name or two to
get what they need. The default feature described elsewhere in this manual can be used in those cases
where this design becomes inconvenient.

Coordinate system definitions are stored in a file we refer to as the Coordinate System Dictionary.
This file is a simple fixed length record file containing binary data. It is maintained in sorted order by
coordinate system name and is accessed using a binary search technique. This provides portability to
almost any environment without having to license any other software. Your application will need to
provide the CS-MAP functions with the location of the directory in which the Coordinate System
Dictionary resides (see CS_altdr). Once CS-MAP locates the Coordinate System Dictionary, it expects
to find all most other data files in the same directory.

CS-MAP distributions include an ASCII file which defines all of the coordinate systems included in
the distribution. This file is usually committed to version control and treated has a highly valuable
source file. A compiler included with CS-MAP can convert this ASCII file into the binary form used
by the system.

Important Note: The first four bytes of a binary coordinate system dictionary file is a "magic number".
This sequence of bytes are used to identify that the file is indeed a coordinate system dictionary file.
The revision level of the dictionary format is also encoded into this "magic number".

24 CS-MAP User's Guide User's Guide

Other Interfaces
It is probably obvious to you that the interface described above can not be the most efficient interface
possible. Applications which require the absolute highest performance, may want to use the High
Performance Interface. This interface requires the knowledge of as many as ten functions. It also
requires the use of pointers to structures and, therefore, is usable only from languages such as C, C++,
or Pascal which can handle pointers appropriately. It does, however, provide the application
programmer with the highest performance level possible, while still insulating your application from
changes to the internals of CS-MAP. Using this interface, performance levels of 1,000,000 non-trivial
conversions per second are routinely observed.

Applications which are hard coded around specific projections can use the Low Level Interface to
obtain high performance solutions which do not require a Coordinate System Dictionary or, for that
matter, any other supporting data. That is, at this level, the application programmer has access to the
specific code for each projection. Similarly, applications can use the low level interface to access any
of the 12 or so datum shift techniques supported by the library.

The High Performance and Low Level Interfaces are described in detail in the remaining chapters of
this manual.

Other Dictionaries
Like coordinate systems, datums are many and varied. (The term datum is widely used to refer to a
Horizontal Geodetic Reference System. Although this usage is not technically incorrect, we will go
along with the crowd and use the simpler term.) While several datum conversion techniques are hard
coded into CS-MAP, the actual definitions are not. As you might suspect, there exists a Datum
Dictionary which contains the definition of all datums known to the system and provides a name by
which they can be accessed (i.e. key name). Coordinate systems are referenced to a datum by
including the datum key name in the coordinate system definition. Thus, when converting from one
coordinate system to another, CS-MAP can automatically activate the appropriate datum shifts
necessary by examining the datum references in the coordinate system definitions. While full support
is provided, application programmers rarely, if ever, access the Datum Dictionary directly.

All datum definitions must include a reference to an ellipsoid; coordinate system definitions can
include a reference to an ellipsoid. Again, there are many ellipsoid definitions and these are not hard
coded into CS-MAP. You guessed it! There is an Ellipsoid Dictionary:

 that carries the definitions of all ellipsoids,
 that assigns each ellipsoid definition a name (i.e. a key name),
 to which CS-MAP provides a full set of access functions; and
 that the application programmer rarely, if ever, accesses directly.

Important Note: Datum and Ellipsoid dictionaries include a "magic number" as the first four bytes of
the binary file. These "magic numbers" identify the type of the file in addition to the file format
revision level.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 25

Cartographic vs. Geodetic Referencing of Coordinate Systems
While coordinate system definitions can be referenced to a datum, they can also be referenced directly
to an ellipsoid. In this manual, we will use the term geodetically referenced coordinate system to refer
to the former case, and cartographically referenced coordinate system to refer to the latter. When both
the source and target coordinate systems involved in a conversion are geodetically referenced, CS-
MAP can automatically perform the necessary datum shift without any additional information required
from the user, or any additional code required by the application programmer. When either or both
coordinate system definitions are cartographically referenced, the datum shift feature is effectively
disabled. That is, CS-MAP cannot calculate a datum shift it does not know both the source and target
datums.

In many cases, the datums upon which coordinates are based are known. In these cases, coordinate
system definitions are usually geodetically referenced and CS-MAP can, therefore, include the
appropriate datum shift automatically whenever appropriate. In other cases, the datum upon which a
coordinate system is based is not known and the coordinate system should be cartographically
referenced to an ellipsoid. CS-MAP's automatic datum shift feature is then disabled whenever this
coordinate system is involved in a coordinate conversion. Therefore, while the individual maintaining
the coordinate system definitions may need to understand the distinctions between geodetic and
cartographic references, the typical end user is not usually concerned.

Cartographically referenced coordinate systems can be a great convenience to both user and application
programmer. For example, the LL coordinate system which you will find in the CS-MAP distribution is
cartographically referenced to the WGS84 ellipsoid (not the WGS84 datum). This means that using the
LL coordinate system as the target in any conversion produces geographic coordinates which are always
based on the same datum as the source coordinate system. This is often very convenient indeed.

26 CS-MAP User's Guide User's Guide

Latitudes and Longitudes
Coordinate systems can be defined to be geographic, i.e. consist of latitude and longitude coordinates.
This is achieved through the use of a pseudo projection we call the Unity projection. The Unity
Projection is simply a projection which does nothing, the results being geographic coordinates. Since
the definitions of a latitude and longitude coordinate systems are included in the Coordinate System
Dictionary, they can, and indeed do, have datum references, origin longitudes, and units specifications.
Thus, several latitude and longitude definitions appear in the coordinate system dictionary. As with
any other coordinate system definition, these definitions are either geodetically or cartographically
referenced, have a unit specification, and have an origin longitude. In this context, the units are the
angular units of measure to be used (e.g. degrees, minutes, seconds, grads, etc.) and the origin
longitude is the prime meridian (i.e. Greenwich, Meridian of Paris, etc.). Thus, latitude and longitude
coordinates are fully supported by the system, and the application programmer is not required to write
any special code to process them.

The distribution Coordinate System Dictionary contains a geographic coordinate system simply named
LL. This is a cartographically referenced latitude and longitude coordinate system which is referenced
to the Greenwich Prime Meridian, using units of degrees. Thus, LL should be considered to be the
generic latitude and longitude coordinate system, and can be used as such. For example, to obtain the
grid scale factor of a coordinate system using cartesian coordinates (as opposed to the geographic
coordinates required by the CS_scale function) one could simply write as follows:
status = CS_cnvrt ("CO83-C","LL",coordinate);

grid_scale = CS_scale ("CO83-C",coordinate);

Note, that due to the generic nature of the LL coordinate system (i.e. cartographically referenced,
thereby disabling datum shifts), the intermediary latitude and longitude results will be always be based
on the same datum as that of the source coordinate system. Also, the LL coordinate system is defined
to match the specific definition of latitude and longitude used internally within CS-MAP. That is, in
those few cases where CS-MAP specifically requires a coordinate in terms of latitude and longitude:

1. the coordinates must be in degrees,

2. referenced to the Greenwich Prime Meridian, and

3. west longitude and south latitude must be negative values.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 27

Coordinate Arrays
As is common in the industry, cartesian coordinates are passed in arrays of doubles. The X coordinate
is always the first element in the array, the Y coordinate being the second element, and the Z
coordinate being the third element. When performing a two dimensional conversion, CS-MAP often
ignores the Z coordinate. Obviously, when performing a three dimensional conversion, a valid Z
coordinate is required. To simplify use of the library, all coordinate arrays should be dimensioned at
three. Typically, a Z value of zero is provided when performing a two dimensional conversion.

In the case of cartesian coordinates, coordinates must be ordered as described above; specifically X, Y,
and then Z. While it is common usage to refer to geographic coordinates as latitude and longitude, and
it is also common to give the latitude first and the longitude second, CS-MAP requires that the first
element of a geographic coordinate be the longitude, the second element be the latitude, and the third
element the height. While negative values are usually used to indicate west longitude and south
latitude, geographic coordinate systems can be defined where the opposite sign convention is used.

It is important to note that there is a significant difference between coordinates returned to the user
which may just happen to be geographic, and the geographic coordinates required by certain CS-MAP
functions. The conventions used in "user" coordinates are determined by the coordinate system
definition. Thus, in a "user" geographic coordinate, as returned by CS_cs2ll for example, the prime
meridian may be other than Greenwich and the unit other than degrees. Users can also define
geographic coordinate systems where west longitude is positive and/or the order of the coordinates is
swapped.

However, wherever a CS-MAP function specifically requires a geographic coordinate, the values
provided must:

1. be given in degrees,

2. be referenced to the Greenwich Prime Meridian, and

3. west longitude and south latitude be given as negative values.

28 CS-MAP User's Guide User's Guide

Selected Source Code
For historical reasons, most all global data definitions are coded in distinct modules. This has been
very convenient over the years. Many of the features of CS-MAP can be adjusted to better fit into your
application by tweaking one of these source modules. Four of these modules are worth mention in this
overview: CSdata, CSdataU, CSdataPJ, and CS_error. In CSdata you will find the definition of many
global constants used throughout CS-MAP. While you obviously don't want to change the definition
of π, there are several other aspects of CS-MAP which are controlled by global variables defined in
this module. Make the modifications which you need, recompile, and re-link your application.

CSdataU contains the unit table which CS-MAP uses. To add (or remove) a unit, simply modify the
table and recompile.

CSdataPJ contains CS-MAP's projection table. To remove a projection (to reduce the size of your
executable, for example), simply remove the projection's entry in the table an all object code references
to the projection will be removed.

CS_error contains the text of all error messages.

All data which may be language related is contained in these four modules. To translate the entire
system to another language, only these four modules, and perhaps the help file, need attention.

Naming Conventions
Originally, the names of global variables, manifest constants (i.e. defines), structures, and functions
used in CS-MAP adhered to a very definitive naming convention. Much of the library still adheres to
this convention. This convention was developed with three purposes in mind. First, and foremost, it is
necessary to insure that the probability of a name collision with existing application code is kept to a
minimum. Second, to enable programmers to quickly determine the type of entity being referenced by
a name and to quickly determine where the definition of such can be found. Third, provide an efficient
means by which the libraries and other components of CS-MAP can be efficiently maintained and
manufactured.

In later developments of the library, such as the inclusion of some C++ elements and the planned
porting of the entire library to C++, there are several modules no longer adhere to the original naming
convention.

Name Collisions
All names whose scope extends outside the specific file in which is it is defined will start with the two
character sequence CS. As described below, this initial sequence may be in upper or lower case.
Additionally, every such name will contain at least one upper case character and at least one lower case
character. In this way, the possibility of a CS-MAP global name being the same as a name already
used in your application is virtually nil.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 29

Function Names

All function names begin with an upper case CS sequence. If the function is expected to be accessed
by modules outside of the CS-MAP library in normal use, the initial CS sequence is followed by an
underscore character. The remainder of the function name follows, the first of which will be lower
case if it is an alphabetic character.

Structure Tags

Structure tags begin with a lower case cs sequence. If the structure is expected to be accessed by
modules outside of the CS-MAP library in normal use, the initial sequence is followed by an
underscore character. The remainder of the structure tag follows, the first character of which will
always be uppercase. Finally, the last character of all structure tags will be the underscore character.

Global Variable Names

Global variable names begin with a lower case cs sequence. If the global variable is expected to be
accessed by modules outside of the CS-MAP library in normal use, the initial sequence is followed by
an underscore character. The remainder of the global variable name follows, the first character of
which will always be an upper case letter. A global variable name will never end with the underscore
character. A global variable which is a definition of a structure, or a pointer to same, will usually have
the same name as the structure tag, sans the trailing underscore.

Manifest Constants

Manifest constant names, e.g. include file define's, begin with a lower case cs sequence. If the constant
being defined is expected to be used by modules outside of the CS-MAP library, the initial sequence is
followed by an underscore character. The remainder of the constant name follows and will be all upper
case.

Naming Convention Examples

Table II shows several examples of the naming convention.

Name Type Comment

CS_csloc Function, external Name of a function expected to be called from
outside of the CS-MAP library.

CSnad283 Function, internal Name of a function not expected to be called from
outside of the CS-MAP library.

cs_Csdef_ Structure tag, external Structure tag name for a structure expected to be
referenced by modules outside of the CS-MAP
library.

csNaddir_ Structure tag, internal Structure tag name for a structure not expected to
be accessed outside of the CS-MAP library.

30 CS-MAP User's Guide User's Guide

cs_Dir Global Variable,
external

Global variable name expected to be accessed
outside of the CS-MAP library.

csErrlng Global Variable, internal Global variable name not expected to be accessed
outside of the CS-MAP library.

cs_NO_MEM Manifest Constant,
external

Manifest constant expected to be referenced by
modules outside of the CS-MAP library.

csGRF_MAX_ACTIVE Manifest Constant,
internal

Manifest constant not expected to be referenced by
modules outside of the CS-MAP library.

Table II - Naming Convention Examples

Projection Code Names
Each of the thirty eight projections has a five character code name which is used in all structure tags
and function names associated with the specific projection. Table III lists each projection, the five
character code value, the structure tag name, and setup function name associated with each as examples
of how this code value is used to identify the projection each is associated with. All code elements
which are specifically related to specific projection are named in a similar manner.

Projection Code Structure
Tag

Setup
Function

Transverse Mercator trmer cs_Trmer_ CStrmerS

Lambert Conformal Conic lmbrt cs_Lmbrt_ CSlmbrtS

Hotine Oblique Mercator oblqm cs_Oblqm_ CSoblqmS

Alber's Equal Area alber cs_Alber_ CSalberS

Mercator mrcat cs_Mrcat_ CSmrcatS

Miller Cylindrical millr cs_Millr_ CSmillrS

Lambert Equidistant Azimuthal azmed cs_Azmed_ CSazmedS

Lambert Equal Area Azimuthal azmea cs_Azmea_ CSazmeaS

Polar Stereographic pstro cs_Pstro_ CSpstroS

Oblique Stereographic ostro cs_Ostro_ CSostroS

Snyder's Oblique Stereographic sstro cs_Sstro_ CSsstroS

Equidistant Conic edcnc cs_Edcnc_ CsedcncS

Sinusoidal sinus cs_Sinus_ CSsinusS

American Polyconic plycn cs_Plycn_ CSplycnS

Modified Polyconic modpc cs_Modpc_ CsmodpcS

Lambert Tangential lmtan cs_Lmtan_ CSlmtanS

Van der Grinten vdgrn cs_Vdgrn_ CSvdgrnS

Orthographic ortho cs_Ortho_ CSorthoS

 Chapter 2 Chapter 2 -- Descriptions and Discussion 31

Gnomonic gnomc cs_Gnomc_ CsgnomcS

Equidistant Cylindrical edcyl cs_Edcyl_ CSedcylS

Cassini csini cs_Csini_ CScsiniS

Modified Stereographic mstro cs_Mstro_ CSmstroS

New Zealand National Grid nzlnd cs_Nzlnd_ CSnzlndS

Robinson Cylindrical robin cs_Robin_ CSrobinS

Bonne bonne cs_Bonne_ CsbonneS

Equal Area (Authalic) Cylindrical, Normal Aspect nacyl cs_Nacyl_ CSnacylS

Equal Area (Authalic) Cylindrical, Transverse Aspect tacyl cs_Tacyl_ CStacylS

Mollweide molwd cs_Molwd_ CsmolwdS

Eckert IV ekrt4 cs_Ekrt4_ CSekrt4S

Eckert VI ekrt6 cs_Ekrt6_ CSekrt6S

Goode Homolosine hmlsn cs_Hmlsn_ CShmlsnS

Bipolar Oblique Conformal Conic bpcnc cs_Bpcnc_ CSbpcncS

Oblique Cylindrical swiss cs_Swiss_ CSswissS

Snyder Transverse Mercator trmrs cs_Trmrs_ CStrmrsS

Krovak Oblique Conformal Conic krovk cs_Krovk_ CSkrovkS

Non-georeferenced Coordinates nerth cs_Nerth_ CSnerthS

Danish System 34 sys34 cs_Sys34_ CSsys34S

Unity Pseudo Projection unity cs_Unity_ CSunityS

Table III - Projection Code Names and Usage Examples

32 CS-MAP User's Guide User's Guide

High Level Interface
Functions are provided which can convert a coordinate from one coordinate system to another with a
single function call. This set of functions was originally developed specifically for the application
programmer who is coding in BASIC, FORTRAN, APL, or other language (other than C or Pascal)
which can make simple function calls. It does not use structure pointers of any sort. Since the affect
on performance is small (about a 20% reduction), it is now the recommended interface for most
applications.

Most of the functions described in this section use CSbcclu and CSbdclu to cache coordinate system
and datum conversion definitions. Therefore the performance penalty of these functions is reduced to a
search of a linked list for the coordinate system names involved. These cache functions are smart
enough to keep the most recently accessed items at the front of the list to further minimize the
performance penalty.

The information presented in this section is intended only to associate a function name with a specific
capability. Refer to Chapter 4 of the CS-MAP documentation for detailed information and prototypes
for all functions referred to in this section.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 33

Basic Coordinate Conversion -- CS_cnvrt
Given a coordinate as an array of three doubles, and the names of two coordinate systems as two
character arrays, CS_cnvrt converts the coordinate from one system to another. It's that simple. Where
cartesian coordinates are provided and returned, the X coordinate is the first element of the array, the Y
coordinate is the second, and the Z is the third element of the array. Where geographic coordinates are
provided, the first element in the array must contain the longitude, the second the latitude, and the third
element must contain the height. In either case, the manner in which the values are interpreted depends
upon the coordinate systems involved. For example, if the source coordinate system definition
specifies the unit to be meters, the X, Y, and Z coordinates are considered to be in meters. Similarly, if
the target coordinate system is defined as a latitude and longitude system with an angular unit of grads,
the returned latitude and longitude coordinates will be in units of grads.

The status value returned by CS_cnvrt informs the calling application of the validity of the results. A
zero return value indicates that the requested conversion was completed without complication and the
results now occupy the coordinate array. A negative status return value indicates a hard error occurred
and that the contents of the coordinate array remain unchanged. A positive, non-zero return status
indicates that the conversion was performed, but an abnormality was encountered during the
conversion. In this case, the results returned in the coordinate array may not be exactly what the user
expects.

In all cases of a negative status return, the values in the provided coordinate array will remain
unchanged. Taking the absolute value of the returned status value will often produce the CS-MAP
error code for the specific condition causing the hard error. The numeric error code which defines the
specific cause of the problem will also be stored in the cs_Error global variable, and a textual
description of the error condition can be obtained by calling the CS_errmsg function before calling any
other CS-MAP function. Typically, when applications detect a negative status return, the application
informs the user using the textual description obtained from CS_errmsg and terminates the current
operation.

CS_cnvrt returns a positive non-zero status value whenever it encounters something suspicious, but not
something that precludes a conversion. Positive non-zero return values are usually caused by
coordinate systems and coordinates which are incompatible, or specific values which are singularity
points for the projection(s) involved. A common cause of a positive non-zero return value is the
conversion of a point at either pole. CS-MAP will return a positive non-zero value in these cases as
longitude is undefined at the poles, and reversing the calculation is unlikely to reproduce the initial
value. Another common cause of a positive non-zero status return is providing, say, UTM coordinates
when the source coordinate system is given as "LL". UTM coordinates, usually, will not be in the
normal range of geographic coordinates and CS-MAP will consider this to be suspicious. A positive
return value will also be returned if, for example, it is requested to convert a geographic coordinate in
Europe from NAD27 to NAD83.

When a positive non-zero return value from CS_cnvrt is encountered, the typical application issues a
warning message to the user and continues. These abnormal, but not necessarily fatal, conditions are
often the result the user desires. It should be left the user to decide. For performance reasons, CS-
MAP does not automatically generate a textual message for these conditions. However, application
programs can analyze the returned status value in order to present a more specific warning message to
the end user.

34 CS-MAP User's Guide User's Guide

Grid Scale Factor -- CS_scale
Given a coordinate system name and a location in the form of a geographic coordinate, CS_scale will
return the grid scale factor of the coordinate system at the specified location. CS_scale returns a
negative one in the event of an error condition. In such cases, the cause of the error can be determined
by examining cs_Error which will contain the CS-MAP numeric error code of the condition which
caused the error. CS_errmsg can be used to obtain a textual description of the error condition. An
error caused by the location being outside of the domain of the coordinate system will be indicated by a
cs_Error value of zero. In this case, no textual description will be available.

Note that the coordinate provided as the second argument must be a geographic coordinate, i.e. latitude
and longitude in degrees referenced to the Greenwich prime meridian. Longitude is the first element in
the array, latitude is the second. (The third element is not currently used for grid scale calculations, but
may be in the future.) As always for internal geographic coordinates, use negative values for west
longitude and south latitude.

Convergence Angle -- CS_cnvrg
Given a coordinate system name and a location in the form of a geographic coordinate, CS_cnvrg will
return the convergence angle of the coordinate system at the specified location, in degrees east of
north. CS_cnvrg returns a negative 360 (i.e. -360) value in the event of an error condition. In such
cases, the cause of the error can be determined by examining cs_Error which will contain the CS-
MAP numeric error code of the condition which caused the error. CS_errmsg can then be used to
obtain a textual description of the error condition. An error caused by the location being outside of the
domain of the coordinate system will be indicated by a cs_Error value of zero. In this case, no
textual description will be available.

Note that the coordinate provided as the second argument must be a geographic coordinate, i.e. latitude
and longitude in degrees referenced to the Greenwich prime meridian. Longitude is the first element in
the array, latitude is the second. (The third element is not used for convergence calculations.) As
always, use negative values for west longitude and south latitude.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 35

Data Directory -- CS_altdr
In order to operate correctly, CS-MAP needs to access to several data files, the most important of
which is the Coordinate System Dictionary. CS_altdr can be used to provide CS-MAP with the path to
the directory it should look in for all of its data files. The single argument should contain the full path
to the directory containing all of CS-MAP's supporting data files. You can instruct CS_altdr to use the
value of the CS_MAP_DIR environmental variable by setting the argument to the NULL pointer. Should
the argument point to the null string, CS-MAP will consider the current directory on the current drive
as the directory in which to search for data file.

In all cases, CS_altdr will return a -1 if a valid Coordinate System Dictionary file could not be located
in the indicated directory, for whatever reason.

Important Note: Failure to successfully call this function prior to calling any other CS-MAP function is
likely to cause a fatal addressing error and the host application to crash.

Recover System Resources -- CS_recvr
Use this function to recover any and all system resources, such as file descriptors and heap memory,
which CS-MAP may have allocated due to calls to CS_cnvrt, CS_scale, and CS_cnvrg functions.

Get Error Message Text -- CS_errmsg
CS_errmsg returns in the buffer supplied by the calling module a null terminated string which is
suitable for reporting the last error condition detected by CS-MAP. This function should be used only
after any CS-MAP function returns a negative status. It should be called prior to any other CS-MAP
function call.

Compute Azimuth and Distance -- CS_llazdd
CS_llazdd is a utility function which is a part of the High Level Interface. Use this function to compute
the azimuth from one geographic coordinate to another. It also returns the distance between the two
points. These calculations take full account of the ellipsoid, and ellipsoid parameters are part of the
calling sequence.

Unit Lookup -- CS_unitlu
Use CS_unitlu function to obtain the conversion constant for any of the unit systems understood by CS-
MAP. CS_unitlu will return a zero if the supplied unit name is not valid.

36 CS-MAP User's Guide User's Guide

Coordinate System Name Verification – CS_csIsValid
Use the CS_csIsValid function to determine if a coordinate system key name is that of an existing
coordinate system defined in the currently active Coordinate System Dictionary without any side
affects.

Datum Name Verification – CS_dtIsValid
Use the CS_dtIsValid function to determine if a datum key name is that of an existing datum defined in
the currently active Datum Dictionary without any side affects.

Ellipsoid Name Verification – CS_elIsValid
Use the CS_elIsValid function to determine if a ellipsoid key name is that of an existing ellipsoid
defined in the currently active Ellipsoid Dictionary without any side affects.

Low Level Functions
While the use of the High Level or the High Performance Interfaces described above is highly
recommended, certain applications may require the use of the lower level functions. The sub-sections
of this section organize these functions into three major groups:

1. cartographic projection functions,

2. geodetic datum shift functions, and

3. general mapping/geodetic functions.

Cartographic Projections
For each projection supported, there exist eight, possibly nine, functions which comprise the full
implementation of a projection. The brief description of these functions is given below. These
descriptions will be important to those adding a new projection as well.

Those adding projections to the system only need to add an entry to the projection table cs_Prjtab.
Doing so, you will need to add a pointer to the Definition Check and the Setup functions. To activate
the proper parameter settings in the MFC dialog, you will also need to add the projection to the
cs_PrjprmMap table. It is unlikely, but if your new projection uses a new type of parameter, you may
need to add a new entry to the cs_Prjprm table. All of these tables are defined in the CSdataPJ.c
module.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 37

Definition Check Functions

For each projection there exists a function which verifies that a coordinate system definition adheres to
the requirements of the projection. These functions are named in a manner similar to all other
projection functions, but the distinguishing final character is Q. To prevent large scale duplication of
code, each Q function checks only those elements of a coordinate system definition which are specific
to the projection. The generalized check function, CS_cschk, checks those elements which are common
to all coordinate systems (e.g. datum, ellipsoid, and units).

CS_csloc calls this function prior to calling the setup function, thus providing the setup function with
data known to be valid for the given projection. This also implies that the pointer to the Q function for
each projection must reside in the projection table.

Setup Function

The setup function for each projection has two basic responsibilities. It should perform all of the one-
time calculations which can be performed independent of the specific coordinates which are to be
converted and insert in the cs_Csprm_ structure pointers to the nine functions required for coordinate
conversion. It is the setup function which is the primary repository for all knowledge about a specific
projection. Therefore, it is one of the five elements required in the projection table other than the name
of the projection. (C++ users would use the term constructor for the setup function. The design of CS-
MAP predates the availability of C++ compilers on personal computers.)

This function is always supplied with a pointer to a cs_Csprm_ structure. This single argument
supplies the setup function with the information required to perform the setup via the csdef and
datum elements and the repository for the results of the setup by way of the ll2cs, cs2ll,
cs_csscl, cs_cscnv, cs_cssck, cs_cssch, llchk, xychk, and prj_prms elements. Note that
the prj_prms element of the cs_Csprm_ structure is a union of all the pre-processed projection
parameter structures, thus providing a repository for setup parameters regardless of the projection in
use. Refer to Table IV (given in the next topic) for the names of the setup functions for all thirty eight
projections currently supported.

Also note that in order to reduce the amount of duplicated code necessary to support the large number
of projection variations now supported, the prj_code element of the cs_Csprm_ structure must be
filled in as well prior to calling the setup function.

38 CS-MAP User's Guide User's Guide

Forward Functions

For each supported projection, there exists a forward function. It is responsible for converting latitudes
and longitudes to the appropriate coordinates given a pointer to the projection parameters for the
specific projection. A pointer to such function is inserted into the ll2cs element of the cs_Csprm_
structure by the setup function. These functions require that they be given a pointer to the projection
parameters calculated by the setup function, e.g. a pointer to a element of the prj_prms union in the
cs_Csprm_ structure. Refer to Table IV for the names of the forward functions for all thirty eight
projections currently supported.

Setup
Function

Forward
Function

Inverse
Function

Projection

CstrmerS CStrmerF CStrmerI Transverse Mercator

CSlmbrtS CSlmbrtF CSlmbrtI Lambert Conformal Conic

CsoblqmS CSoblqmF CSoblqmI Hotine Oblique Mercator

CSalberS CSalberF CSalberI Alber’s Equal Area Conic

CSmrcatS CSmrcatF CSmrcatI Mercator

CSmillrS CSmillrF CSmillrI Miller Cylindrical

CsazmedS CSazmedF CSazmedI Lambert Equidistant Azimuthal

CsazmeaS CSazmeaF CSazmeaI Lambert Equal Area Azimuthal

CSpstroS CSpstroF CSpstroI Polar Stereographic

CSostroS CSostroF CsostroI Oblique Stereographic

CSsstroS CSsstroF CSsstroI Snyder’s Oblique Stereographic

CsedcncS CSedcncF CSedcncI Equidistant Conic

CSsinusS CSsinusF CSsinusI Sinusoidal

CSplycnS CSplycnF CSplycnI American Polyconic

CsmodpcS CSmodpcF CSmodpcI Modified Polyconic

CSlmtanS CSlmtanF CSlmtanI Lambert Tangential

CSvdgrnS CSvdgrnF CSvdgrnI Van der Grinten

CSorthoS CSorthoF CSorthoI Orthographic

CsgnomcS CSgnomcF CSgnomcI Gnomonic

CSedcylS CSedcylF CSedcylI Equidistant Cylindrical

CScsiniS CScsiniF CScsiniI Cassini

CSmstroS CSmstroF CSmstroI Modified Stereographic

CSnzlndS CSnzlndF CSnzlndI New Zealand National Grid

CSrobinS CSrobinF CSrobinI Robinson

 Chapter 2 Chapter 2 -- Descriptions and Discussion 39

CSbonneS CSbonneF CSbonneI Bonne

CSnacylS CSnacylF CSnacylI Normal Aspect, Equal Area (Authalic)
Cylindrical

CStacylS CStacylF CSnacylI Transverse Aspect, Equal Area (Authalic)
Cylindrical

CsmolwdS CSmolwdF CSmolwdI Mollweide

CSekrt4S CSekrt4F CSekrt4I Eckert IV

CSekrt6S CSekrt6F CSekrt6I Eckert VII

CShmlsnS CShmlsnF CShmlsnI Goode Homolosine

CSbpcncS CSbpcncF CSbpcncI Bipolar Oblique Conformal Conic

CSswissS CSswissF CSswissI Oblique Cylindrical

CStrmrsS CStrmrsF CStrmrsI Transverse Mercator ala Snyder

CSkrovkS CSkrovkF CSkrovkI Krovak Oblique Conformal Conic

CSnerthS CSnerthF CSnerthI Non-georeferenced coordinate system

CSsys34S CSsys34F CSsys34I Danish System 34

CSunityS CSunityF CSunityI Unity (pseudo projection)

Inverse Functions

Similarly, there exists for each projection an inverse function, responsible for converting coordinate
system coordinates to latitudes and longitudes. A pointer to such function is inserted into the cs2ll
element of the cs_Csprm_ structure by the setup function, and these functions require a pointer to the
setup parameters calculated by the setup function. Refer to Table IV for the names of the inverse
functions for all thirty eight projections currently supported. Please note that the last character in the
name of each of these functions is I (uppercase i).

Table IV - Setup,
Forward, and Inverse
Function Names

40 CS-MAP User's Guide User's Guide

Scale Functions

The Coordinate System Mapping Package also includes the ability to determine the grid scale factor of
a coordinate system at any point. In many cases there is an analytical formula which produces the
desired results. Since analytical formulas for the grid scale factor for all thirty eight projections could
not be found, the grid scale factor is determined empirically for some projections using the
latitude/longitude azimuth and distance calculation function CS_llazdd.

K Scale
Function

H Scale
Function

Convergence
Function

Projection

CStrmerK <none> CStrmerC Transverse Mercator

CSlmbrtK <none> CSlmbrtC Lambert Conformal Conic

CSoblqmK <none> CSoblqmC Hotine Oblique Mercator

CSalberK CSalberH CSalberC Alber's Equal Area Conic

CSmrcatK <none> CSmrcatC Mercator

CSmillrK CSmillrH CSmillrC Miller Cylindrical

CSazmedK CSazmedH CSazmedC Lambert Equidistant Azimuthal

CSazmeaK CSazmeaH CSazmeaC Lambert Equal Area Azimuthal

CSpstroK <none> CSpstroC Polar Stereographic

CSostroK <none> CSostroC Oblique Stereographic

CSsstroK <none> CSsstroC Snyder's Oblique Stereographic

CsedcncK CSedcncH CSedcncC Equidistant Conic

CSsinusK CSsinusH CSsinusC Sinusoidal

CSplycnK CSplycnH CSplycnC American Polyconic

CsmodpcK CSmodpcH CSmodpcC Modified Polyconic

CSlmtanK CSlmtanH CSlmtanC Lambert Tangential

CSvdgrnK CSvdgrnH CSvdgrnC Van der Grinten

CSorthoK CSorthoH CSorthoC Orthographic

CsgnomcK CSgnomcH CSgnomcC Gnomonic

CSedcylK CSedcylH CSedcylC Equidistant Cylindrical

CScsiniK CScsiniH CScsiniC Cassini

CSmstroK <none> CSmstroC Modified Stereographic

CSnzlndK <none> CSnzlndC New Zealand National Grid

CSrobinK CSrobinH CSrobinC Robinson

CsbonneK CSbonneH CSbonneC Bonne

CSnacylK CSnacylH CSnacylC Normal Aspect, Equal Area (Authalic) Cylindrical

CStacylK CStacylH CSnacylC Transverse Aspect, Equal Area (Authalic) Cylindrical

 Chapter 2 Chapter 2 -- Descriptions and Discussion 41

CsmolwdK CSmolwdH CSmolwdC Mollweide

 CSekrt4K CSekrt4H CSekrt4C Eckert IV

CSekrt6K CSekrt6H CSekrt6C Eckert VII

 CShmlsnK CShmlsnH CShmlsnC Goode Homolosine

CSbpcncK <none> CSbpcncC Bipolar Oblique Conformal Conic

CSswissK <none> CSswissC Swiss Oblique Cylindrical

CStrmrsK <none> CStrmrsC Transverse Mercator ala Snyder

CSkrovkK <none> CSkrovkC Krovak Oblique Conformal Conic

CSnerthK <none> CSnerthC Non-georeferenced coordinate system; scale is always
1.0, convergence is always zero.

CSsys34K <none> CSsys34C Danish System 34 (believed to be conformal, but this
is not a sure thing)

CSunityK <none> CSunityC Unity

As mentioned above, for non-conformal projections, there are two scale factors, K and H. Therefore,
for all thirty eight projections, there exists a K function, and for all non-conformal projections there
exists an H function. A pointer to the appropriate function is inserted into the cs_Csprm_ structure by
the setup function and, as you might expect, each of these functions requires a pointer to the projection
parameters as calculated by the setup function.

Refer to Table V for the names of the K scale functions, i.e. grid scale factor along a parallel, and the H
scale functions (i.e. scale along a meridian) for all thirty five projections currently supported. The
name of the H function is given as <none> for conformal projections. In these cases, the H scale factor
is the same as the K scale factor.

Convergence Functions

For each projection there exists a function which computes the convergence angle for any point given a
coordinate system definition. Refer to Table V for the names of the convergence angle functions for
all thirty one projections currently supported. Again, analytical formulas for the convergence angle
have not been located for all projections. Therefore, for some projections the convergence angle is
determined empirically using the CS_llazdd function.

Table V - K Scale, H
Scale, and Convergence
Angle Function Names

42 CS-MAP User's Guide User's Guide

Geographic Limits Check Functions

For each projection, there exists a function which determines if a given geographic coordinate, great
circle, or region is entirely within the mathematical domain of a coordinate system. These functions
are named in a manner similar to all other projection functions, but the distinguishing final character is
L.

For performance reasons, the actual conversion functions of CS-MAP check the coordinate data they
are provided only to the extent necessary to prevent floating point exceptions. The geographic limits
function of each projection can be used prior to a conversion to determine if a specific geographic
coordinate, great circle defined by two geographic coordinates, or a closed region defined by four or
more geographic coordinates is entirely within the mathematical domain of the projection. It is not
unusual for applications to know the extents of the data set which is to be converted, and thus the
extents only, not each individual coordinate, need be checked. This can provide significant
performance advantages.

Cartographic Limits Check Functions

For each projection, there exists a function which determines if a given cartesian coordinate, line
segment, or region is entirely within the mathematical domain of a coordinate system. These functions
are named in a manner similar to all other projection functions, but the distinguishing final character is
X.

For performance reasons, the actual conversion functions of CS-MAP check the coordinate data they
are provided only to the extent necessary to prevent floating point exceptions. The cartesian limits
function of each projection can be used prior to a conversion to determine if a specific cartesian
coordinate, line defined by two cartesian coordinates, or a closed region defined by four or more
cartesian coordinates are entirely within the mathematical domain of the projection. It is not unusual
for applications to know the extents of the data set which is to be converted, and thus the extents only,
not each individual coordinate, need be checked. This can provide significant performance advantages.

Geodetic Datum Shift Functions
The methods/functions associated with geodetic datum shifts are not nearly as well organized as those
of cartographic projections. This is the result of many different governmental agencies solving the
problem independently and relying on different data sets and calculation techniques. However, the
basic functions involved in the most generalized techniques are described in the following sub-
sections.

NADCON Emulation Functions

Four lower level functions can be used to perform NAD27 to NAD83 conversions. Use CSnadInit to
initialize the system, and CSnadCls to release all resources absorbed by CS_nadinit.

Once CSnadInit has been called, CSnad27ToNad83 can be called to convert geographic coordinates
from NAD27 to NAD83. CSnad83ToNad27 can be used to convert NAD83 to NAD27. Its that simple.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 43

Datum Conversion Functions

The basic technique used for NAD83 and HARN described in previous sections is used for several
other datums now defined worldwide. In the descriptions given below, you will see how this technique
applies to AGD66; the Geodetic Datum of Australia of 1966. A similar pattern exists for the following
datums and descriptions of these inidividual sets of functions will not be repeated in this section of the
manual. In the future, there are likely to be a lot more of these.

Abbreviated Name Full Name
AGD66 Australian Geodetic Datum of 1966

AGD84 Australian Geodetic Datum of 1984

GDA94 Geocentric Datum of Australia, 1994

 NZGD49 New Zealand Geodetic Datum of 1949

NZGD2K New Zealand Geocentric Datum of 2000

ATS77 Average Terrestrial System of 1977

CSRS Canadian Spatial Reference System

Four lower level functions can be used to convert coordinates from AGD66 to GDA94. Use
CSagd66Init to initialize the system, and CSagd66Cls to release all resources absorbed by CSagd66Init.

Once CSagd66Init has been successfully called, CSagd66ToGda94 can be used to convert geographic
coordinates from AGD66 to GDA94. Similarly, CSgda94ToAgd66 can be used to convert geographic
coordinates from GDA94 to AGD66.

General Utility Functions
Supporting the generalized coordinate conversions described in the previous sections, are several
functions which perform calculations which are quite useful to the GIS/GPS/Mapping application
programmer. Several (but probably not all) of these are described in the following sub-sections.

44 CS-MAP User's Guide User's Guide

GEOID Height Functions

This facility enables applications to calculate and use, as appropriate, the geoid height (or geoid
separation if you prefer) at locations for which data is available. Record the data files available, and
desired to be used, in the Geodetic Data Catalog file named GeoidHeight.gdc.

This implementation emulates C++, but is written in ANSI compliant C. The functions are named:
CSnewGeoidHeight, CSdeleteGeoidHeight, and CScalcGeoidHeight; and are defined in the module
named cs_GeoidHeight.c. Code specific to geoid height file formats can be found in modules named:
CS_geoid96.c, CS_geoid99.c, CS_bynFile.c, and CS_osgm91.c. Low level applications may wish to access
the functions defined in these modules directly.

Note there is no inverse function, as it is unnecessary. To obtain orthometric height at a given location,
add the geoid height returned by CScalcGeoidHeight to the ellipsoid height. To calculate the ellipsoid
height, subtract the geoid height returned by CScalcGeoidHeight from the orthometric height.

Geocentric Coordinates

Converting between geographic and geocentric coordinates has been inside of CS-MAP for many
years. However, this capability has been hidden inside of the datum conversion functions. In this
release, this capability is now explicitly available in functions named CS_llhToXyz and CS_xyzToLlh
which are defined in the CS_dtCalc.c module.

Note that each of these functions requires the definition of the ellipsoid in use, expressed as two
separate double arguments: equatorial radius and eccentricity squared.

MGRS Implementation

Release 11.01 includes a series of new functions that provide the ability to generate MGRS
designations from geographic coordinates, and vice versa. This implementation consists of 6
functions designed for application programmer use, and two supporting functions. The support
functions may be of interest as they provide the ability to convert between geographic and UTM
coordinates/zone number where the rather strange stuff which goes on in northern Europe (i.e. southern
Norway and the Svaldberg Islands) is appropriately accounted for.

While written in 'C' to be consistent with the rest of CS-MAP, the implementation of the MGRS
capability has a definite C++ structure to it. That is, there exists a structure definition, three
constructors, a destructor, two public functions and two private functions (i.e. the supporting
functions).

MGRS Constructors
Construction of a cs_Mgrs_ object (i.e. allocation and initialization of a a cs_Mgrs_ structure)
requires knowledge of the ellipsoid definition to be used and if the alternative lettering sequence (i.e.
Bessel) is to be used. Thus, the three constructors simply provide three different ways of specifying
the ellipsoid which is to be used:
 struct cs_Mgrs_ *CSnewMgrs (double e_rad,double e_sq,short bessel);

 struct cs_Mgrs_ *CSnewMgrsE (const char *elKeyName,short bessel);

 struct cs_Mgrs_ *CSnewMgrsD (const char *dtKeyName,short bessel);

 Chapter 2 Chapter 2 -- Descriptions and Discussion 45

where the elKeyname argument can be used to specify the ellipsoid by key name. Alternatively,
application programmers can specify a datum name (the dtKeyName argument) and the calculations
will be based on the ellipsoid upon which the datum is referenced. Of course, the application
programmer can use the e_rad and e_sq version to specify the equatorial radius and square of
eccentricity directly. In all cases, the bessel argument is zero to indicate the normal lettering scheme.
+1 to indicate the alternative lettering scheme.

All constructors return the null pointer in the event of an error. Use CS_errmsg to obtain a string that
describes the nature of the error.

MGRS Destructor
Use CSdeleteMgrs to delete a cs_Mgrs_ object constructed by one of the ocnstructors. Currently, a
call of CS_free will accomplish the same thing, but maybe not in the future.
 void CSdeleteMgsr (struct cs_Mgrs_ * __This);

Like it's C++ equivalent, this function is smart enough not to attempt to free a null pointer.

MGRS Public Functions
Naturally enough, two conversion functions exists. Given a properly initialized cs_Mgrs_ object (i.e.
structure) and a geographic coordinate, CScalcMgrsFromLl will return the appropriate MGRS
designation. CScalcLlFromMgrs reverses the process. In both cases, a return value of zero indicates
success, non-zero indicates failure. Use CS_errmsg to obtain a description of the cause of failure.
int CScalcMgrsFromLl (struct cs_Mgrs_ *__This,char *result,int size,double latLng [2],int
prec);

int CScalcLlFromMgrs (struct cs_Mgrs_ *__This,double latLng [2],Const char *mgrsString);

In these prototypes, the first argument is a pointer to an initialized cs_Mgrs_ object obtained from one
of the constructors described above. The latLng argument refers to an array of at least two doubles
which contain the longitude and latitude (in that order) in degrees. The prec argument indicates the
number of digits to be included in the resulting MGRS designation. Valid values range from 0 to 5.
Note, that a value of 5 indicates that 5 easting, and 5 northing digits will be included in the resulting
string. Of course, CScalcMgrsFromLl will never write more than size characters to the result array, and
(assuming size is greater than zero) will cause result to be null terminated.

MGRS Private Functions
Two "private" functions, i.e. internal support functions, exist which convert geographic coordinates to
UTM/UPS coordinates and zone number. These functions are aware of the missing/widened zones in
the northern Europe region. They are also capable of switching between UTM and UPS (Universal
Polar Stereographic) coordinates as appropriate. These functions use a utmZone variable which
carries the UTM zone number where: 1) northern UTM zones are positive numbers between 1 and 60
inclusive, 2) southern UTM zones are negative numbers between –1 and –60 inclusive, 3) +61 refers to
the North Pole UPS zone, 4) –61 refers to the South Pole UPS Zone,, and 5) the value zero is invalid
and used to indicate an error condition.
 int CScalcUtmUps (struct cs_Mgrs_ *__This,double utmUps [2],const double latLng [2]);

 int CScalcLatLng (struct cs_Mgrs_ *__This,double latLng [2],const double utmUps [2],int
utmZone);

46 CS-MAP User's Guide User's Guide

Given a geographic coordinate, CScalcUtmUps calculates the appropriate UTM/UPS coordinates and
returns the appropriate utmZone value. Given a UTM/UPS coordinate and utmZone value,
CScalcLatLng returns the appropriate geographic coordinate. CScalcLatLng returns zero on success,
non-zero on failure. In all cases, the calculation is based on the ellipsoid used to construct the
cs_Mgrs_ argument to the function.

Forward/Inverse Functions

The term Forward/Inverse is a common way of referring to what is also known as the basic geodesy
problem. That is, given a geodetic latitude/longitude, calculate the a new position given an azimuth an
distance. This may sound pretty simple, but the calculation must be carried out on the ellipsoid. Thus
the calculation is rather complex.

Forward refers to the calculation of a new geodetic position given an azimuth and a distance. Inverse
refers to the calculation of an azimuth and distance given two geodetic positions.

CS_llazdd performs the forward calculation, and CS_azddll performs the inverse calculation.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 47

Error Handling
Having it origins in the 'C' language, error reporting in the CS-MAP library is implemented using the
return status methodology. That is, functions which can detect abnormal situations will return an
integer status value to indicate the success of the operation intended, Status returns are of two types.

With the exceptions described below, all CS-MAP functions which can detect an abnormal situation
will return a zero for success. A negative value will be returned for a failure which is considered fatal,
and a non-zero positive value is returned for a warning or providing information about a remarkable
condition.

While fatal errors can and do occur during the setup phase of a conversion/transformation combination,
it is an important part of the design of CS-MAP that fatal errors cannot occur with conversion and
transformation functions. Thus, any function involved in the creation and/or initialization of a
conversion or transformation can be expected to return a negative status value. Functions which
actually perform the conversion and/or transformation calculations can be expected to never return a
negative status.

In the event of a negative status return, applications should immediately call the CS_errmsg function
which will return an (8 bit character, English only) textual description of the cause of the problem.
This description will often include, when appropriate, contextual information such as file names etc.

Status return values from calculation functions are always positive and non-zero values usually indicate
that the coordinate to be converted is:

 Outside the useful range of the coordinate system being used,
 Outside the coverage area of a grid shift data file,
 Would have produced a domain error (i.e. log (-1))
 Or the coordinate is at either pole (which means any longitude is equivalent to any other).

In any case, the calculation function will indeed return a rational value. In many cases, this rational
value will be produced by what is called a fallback technique.

In the experience of the developers of CS-MAP, once a conversion/transformation operation has been
successfully constructed (i.e. setup), applications should at most simply count the number of non-zero
positive status values returned by the calculation functions and report this number to the user
(assuming it is non-zero) upon completion of the conversion. That is, a non-zero status return from any
and all calculation functions should be considered as information only. Otherwise, your application
will be bogged down and end user's can easily come to the conclusion that your application has
crashed.

Also note, that to keep performance levels high, a non-zero positive status return value does not cause
the generation of a descriptive error message and calling CS_errmsg after encountering a positive
status return will produce misleading information, is anything at all.

48 CS-MAP User's Guide User's Guide

Exception

There are several functions in CS-MAP whose function in life is to enumerate a list of entries in
internal lists or dictionaries. These functions tend to return a positive 1 value to indicate success. A
zero is returned to indicate that the end of the sequence has been encounters. (Of course, a negative
return value indicates a fatal error of some sort. This convention was chosen so as to make obtaining
such a list or enumeration rather easy to code in a robust manner:

 int index;
 char elpName [cs_KEEN_DEC};
 .
 .
 .
 index = 0;
 while (CS_elEnum (index++,eleVate) > 0)
 {
 /* Do something with this name */
 .
 .
 .
 }

Data Structures
Discussions which follow refer to the primary data structures of CS-MAP. Twelve such data structures
are described. These structure provide the basis for the operation of the Coordinate System Mapping
Package. All structure definitions are found in the cs_map.h header file.

Ellipsoid Definition Structure
The Ellipsoid Definition structure, cs_Eldef_, carries the two principal data elements (among others)
which define an ellipsoid for our purposes. These are the equatorial radius and the eccentricity of the
ellipsoid. Among the other items contained in the structure is a key name, which is used to distinguish
one ellipsoid definition from another.

Datum Definition Structure
The Datum Definition structure, cs_Dtdef_, carries the eight principal data elements (among others)
which define a datum for our purposes. These are the key name of the ellipsoid definition upon which
the datum is based, the X, Y, and Z components of the vector from the geocenter of the datum being
defined to the geocenter of the WGS84 ellipsoid, the three rotation components of the transformation,
and the scale component of the transformation. Among the other elements contained in this structure is
a datum key name which is used to distinguish one datum definition from another.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 49

Datum Composite Structure
The Datum Composite structure, cs_Datum_, carries the contents of both the Datum Definition
structure and the Ellipsoid Definition structure in an composite form. This structure is never written to
disk and is used internally as a programming convenience.

Coordinate System Definition Structure
The Coordinate System Definition structure, cs_Csdef_, carries all the elements required to define a
coordinate system. Twenty four of these elements are referred to as projection parameters as their use
depends upon the projection in use (which is one of the other data elements). Therefore, it is difficult
to describe their use without delving into the specifics of each projection. (Refer to the descriptions of
the functions associated with each projection in Chapter 4 for a description of parameter use for each
projection.)

For our purposes here, let it be said that the cs_Csdef_ structure is capable of carrying the definition
of any coordinate system based on any one of the thirty eight projections supported by CS-MAP and
(hopefully) any others which may be added in the future. This includes the parameters specific to the
projection, the projection origin, the coordinate system units, the coordinate system scale, the false
easting, the false northing, etc.

Preprocessed Projection Structures
There exists one structure for each of the thirty eight projections which carry the definition of a
coordinate system based on the respective projection in a preprocessed form. That is, once the specific
projection parameters applicable to a specific coordinate system are established, there are many
calculations which can be performed independent of the specific coordinates to be converted. The
results of these calculations are stored in these structures. The thirty five structure names are shown in
Table III. It is the content of these structures which actually control the conversion of cartesian
coordinates to and from latitudes and longitudes.

50 CS-MAP User's Guide User's Guide

Coordinate System Parameter Structure
The Coordinate System Parameter Structure, cs_Csprm_, is used to carry a complete definition of a
coordinate system and is the single structure used throughout the development of a coordinate
conversion. It contains a copy of the cs_Csdef_ structure of the coordinate system being used, a copy
of the cs_Datum_ structure which the coordinate system definition references, and the coordinate
system in its pre-processed form as a union of the thirty eight pre-processed parameter structures
described above. It also contains pointers to the functions which are capable of performing the forward
and inverse coordinate conversions. Pointers are also included for grid scale and convergence angle
functions. cs_Csprm_ also includes information about the specific projection in use, as well as the
limits of the coordinate system, both in cartesian and geographic form. While CS-MAP is designed
such that the application should not need to know anything about the projection, there are instances
(such as our own test program) where some knowledge of the projection in use, or its specific features,
is helpful.

As a result, this single structure represents a complete definition of a coordinate system which can be
easily passed around by pointer. Through the use of pointers to the appropriate coordinate conversion
functions contain in this structure, modules which receive a pointer to this structure do not ever have to
know exactly which projection is in use in order to perform coordinate conversions.

Projection Name Table Structure
The Projection Name Table Structure, cs_Prjtab_, is used solely to create a table of the projections
known to the system. It primarily associates a name with a projection code and a setup function. To
add new projections to the system, one need only create an entry in this table and reference the code
which, of course, must also be written. You can also add additional names for existing projections by
simply making additions to this table.

More importantly, to remove a projection from the system (in order to reduce the size of the text space
within an executable, for example), one need simply remove (or comment out) the projection's entry in
this table.

In developing a coordinate system parameter structure, the name of the projection is extracted from the
coordinate system definition. This name is located in the projection table. The projection setup
function associated with the selected named entry is then called and given a pointer to the union of pre-
processed structures. The setup function initializes the union as if it were the pre-processed structure
associated with the projection under construction. Of course, CS-MAP does all of this, mostly in the
function named CS_csloc.

The Projection Name Table includes a fully descriptive name of each projection as well as a bit map of
the features of the projection. Refer to CSdataPJ in Chapter 5 of this manual for full details.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 51

Datum Shift Definition Structure
The Datum Shift Definition structure, cs_Dtcprm_, carries all of the information necessary to perform
a datum shift on geographic coordinates (i.e. latitude and longitude). The information contained in this
structure includes the definition of the source and target datums and a road map of the various
conversions necessary to get, in the most accurate form, from the source datum to the target datum.
This structure is allocated upon request given the definitions of the source and target coordinate
systems. Once properly allocated, a pointer to this structure is all that the datum shift function needs in
order to calculate datum shifts.

Thus, applications do not need to have any knowledge of what datums or how many different
conversions are necessary to get from one datum to the next. In fact, quite often the conversion is the
null conversion which implies that the source latitude and longitude are simply copied to the target
array. Again, in this case, the application has no need to know of this situation.

The above is possible only because CS-MAP (to a large extent) requires that all datum definitions
define how to convert a specific datum to/from WGS84. Thus, by "going through" WGS84 CS-MAP
can convert any coordinate system/datum to any other. There are certain exceptions to this basic
theme.

The Data Dictionaries
The Coordinate System Mapping Package includes the definition of more than 1,000 commonly used
coordinate systems, more than 130 datum definitions, and 37 commonly referenced ellipsoids. These
definitions are carried in the Coordinate System Dictionary (a file usually named Coordsys), the Datum
Dictionary (a file usually named Datums), and the Ellipsoid Dictionary (a file usually named Elipsoid)
respectively. These files are normally expected to reside in the C:\MAPPING directory (/usr/MAPPING
under UNIX). The location of these files can be modified to suit your requirements at compile time
(see CSdata) or at run time (see CS_altdr). The names of these files can be changed either at run time
(see CS_csfnm, CS_dtfnm, and CS_elfnm) or compile time (see cs_map.h).

52 CS-MAP User's Guide User's Guide

The Coordinate System Dictionary
The Coordinate System Dictionary is a fixed length record file of cs_Csdef_ structures, maintained in
sorted order by the key_nm element, i.e. the coordinate system key name. Entries in this file are
located through the use of the binary search technique, therefore it is important that this file remain in
sorted order. The file has a magic number in the first four bytes. This is a sequence of bytes which
identify the file as being a Coordinate System Dictionary file and is defined by the
cs_CSDEF_MAGIC manifest constant in cs_map.h. This value is checked each time the file is opened
to make sure that the file is indeed a Coordinate System Dictionary and that it has not been seriously
corrupted. The specific value of the magic number is changed each time the format of the cs_Csdef_
structure is changed.

Functions are provided to access and maintain this file as a Coordinate System Dictionary. CS_csopn
will open the file, verify its magic number, and return a file descriptor (or handle). CS_csrd and
CS_cswr will perform sequential reads from and writes to a file of this type, handling encryption
appropriately. CS_cscmp compares records in the file for sorting and searching purposes. CS_csdef
will extract a particular record from the dictionary for you. CS_csupd will update an existing entry or
add a new entry to the Coordinate System Dictionary, assuring that the file remains in sorted order.
Finally, CS_csdel can be used to delete a record from the dictionary.

Coordinate system definitions are verified for validity before they are written to the Coordinate System
Dictionary through the use of the CS_cschk function. CS_csloc (described below) also checks each
definition before it is actually used to create the active form of a coordinate system.

The Datum Dictionary
The Datum Dictionary is a fixed length record file of cs_Dtdef_ structures, maintained in sorted
order by the key_nm element, i.e. the datum key name. Entries in this file are located through the use
of the binary search technique, therefore it is important that this file remain in sorted order. The file
has a magic number in the first four bytes of the file and is defined by the cs_DTDEF_MAGIC
manifest constant in cs_map.h. This is a sequence of bytes which identify the file as being a Datum
Dictionary file. This value is checked each time the file is opened to make sure that the file is indeed a
Datum Dictionary and that it has not been seriously corrupted. The specific value of the magic number
is changed each time the format of the cs_Dtdef_ structure is changed.

Functions are provided to access and maintain this file as a Datum Dictionary. CS_dtopn will open the
file, verify its magic number, and return a file descriptor (or handle). CS_dtrd and CS_dtwr will
perform sequential reads from and writes to a file of this type, handling encryption appropriately.
CS_dtcmp compares Datum Dictionary entries for sorting and searching purposes. CS_dtdef will
extract a particular record from the dictionary for you. CS_dtupd will update an existing entry or add a
new entry to the Datum Dictionary, assuring that the file remains in sorted order. Finally, CS_dtdel can
be used to delete a record from the dictionary.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 53

The Ellipsoid Dictionary
The Ellipsoid Dictionary is a fixed length record file of cs_Eldef_ structures, maintained in sorted
order by the key_nm element, i.e. the ellipsoid name. Entries in this file are located through the use of
the binary search technique, therefore it is important that this file remain in sorted order. The file has a
magic number in the first four bytes of the file and is defined by the cs_ELDEF_MAGIC manifest
constant in cs_map.h. This is a sequence of bytes which identify the file as being a Ellipsoid Dictionary
file. This value is checked each time the file is opened to make sure that the file is indeed an Ellipsoid
Dictionary and that it has not been seriously corrupted. The specific value of the magic number is
changed each time the format of the cs_Eldef_ structure is changed.

Functions are provided to access and maintain this file as a Ellipsoid Dictionary. CS_elopn will open
the file, verify its magic number, and return a file descriptor (or handle). CS_elrd and CS_elwr will
perform sequential reads from and writes to a file of this type, handling encryption appropriately.
CS_elcmp compares Ellipsoid Dictionary entries for sorting and searching purposes. CS_eldef will
extract a particular record from the dictionary for you. CS_elupd will update an existing entry or add a
new entry to the Ellipsoid Dictionary, assuring that the file remains in sorted order. Finally, CS_eldel
can be used to delete a record from the dictionary.

Dictionary Encryption
The definitions of coordinate systems, datums, and ellipsoids can represent a significant investment on
the part of the application developer. Under certain circumstances, a demonstration disk for example,
the application developer may not wish to provide this information in a form from which this valuable
data can be easily extracted. As a result, CS-MAP fully supports a means by which dictionary data can
be encrypted. All CS-MAP functions will work equally as well with encrypted dictionaries as with
normal versions. Dictionary compilers normally produce dictionaries in encrypted form. An option is
provided to produce unencrypted dictionaries.

54 CS-MAP User's Guide User's Guide

Dictionary Definition Protection
Dictionary entries are normally protected. That is, changes to coordinate system, datum, and ellipsoid
definitions are controlled. This reduces technical support calls significantly. Application programmers
can control the extent of protection, or turn it off altogether. How this system works is described
below.

In normal operation, CS-MAP will not allow end users to change definitions distributed with the
application. More specifically, definitions created by the Dictionary Compiler are marked as to be
protected. End users can, and often do, create new coordinate system definitions. Therefore, rather
than change a coordinate system as distributed with the application, users would typically create a new
definition which is modified as necessary to achieve the desired results.

Definitions created by end users, and which remain unchanged for 60 days, are also protected. This is
done under the assumption that a definition which remains unchanged for 60 days will have been used
and judged satisfactory, and therefore should be preserved as a means of recording the actual definition
used to produce the results.

Finally, CS-MAP normally requires that the key names for all user defined definitions contain the
colon character. By adopting this convention, application updates can include coordinate system
updates without the possibility of the update overwriting a valid and valuable user defined definition.
(This, of course, assumes that the distribution will never contain a coordinate system definition with a
key name containing a colon character.)

Application programmers can control to what degree the protection system is active by simply setting
the value of either, or both, of two global variables, either at compile time (see CSdata.c) or at run time.

char cs_Unique; In the CS-MAP distribution, the value of this global variable is set to the colon.
Set the value of this variable to the null character to turn the user definition key name protection
feature described above off. You can select a character other than the colon by simply setting this
variable to the desired character.

short cs_Protect; Use this variable to control the protect applied to dictionary definitions. A
positive, non-zero value is the number of days associated with the user defined definition protection
described above. For example, in the CS-MAP distribution, this value is set to 60, indicating that after
a user defined definition remains unchanged for 60 days, it automatically becomes protected. Set
cs_Protect to zero to maintain distribution coordinate system protection, but disable all user defined
definition protection. Set cs_Protect to a negative value to disable all dictionary definition
protection.

Programmer Note: Dictionary definitions include a short which controls the protection of the
definition. If this value is set to zero, the dictionary entry is permanently unprotected. If this value is
set to one, the entry is permanently protected. Otherwise, this value is set to the date at which the
definition was last modified expressed as the number of days since January 1, 1990. Thus, changing
the value of cs_Protect will change the protection of user defined definitions in a dynamic manner.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 55

Byte Ordering
All three dictionary files described in this section contain data in binary form, thus byte ordering
becomes a serious issue when using CS-MAP on different platforms. Beginning with Release 6.0 of
CS-MAP, dictionaries are expected to be in little endian byte order regardless of the platform in use. A
byte swapping function, CS_bswap, is called immediately after each read from any of these
dictionaries, and immediately before the write of any data to any of the dictionaries. CS_bswap is
programmed to automatically determine if byte swapping is required based on a compile time constant.
Thus, a single copy of these dictionaries can be distributed for use on all platforms.

The term "all platforms" is perhaps misleading. CS_bswap will only swap between little endian and
big endian byte orders. The rather odd byte orderings of some older DEC machines is not supported at
the current time.

The automatic byte ordering feature is easy to disable if so desired. Refer to CS_bswap for more
information.

The automatic byte ordering feature also applies to all other binary data files upon which CS-MAP
relies. That is, automatic byte swapping is applied to all reads from NADCON database files, Multiple
Regression data files, Canadian National Transformation files, and all HPGN database files. The
choice of using little endian byte ordering was natural as these files are generally distributed by their
sources in this form.

Dictionary Compiler
ASCII versions of the three dictionaries are provided in the distribution. The names of these files are
COORDSYS.ASC, DATUMS.ASC, and ELIPSOID.ASC. Binary versions of the dictionary files can be
produced by using the dictionary compiler program CS_COMP. This enables the definition files to be
committed to version control procedures and the dictionaries remade as part of your product
manufacturing process.

Originally, the ASCII files and the compilers were provided as a means of overcoming the byte order
problem on different platforms. Now that CS-MAP has been modified to process little endian files on
all platforms, this purpose is now obsolete. The version control purpose of these files remains valid.

Multiple Regression Datum Transformation Files
The compiler referred to above will also compile a fourth ASCII source file named MREG.ASC which is
also supplied in the distribution. MREG.ASC contains in an ASCII, version controllable form, the
definition of all multiple regression transformations known to the system. Compiling this file produces
the .MRT files which CS-MAP accesses, as necessary, when performing datum conversions. Your
application distribution should include the .MRT files produced by compiling the MREG.ASC file.

56 CS-MAP User's Guide User's Guide

Default Datums, Ellipsoids, and Units
CS-MAP supports the concept of default datums, ellipsoids, and/or units. Defaults represent a
convenient way to switch a coordinate system definition between different datums, ellipsoids, and/or
units without having to change the Coordinate System Dictionary. How this feature applies to datums
is described first; and this description is then extended to ellipsoids and units.

A datum reference in a coordinate system definition may be marked as "defaultable" by enclosing the
name in square brackets. The actual datum name provided must be a valid datum reference as this
reference will be used whenever the default feature is not active. This also implies that the default
feature need not be active for the coordinate system definition to be valid and usable.

Upon activation of a coordinate system, regardless of the interface used, CS-MAP will check to see if
the datum specified is "defaultable". If so, it examines the current default datum setting. If a valid
default datum has been specified, the "defaultable" datum reference is replaced by the current default
setting and coordinate system setup continues. If there is no current default setting, the "defaultable"
datum is used as is. Thus, in the absence of a default specification, the coordinate system definition
operates as defined. Whenever a default replacement is performed, the replaced datum name in the
cs_Csdef_ element of the cs_Csprm_ structure will be enclosed in parenthesis to indicate that a
default replacement has occurred.

Use the CS_dtdflt function to define a default datum. It will return the status and the name of any
previous default. It will not allow an invalid default setting to be made. Calling CS_dtdflt with the
NULL pointer as its argument can be used to determine if the datum default feature is active and, if so,
what the current default setting is. Call CS_dtdflt with a pointer to the null string to disable the datum
default feature. Until CS_dtdflt is called with a valid datum reference, the datum default feature
remains disabled.

Cartographically referenced coordinate systems, and datum definitions, can contain "defaultable"
ellipsoid references. Use CS_eldflt to enable and disable the "defaultable" ellipsoid feature.

Coordinate system unit specifications can also be "defaultable". Separate default values are maintained
for linear and angular units. Use CS_ludflt to control the state of linear unit defaults, and CS_audflt to
control the state of angular unit defaults.

You can completely ignore this concept of default datums, ellipsoids, and units by simply not calling
(or even referencing) any of the default functions mentioned above. Default processing is off by
default, and by never calling any of these functions, it never gets turned on. This is how most users
deal with the default feature.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 57

High Performance Interface
The High Performance Interface to the Coordinate System Mapping Package consists of thirteen
functions. By virtue of the data structures described above, use of these functions is independent of the
actual coordinate systems, projections, or datums in use. This represents the most efficient means to
use CS-MAP to convert coordinates from one coordinate system to another. It also insulates your
applications from most changes which could be made to the CS-MAP in the future. This basic API has
not changed since 1992. This interface requires the use of structure pointers and, therefore, may not be
appropriate for use with some languages. Therefore, use this interface wherever high performance is a
top priority and the application is written in a language which can handle pointers such as C, C++, or
Pascal.

These functions make use of the Coordinate System Dictionary, the Datum Dictionary, the Ellipsoid
Dictionary, and the functions which access them. This need not be of concern to the application
programmer using the High Performance Interface as it all goes on "behind the scenes".

In this chapter, our intent is to associate function names with capabilities and features. Refer to
Chapter 4 for full details and prototypes of the functions introduced here.

The Functions
The thirteen functions which comprise the High Performance Interface are CS_csloc, CS_dtcsu,
CS_ll2cs, CS_dtcvt, CS_cs2ll, CS_dtcls, CS_csscl, CS_cnvrg, CS_cssch, CS_cssck, CS_llchk, CS_xychk,
and CS_free. The typical coordinate conversion application uses only seven of these function.

Refer to the major sections following this to see how the use of these functions is combined to
produced generalized coordinate conversion capabilities.

Coordinate System Locate

Given the key name of a coordinate system defined in the Coordinate System Dictionary, CS_csloc
returns a pointer to a fully initialized cs_Csprm_ structure. This initialization includes all of the "one-
time" calculations and the establishment of pointers to the appropriate coordinate conversion functions.
This structure is malloc'ed from dynamic memory. Therefore, you may have several such definitions
active at any given time. Also, you should release these structures when your application no longer has
need of them; use CS_free.

58 CS-MAP User's Guide User's Guide

Datum Conversion Setup

Given pointers to the both the source and target coordinate systems as returned by CS_csloc, CS_dtcsu
returns a pointer to a malloc'ed cs_Dtcprm_ structure which is a required argument to the CS_dtcvt
function which actually calculates datum shifts. As its name implies, CS_dtcsu "sets up" a datum
conversion by allocating and initializing a cs_Dtcprm_ structure. Since datum conversions often
require the use of file descriptors, grid cell caches, and the like, do not use free or CS_free to release the
cs_Dtcprm_ structure returned by CS_dtcsu. The sixth function of this interface, CS_dtcls must be
used instead to prevent memory and file descriptor leaks in your application. Note, when appropriate,
CS_dtcsu returns a pointer to a null datum conversion; a conversion which does nothing successfully
and rapidly.

Coordinate System to Lat/Long Conversion

Given a pointer to an initialized cs_Csprm_ structure which describes the coordinate system in use,
the CS_cs2ll function will convert a cartesian coordinate to geographic form in terms of latitude and
longitude in internal form. The resulting geographic coordinate will be based on the same datum as the
coordinate system defined in the provided cs_Csprm_ structure.

The conversion function pointers inserted into the cs_Csprm_ structure by CS_csloc are used to select
the proper code for the conversion. The application has no need to know what projection is in use or,
for that matter, anything else about the coordinate system in use.

Datum Conversion

Given a pointer to an initialized datum conversion parameter structure, cs_Dtcprm_, as returned by
CS_dtcsu, the CS_dtcvt function will convert the supplied geographic coordinates from the source
datum to the target datum.

Lat/Long to Coordinate System Conversion

Given a pointer to an initialized cs_Csprm_ structure, the CS_ll2cs function will convert a geographic
coordinate specified in terms of latitude and longitude (in degrees) to the coordinates of the coordinate
system defined by the cs_Csprm_ structure.

The conversion function pointers inserted into the cs_Csprm_ structure by CS_csloc are used to select
the proper code for the conversion. The application has no need to know what projection is in use or,
for that matter, anything else about the coordinate system in use.

Close Datum Conversion

Given a pointer to an initialized datum conversion parameter structure, as returned by the CS_dtcsu
function, CS_dtcls will release all system resources allocated for the specific datum conversion. Note,
that since several datum conversions may be initialized and operative at any given time, CS_dtcls does
not necessarily release all resources associated with certain datum transformations until such time as
the last datum conversion parameter block referencing such resources is closed.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 59

Grid Scale Factor

Given a pointer to an initialized cs_Csprm_ structure as returned by the CS_csloc function, CS_csscl
will return the grid scale factor for the coordinate system at a location indicated by a geographic
coordinate. It is important to note that the concept of Grid Scale as a single number applies only to
coordinate systems based on conformal projections such as the Transverse Mercator, Lambert
Conformal Conic, and the Oblique Mercator. Other projections, such as equal area projections, will
have two such scale factors. In the case of equidistant projections, there are two such scale factors but
one of them will usually be one. In the case on non-conformal projections, CS_csscl will return what
the designers of CS-MAP consider the more interesting of the two scale factors for the specific
projection involved.

Scale Along a Parallel

The two scale factors mentioned above consist of the scale along a parallel, often referred to as 'k', and
the scale along a meridian, referred to as 'h'. Given a pointer to an initialized cs_Csprm_ structure as
returned by CS_csloc, CS_cssck will always return the scale factor along a parallel at the location
provided.

The nomenclature referred to here is that used by J. P. Snyder in Map Projections - A Working Manual.
Other authors use different symbology. In his later work, Map Projections - A Reference Manual,
Snyder uses the more common notation. CS-MAP, whose origins date back to 1987, uses the original
Snyder notation.

Scale Along a Meridian

Given a pointer to an initialized cs_Csprm_ structure, CS_cssch returns the scale along a meridian,
often referred to as 'h', at the location given by its second argument which must be a geographic
coordinate.

Convergence Angle

Given a pointer to an initialized cs_Csprm_ structure as returned by CS_csloc, CS_cnvrg returns the
convergence angle of the coordinate system, at the location indicated by the second argument which
must be a geographic coordinate. The return value is in degrees; positive is east of north.

Check Limits, Geographic

Given a pointer to an initialized cs_Csprm_ structure as returned by CS_csloc, CS_llchk will determine
if all coordinates in the list provided are within the mathematical domain of the coordinate system
and/or with the useful range of the coordinate system. In the case where the provided list contains two
or more points, the determination applies to each coordinate on each great circle arc formed by
consecutive geographic coordinates. In those cases where the provided coordinate list consists of four
or more geographic coordinates which define a closed region, the determination applies to all
coordinates enclosed within the region, or which reside the provided boundary.

60 CS-MAP User's Guide User's Guide

Check Limits, Cartesian

Given a pointer to an initialized cs_Csprm_ structure as returned by CS_csloc, CS_xychk will
determine if all coordinates in the list provided are within the mathematical domain of the coordinate
system and/or with the useful range of the coordinate system. In the case where the provided list
contains two or more points, the determination applies to each coordinate on each line segment formed
by consecutive cartesian coordinates. In those cases where the provided coordinate list consists of four
or more cartesian coordinates which define a closed region, the determination applies to all coordinates
enclosed within the region, or which reside on the provided boundary.

Free Coordinate System Parameters

Use CS_free to free memory allocated by the any CS-MAP functions. This function is to be used, for
example, to free the coordinate system parameter block returned by CS_csloc. It is important that
CS_free be used as in certain environments (a Windows DLL for example), the heap used by the library
is not necessarily the same as the heap used by the application. Thus, if CS-MAP allocated the
memory, it is best if CS-MAP releases it also.

Coordinate System to Coordinate System
In order to convert from one coordinate system to another, one simply obtains, from the CS_csloc
function, a definition of the two coordinate systems of concern. The inverse function, CS_cs2ll, is used
to convert the source coordinates to latitude and longitude and the forward function, CS_ll2cs, is used to
convert to the target coordinate system. The sample code segment shown is, for example, all the code
necessary to convert a file of NAD27 based UTM Zone 13 (UTM27-13) coordinates to NAD27 based
Colorado State Plane, Southern Zone (CO-S). To change the conversion to use other coordinate
systems, only the names provided to the CS_csloc function need be changed. Of course, these strings
are rarely hard coded as has been done in this example.

int input, output;
double xy [2], ll [2];
struct cs_Csprm_ *utm, *co_s;

utm = CS_csloc ("UTM27-13");
co_s = CS_csloc ("CO-S");
while (read (input,xy,sizeof (xy)) != 0)
{
 CS_cs2ll (utm,ll,xy);
 CS_ll2cs (co_s,xy,ll);
 write (output,xy,sizeof (xy));
}
CS_free (utm);
CS_free (co_s);

 Chapter 2 Chapter 2 -- Descriptions and Discussion 61

The LL Coordinate System
Many products will use the above scheme to provide the ability to convert from any coordinate system
to any another. This scheme is completely general, supporting any combination of coordinate systems.
Sometimes, however, it is desirable to convert from or to geographic coordinates. The LL coordinate
system and the Unity projection accommodate this within the general scheme of things described
above. That is, the LL coordinate system is simply a coordinate system in which the coordinates are
latitudes and longitudes, and the Unity projection is simply a set of conversion functions which do little
other than possible units and prime meridian conversion.

Therefore, supplying a coordinate system name of LL, for example, for either the input or output
coordinate system will produce the desired results without the application program having to know
about this specific situation. (Please note that LL is a cartographically referenced coordinate system.
Coordinate systems LL27 and LL83 are usually used in practice.)

Latitude and longitude coordinates in different units or referenced to a prime meridian other than
Greenwich are possible by defining different LL type coordinate systems. These definitions, all based
on the Unity pseudo-projection, can include a units specification and a specification of a prime
meridian other than zero (i.e. Greenwich).

Multiple Conversions
Please note, that since coordinate system definitions (as returned by CS_csloc) reside in "heap"
memory, there is no practical limit as to the number of definitions which can be active at any given
time. Therefore, using the three functions described above, several different coordinate conversions
can be active at the same time.

62 CS-MAP User's Guide User's Guide

Adding Datum Conversions to the Interface
Datum conversions can be added to the basic scheme described above by adding calls to the datum
conversion functions. Refer to the code given below for an example, paying special attention to the
emphasized code. Once the two coordinate system definitions have been initialized, they are passed to
CS_dtcsu. By examining both the source and target coordinate system definitions, CS_dtcsu is able to
determine which, if any, datum transformation techniques need to be applied to accomplish the desired
conversion. CS_dtcsu will select one or more datum conversions as necessary to accomplish the
desired conversion. For example, to convert from NAD27 to WGS72, three conversions are actually
setup: 1)from NAD27 to NAD83 via the NADCON technique, 2)NAD83 to WGS84 (which is
currently a null conversion), and finally 3)WGS84 to WGS72 using a hard coded formula. CS_dtcsu
assures that all preparations necessary for these conversions are initialized, and saves the results in the
cs_Dtcprm_ structure to which it returns a pointer.

In the actual coordinate conversion loop, CS_dtcvt is called for each coordinate once its geographic
form has been obtained from CS_cs2ll. Note that if CS_dtcsu determined that no datum conversion was
required, the information contained in the cs_Dtcprm_ structure which it returns causes CS_dtcvt to
simply copy the source geographic coordinates to the target array. Finally, when the conversion
process is complete, CS_dtcls is used to release any system resources which were allocated for the
datum conversion and which are no longer needed.

int input, output;
double xy [2], ll [2];
struct cs_Csprm_ *utm, *co83_s;
struct cs_Dtcprm_ *dtc_ptr;
.
.
utm = CS_csloc ("UTM27-13");
co83_s = CS_csloc ("CO83-S");
dtc_prm = CS_dtcsu (utm,co83_s,dat_err,blk_err);
while (read (input,xy,sizeof (xy)) != 0)
{
 CS_cs2ll (utm,ll,xy);
 CS_dtcvt (dtc_prm,ll,ll);
 CS_ll2cs (co83_s,xy,ll);
 write (output,xy,sizeof (xy));
}

CS_dtcls (dtc_prm);
CS_free (utm);
CS_free (co_s);
 Sample Code Segment

 Chapter 2 Chapter 2 -- Descriptions and Discussion 63

Geodetically Referenced Coordinate Systems
In the normal case, CS-MAP converts from one geodetically referenced system to another. In the
sample code segment in the previous topic, for example, UTM27-13 is referenced to NAD27 and CO83-C
is referenced to NAD83. The need for NAD27 to NAD83 conversion is unambiguous and performed
automatically by CS-MAP's High Performance Interface without the application having to know of this
situation. However, there are circumstances where a coordinate system cannot be referenced to a
specific datum. For example, what datum should UTM zone 25 (middle of the Atlantic Ocean) be
referenced to?

For various reasons, it is not always possible or convenient to reference a coordinate system to a
specific datum. To handle such cases, CS-MAP supports the concept of a cartographically referenced
coordinate system.

Cartographically Referenced Coordinate Systems
The cs_Csdef_ structure, which carries the definition of all coordinate systems, has an ellipsoid key
name element as well as a datum key name element. If the datum key name element is not the null
string, the coordinate system is said to be geodetically referenced. If the datum key name element is
the null string, the ellipsoid key name element must then carry the key name of an ellipsoid definition
in the ellipsoid dictionary. In this case, the coordinate system is said to be cartographically referenced.
(If both elements are not the null string, the ellipsoid key name field is ignored.)

The example shown previously in this section showed how conversions are performed between two
geodetically referenced systems. If either of the two coordinate systems involved is cartographically
referenced, or if both are cartographically referenced, CS_dtcsu simply returns the null datum
conversion. Thus, for example, when the target coordinate system is cartographically referenced, the
resulting coordinates are based on the source datum, whatever it may happen to be. Similarly, if the
source is cartographically referenced and the target is geodetically referenced, there is an implied
assumption that the source coordinates are based on the datum of the target. If both coordinate systems
are cartographically referenced, we have no knowledge of the datums in either case and the conversion
is strictly cartographic, hence the semantic convention adopted here.

Examination of the COORDSYS.ASC file will produce several cartographically referenced coordinate
systems. Many of these are UTM zones in areas other than the US and Canada. (In the US and
Canada, UTM zones can be reliably said to be based on either NAD27 or NAD83.) Perhaps the most
important cartographically referenced coordinate system is that which is named LL. This enables us to
use the LL coordinate system to convert generic Lat/Long's to any coordinate system, or convert any
coordinate system to Lat/Long's based on the same datum as the source, what ever it might be.

64 CS-MAP User's Guide User's Guide

Cartographic Projections
For each projection supported, there exist eight, possibly nine, functions which comprise the full
implementation of a projection. The brief description of these functions is given below. These
descriptions will be important to those adding a new projection as well.

Those adding projections to the system only need to add an entry to the projection table cs_Prjtab.
Doing so, you will need to add a pointer to the Definition Check and the Setup functions. To activate
the proper parameter settings in the MFC dialog, you will also need to add the projection to the
cs_PrjprmMap table. It is unlikely, but if your new projection uses a new type of parameter, you may
need to add a new entry to the cs_Prjprm table. All of these tables are defined in the CSdataPJ.c
module.

Program Environments
Portability to a large variety of program environments is a major feature of CS-MAP. Thus,
programmers accustomed to a single environment may consider some of the code and design of CS-
MAP rather awkward or old fashioned. Nevertheless, by keeping things very basic and simple (e.g.
binary searching a sorted fixed length record file), CS-MAP ports to just about any other environment
without change and without requiring any additional software beyond the contents of a normal C
runtime library.

However, simplicity is insufficient to cover the entire range of issues. In this section we discuss
features and aspects of CS-MAP which are specifically intended for differing program environments.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 65

Multi-Threaded Programming
Beginning with release 8.0, CS-MAP is fully compatible with multi-threaded Windows environments.
Threads are different from processes in that not only do they share their parents code space, the data
space is also shared. Since CS-MAP uses several global variables, this presents a problem.

This problem is addressed by declaring each of the several dynamically used (i.e. non-constant) global
variables to be (using the Microsoft vernacular) __declspec (thread). (In the Borland vernacular, its
__thread.) This causes each new thread to have it's own copy of these variables; but the initialization
of these variables upon starting a new thread is unclear. In any case, we do count on the operating
system being able to give us a separate copy of all of these variables for each new thread instance
which is started.

In order to insure that each of these variables is properly initialized, we have provided the function
named CS_init. It should be called in each new thread just once, prior to any other CS-MAP function
call in the thread. If the parent thread's value of the global cs_Dir and cs_DirP variables are valid,
these values are preserved. If not they are initialized. In the case of several other variables, such as
defaults, the application programmer may specify if these are to be inherited from the parent thread.
Variables dealing with NAD27 to NAD83 datum conversions and the like are always initialized to the
NULL state.

Thus, each thread will have its own set of NADCON data file buffers. In certain applications, this may
be wasteful, but in most cases this provides the highest performance. Otherwise, we would be wasting
considerable resources with resource locks etc.

UNIX users need not fear. All declarations and definitions in the CS-MAP code where the __declspec
(thread) or __thread are appropriate are accomplished using the manifest constant Thread defined in
the CS-MAP header file. This constant is defined to be nothing in most cases. Only in the event that
compiler pre-defined constants indicate a multi-thread environment (i.e. _MT), is Thread defined to be
something other than nothing. None of this applies if you are building a DLL. In a DLL, there is a
single data segment, and multi-threading has no effect.

66 CS-MAP User's Guide User's Guide

GUI Considerations
CS-MAP supports a graphic user interface based on Microsoft's MFC library. This is, admittedly, non
portable but does provide useful product capability for a large percentage of our clients. Use of these
functions requires that you include the csmap.rc file into your projects resources. This can be
accomplished by adding an include "csmap.rc" statement to your project's .rc2 file. Please note that the
use of these functions implies that your application activates the basic infrastructure of the MFC
library. Accessing the functions in an isolated application does not work without special effort. Also
note, that MFC is a multi-threaded environment. You will need to compile the CS-MAP library using
the multi-threaded options to eliminate frustrations generated by the Microsoft linker.

The CS_csEditor function causes activation of the coordinate system editor. Similarly, the CS_dtEditor
and CS_ellEditor functions cause the activation of the datum and ellipsoid editors respectively. In all
three cases, the functions require a single input and return a single result. The input is the key name of
the definition which is to be initially displayed. The result is the key name that was displayed when the
user caused the dialog to exit. All other user activity is recorded in the appropriate dictionary.

The CS_csBrowser function activates a coordinate system browser and can be used to obtain a
coordinate system key name from the user. The CS_csDataDr function displays a dialog which enables
the user to specify the directory in which the mapping data files reside.

Customization
Some users will, no doubt, require modification to the basic capabilities of the Coordinate System
Mapping Library as provided by OSGeo. The following sections describe how some of the more
common requirements can be accomplished with a minimum of effort.

Tuning the Protection System
As distributed, CS-MAP will not allow users to modify or delete a dictionary definition which is
produced by the dictionary compiler; i.e. a distribution definition. Further, CS-MAP will not permit
modification or deletion of a user defined coordinate system after such definition has remained
unaltered for 60 days. The behavior of this feature is controlled by the cs_Protect global variable,
an int defined in the CSdata module. You can change the value of this variable in CSdata and
recompile, or at run time.

Setting cs_Protect to a negative value disables all of the above described protection features.
Setting cs_Protect to zero enables distribution coordinate system protection, but disables the user
defined protection system. Setting cs_Protect to a positive value enables the user definition
protection feature, and also specifies the number of days which must elapse from the last modification
before the definition is protected.

 Chapter 2 Chapter 2 -- Descriptions and Discussion 67

Turning of Unique Names
As distributed, CS-MAP requires that a colon appear in all dictionary definition key names. By doing
so, CS-MAP guarantees that the names of all user definitions will be different from any definition
which may be contained in a future distribution of CS-MAP. You can disable this feature of CS-MAP
by setting the global char variable named cs_Unique to the null character (i.e. '\0'). Alternatively,
you can enable this feature using a different character by setting the value of cs_Unique to that
character. cs_Unique is defined in the CSdata module and be set at compile time or run time.

Eliminating a Projection
If you do not have a need for all thirty eight supported projections, you can simply remove from the
projection table (defined in CSdataPJ) the entry which references any projection which you do not
need. Doing so will eliminate all references to the code for a specific projection and reduce the code
size of your executable.

Data Dictionary Directory
The directory in which CS_csdef, CS_dtdef, and CS_eldef look for their respective dictionary files is
defined in the CSdata.c module. You must use the CS_altdr function to initialize this variable to point
to the directory which contains all data files. CS_altdr will use the value of an environmental variable
when called with a NULL pointer as an argument. The name of this environmental variable,
CS_MAP_DIR by default, is established in cs_map.h as a manifest constant.

Dictionary File Names
The names assigned to the three dictionary files are defined as manifest constants in the cs_map.h
header file, declared and initialized in the CSdata module. They can also be modified at run time by
using the CS_csfnm, CS_dtfnm, and CS_elfnm function.

Adding Units
The units which are recognized by the Coordinate System Mapping Package are defined in the
CSdataU module. You can add or delete as necessary. Note that this table has provisions for an
abbreviation in addition to the full name. Use the code as provided as an example of how to
incorporate a new unit. Also note that the factor is the multiplier required to change the new unit to
meters, or degrees, by multiplication depending upon the type of unit.

68 CS-MAP User's Guide User's Guide

Language Translation
Textual descriptions of all error conditions are provided in the CSerpt module. All language oriented
text is located either in the cs_map.h header file, one of the three data modules: CSdata, CSdataU,
CSdataPJ, or in the ASCII form of the dictionary files (COORDSYS.ASC, DATUMS.ASC, and
ELIPSOID.ASC). Language translations efforts need only address these eight files (MFC dialogs
excepted).

 69

This section describes the use and function of the three executable modules which are a part of the CS-
MAP distribution. Note that the executables modules themselves are not provided. Source code which
can be used to create the executable modules on your platform are included.

CS_COMP—Coordinate System
COMPiler

CS_COMP [/c] [/b] [/s] [/t] [/w] source_file_dir output_dir

 CS_COMP creates binary dictionary files from the ASCII source files provided with the CS-MAP
distribution. This feature has been added to 1) eliminate problems with the byte order of binary data on
platforms other than Intel and 2) provide a means by which coordinate system definitions can be
committed to source control procedures. Release 6 (and later) of CS-MAP precludes, to a large
extent, the first need described above. See Byte Ordering below.

On UNIX systems, you will need to use the UNIX option character (i.e. the dash) when specifying
options.

Source code to CS_COMP and its components is provided to all licensees, and has been tested as a
console application under Windows XP and Linux 3.2.2. As CS-MAP is intended for use in a large
variety of systems, and for compilation and linking by users who may not have access to lex and yacc,
the user interface and source file formats are very simple and basic.

By compiling all four source files at the same time, CS_COMP can now perform consistency checks
between all four files. To simplify use, the actual file names are hard coded into the program. Thus,
the source files are required to be named Coordsys.asc, Datums.asc, Elipsoid.asc, and Mreg.asc for
the Coordinate System, Datum, Ellipsoid, and Multiple Regression Transformation data files
respectively. CS_COMP expects these files to reside in the directory specified as the first positional
argument on the command line.

Similarly, the names of the output files are fixed by the program, being the names specified in the
CSdata module. These are the same names that the library in general searches for. The directory in
which these files are written is specified as the second positional parameter on the command line.

Since CS_COMP performs a consistency check between all files, it expects to compile all four files. It is
not possible to compile the files individually.

CS_COMP is coded for possible compilation as a Windows XP console application. Therefore, it
requires an acknowledgment before it exits, enabling the operator to verify successful completion
before the window disappears. For use in make files and/or batch files, you may wish to use the /b
option to suppress the requirement for acknowledgment before exit.

C H A P T E R 3

Chapter 3 -- Executables

70 CS-MAP User's Guide User's Guide

CS_COMP normally produces encrypted output files. Use the /c option to cause unencrypted versions
of the dictionaries to be produced for testing and/or debugging purposes.

Presence of the /t option instructs CS_COMP to include coordinates systems, datums, and ellipsoids in
the Test group. Normally, these are neither compiled or distributed with your application.

Use the /w option to instruct CS_COMP to report any inconsistency in the data which may only be
suspicious.

In the UNIX environment, the dash must be used as the option character.

Use the /s option to instruct CS_COMP to produce dictionary files in big endian byte order regardless of
the system on which the program has been compiled. This forces a byte swap before output on little
endian processors (e.g. Intel) and omits the byte swap on big endian processors (e.g. Sun).

Byte Ordering
CS_COMP calls CS_bswap immediately prior to writing any data to the dictionary file in order to effect,
as necessary, a byte order switch to little endian (i.e. Intel/DOS) byte order. This is the same byte
order expected by the CS-MAP library on all platforms. It is also the byte order which the data file from
other sources, such as the NADCON LAS/LOS files, are distributed. Use of the /s options reverses
this effect, causing big endian data files to be produced, regardless of the processor in use.

Source File Formats
Coordsys.asc

Records in the COORDSYS.ASC source file consist of a line of text. Blank lines are generally ignored.
All characters following an un-escaped pound sign character ('#') are ignored. The pound sign
character can be escaped by the backslash ('\\') or pound sign ('#') characters. Note that this is
required to get a pound sign character into a coordinate system description as these descriptions are
not quoted. Leading and trailing whitespace on all records is also ignored. Records to be processed
must start with one of the 39 keywords described below. The colon separator character is considered
to be part of the keyword. The value of the keyword must follow the keyword on the same line of text,
white space may be used to separate the keyword from its value.

 Chapter 3 Chapter 3 -- Executables 71

Each occurrence of the CS_NAME: keyword indicates the beginning of a new coordinate system
definition and the end of any previous coordinate system definition. Otherwise, the order of the
specifications is not important. However, to maintain your source in a comprehensible format, it is
strongly recommended that each coordinate system definition begin with the CS_NAME: keyword and
be terminated by one or more blank lines. No blank lines should appear within the definition itself.
Further, while CS_COMP will sort the resulting binary Coordinate System Dictionary file, maintaining
the coordinate system source file in sorted order makes it (relatively) easy to locate a definition should
review or editing be required.

For projection specific information, refer to the projection descriptions in Chapter 7 of this guide. Note
that rarely will any projection require the use of all 39 keyword specifications.

The 39 keywords and their values are:

CS_NAME: - Used to specify the key name of the coordinate system which is to be defined, 23
characters max. See CS_nampp for conventions concerning key names.

DESC_NM: - Used to specify the 63 character descriptive name of the coordinate system being defined.

DT_NAME: - Used to specify the datum key name to which a geodetically referenced coordinate
system is to be referenced to. The ellipsoid used is a part of this datum definition. Presence of a valid
datum key name here indicates that the coordinate system is geodetically referenced. Either a
DT_NAME: specification, or an EL_NAME: specification must be provided for each coordinate system
definition. If both DT_NAME: and EL_NAME: specifications are provided, the EL_NAME:
specification is ignored by CS-MAP.

EL_NAME: - Used to specify the ellipsoid key name for a cartographically referenced coordinate
system. A coordinate system is cartographically referenced to the ellipsoid named by this specification
if, and only if, the datum key name specification is omitted. If both DT_NAME: and EL_NAME:
specifications are provided, the EL_NAME: specification is ignored by CS-MAP.

ORG_LAT: - Used to specify the origin latitude of the coordinate system. This value may be in any
form acceptable to CS_atof, but is always in degrees relative to the equator. Use positive numbers for
north latitude, negative numbers for south latitude.

ORG_LNG: - Used to specify the origin longitude of the coordinate system. This value may in any
form acceptable to CS_atof, but always in degrees and is always relative to the Greenwich prime
meridian. Use positive numbers for east longitude, negative numbers for west longitude.

SCL_RED: - Used to specify the scale reduction which may apply to a coordinate system. This value
is ignored by the many projections which do not support this feature. The value may be specified as a
decimal number, e.g. 0.9996, or as a ratio, e.g. 1:2500. A value of 1.0 or greater is unusual, but is
accepted.

ZERO_X: - Used to specify the minimum X value which is to be considered non-zero. X coordinate
values whose absolute value is less than the value specified here will be converted to hard zeros. This
is used to suppress coordinate output such as 4.3472E-07 which can be of value in certain applications.
A value of 0.0 is assumed if no specification is made.

72 CS-MAP User's Guide User's Guide

ZERO_Y: - Used to specify the minimum Y value which is to be considered non-zero. Y coordinate
values whose absolute value is less than the value specified here will be converted to hard zeros. This
is used to suppress coordinate output such as 4.3472E-07 which can be of value in certain applications.
A value of 0.0 is assumed if no specification is made.

PARM1: thru PARM24: - Used to specify the value of as many as 24 parameters which are specific to
the particular projection in use. The use of these items varies from one projection to another. The
value is always a real number. Where a longitude is specified, it must be given in degrees, relative to
Greenwich, where west longitude is negative. Where a latitude is expected, it must be given in degrees
relative to the equator where north latitude is positive and south latitude is negative. When an azimuth
is specified, it must be given in degrees east of north (i.e. west of north would be negative). In all
cases, the values are processed by CS_atof, and any form acceptable to that function may be used.

X_OFF: - Used to specify the value of the false easting of the coordinate system. A value of 0.0 is
assumed if no specification is made. Any form acceptable to CS_atof may be used, including the use of
the comma as a thousands separator.

Y_OFF: - Used to specify the value of the false northing of the coordinate system. A value of 0.0 is
assumed if no specification is made. Any form acceptable to CS_atof may be used, including the use of
the comma as a thousands separator.

PROJ: - Used to specify the code name of the projection upon which the coordinate system is based.
This code value must be the value assigned to the desired projection in the CSdataPJ module, i.e. the
projection table. This value is a character string of two to eight characters. Since projections can now
have several variations, this code value is not the same as the five character code used to generate
function and structure tag names. You will need to refer to the CSdataPJ module to determine the code
name for a specific projection type.

UNIT: - Used to specify the name of the system unit for the coordinate system being defined. In the
case of a normal cartesian coordinate system, this must be one of the supported unit of length names as
defined in the CSdataU module. In the case of the Unity projection, i.e. the coordinate system being
defined is latitude and longitude or a variation thereof, the unit name must be one of those names
defined as a unit of angular measure in the CSdataU module.

GROUP: - Used to classify coordinate systems into groups to make selection of a coordinate system
from the 5,000+ provided a bit easier. The supported group codes are defined in the CSdata module.

SOURCE: - Used to specify the source of the information used to define this coordinate system, 63
characters maximum. The term Authority is often used to describe this information.

QUAD: - Used to indicate the quadrant of the cartesian coordinates produced by the coordinate system.
Zero or 1 indicate the normal right handed cartesian system where X increases to the east, and Y
increases to the north. Quadrants are numbered counterclockwise, therefore a value of 2 specifies a
cartesian system where X increases to the west, while Y increases north. A value of 3 indicates that X
increases to the west and Y increases to the south. A value of 4 indicates that X increases to the east
and Y increases to the south. A negative value will cause the axes to be swapped after the appropriate
quadrant is applied. A value of 1 is assumed if this specification is absent.

 Chapter 3 Chapter 3 -- Executables 73

MIN_LNG: - This parameter is optional and can be used to specify the minimum longitude of the useful
range of the coordinate system. The value is given in degrees relative to Greenwich in any form
acceptable to CS_atof. Positive values indicate east longitude, while negative values indicate west
longitude. Its value should be normalized between -360 and +360 and when used must be
algebraically less than the MAX_LNG: parameter.

MAX_LNG: - This parameter is optional and can be used to specify the maximum longitude of the useful
range of the coordinate system. The value is given in degrees relative to Greenwich in any form
acceptable to CS_atof. Positive values indicate east longitude, while negative values indicate west
longitude. Its value should be normalized between -360 and +360 and when used must be
algebraically greater than the MIN_LNG: parameter.

MIN_LAT: - This parameter is optional and can be used to specify the minimum latitude of the useful
range of the coordinate system. The value is given in degrees relative to the equator in nay form
acceptable to CS_atof. Positive values indicate north latitude while negative values indicate south
latitude. Its value should be normalized between -90 and +90 and when used must be algebraically less
than the MAX_LAT: parameter.

MAX_LAT: - This parameter is optional and can be used to specify the maximum latitude of the useful
range of the coordinate system. The value is given in degrees relative to the equator in nay form
acceptable to CS_atof. Positive values indicate north latitude while negative values indicate south
latitude. Its value should be normalized between -90 and +90 and when used must be algebraically
greater than the MIN_LAT: parameter.

MIN_XX: - This parameter is optional and can be used to specify the minimum X coordinate value of the
useful range of the coordinate system. The value is given in system units and may be provided in any
form acceptable to CS_atof. Its value must be algebraically less than the MAX_XX: parameter.

MAX_XX: - This parameter is optional and can be used to specify the maximum X coordinate value of
the useful range of the coordinate system. The value is given in system units and may be provided in
any form acceptable to CS_atof. Its value must be algebraically greater than the MIN_XX: parameter.

MIN_YY: - This parameter is optional and can be used to specify the minimum Y coordinate value of the
useful range of the coordinate system. The value is given in system units and may be provided in any
form acceptable to CS_atof. Its value must be algebraically less than the MAX_YY: parameter.

MAX_YY: - This parameter is optional and can be used to specify the maximum Y coordinate value of
the useful range of the coordinate system. The value is given in system units and may be provided in
any form acceptable to CS_atof. Its value must be algebraically greater than the MIN_YY: parameter.

Other key words have been coded into the CS_COMP module but are reserved for future use by
OSGeo contributors. They should not be used until their exact usage is defined in a future release.

Datums.asc

Records in the DATUMS.ASC source file consist of a line of text. Blank lines are ignored. All
characters following an un-escaped pound sign character ('#') are ignored. The pound sign character
can be escaped by the backslash ('\\') or pound sign ('#') characters. Note that this is required to get a
pound sign character into a datum description as these descriptions are not quoted. Leading and

74 CS-MAP User's Guide User's Guide

trailing whitespace on all records is also ignored. Records to be processed must start with one of the
twelve keywords described below. The colon separator character is considered to be part of the
keyword. The value of the keyword must follow the keyword on the same line of text, white space may
be used to separate the keyword from its value.

Each occurrence of the DT_NAME: keyword indicates the beginning of a new datum definition and the
end of any previous datum definition. Otherwise, the order of the specifications is not important.
However, to maintain your source in a comprehensible format, it is strongly recommended that each
coordinate system definition begin with the DT_NAME: keyword and be terminated by one or more
blank lines. No blank lines should appear within the definition itself. Further, while CS_COMP will sort
the resulting binary Datum Dictionary file, maintaining the datums source file in sorted order makes it
(relatively) easy to locate a definition should review or editing be required.

Also note, that CS-MAP uses the Datum Key name as the base portion of a file name to access the
Multiple Regression Transformation file. Therefore, a datum key name of more than 8 characters on a
DOS based system may not work as expected.

The twelve keywords and their required values are:

DT_NAME: - Used to specify the key name of the datum which is to be defined, 23 characters max.
Refer to CS_nampp for conventions concerning key names. Since datum key names are used to link to
the Multiple Regression Transformation files, datum key names longer than 8 characters may present
problems on systems using the DOS FAT-16 file system (i.e. file name limited to 8 characters).

DESC_NM: - Used to specify the 63 character descriptive name of the datum being defined.

ELLIPSOID: - Used to specify the key name of the ellipsoid definition upon which this datum is based.
This name must be the key name of an entry in the Ellipsoid Dictionary.

USE: — This parameter is required and is used to specify the datum conversion technique to convert
coordinates based on the datum being defined to WGS84 coordinates. There are, currently, ten valid
values. They are:

1 MOLODENSKY - Use the Molodensky transformation to convert to WGS84.

2 GEOCENTRIC - Use the geocentric translation method to convert to WGS84.

3 BURSA - Use the Bursa/Wolfe Seven Parameter Transformation to convert to WGS84.

4 7PARAMETER - Use the Seven Parameter Transformation to convert to WGS84, default to
Molodensky if the necessary parameters are not present.

5 MULREG - Use the Multiple Regression Transformation formulas. If such a definition is not
available, default to the Bursa/Wolfe Seven Parameter Transformation.

6 NAD27 - Use the NADCON or Canadian National Transformation emulation as appropriate to
convert to NAD83, and consider the result to be WGS84 coordinates.

7 NAD83 - Consider the coordinates to be WGS84 coordinates already, no shift is to be performed.

8 WGS84 - The coordinates are WGS84 coordinates already, no datum shift is required.

9 WGS72 - Use an internal formula to convert to WGS84.

10 HPGN - Use the NADCON algorithm, but use the HPGN data files, to shift the coordinates to
NAD83, then consider the result to be WGS84 coordinates without any further datum shift.

 Chapter 3 Chapter 3 -- Executables 75

DELTA_X: - The X component of the vector from the geocenter of this datum to the geocenter of the
WGS-84 datum in meters.

DELTA_Y: - The Y component of the vector from the geocenter of this datum to the geocenter of the
WGS-84 datum in meters.

DELTA_Z: - The Z component of the vector from the geocenter of this datum to the geocenter of the
WGS-84 datum in meters.

BWSCALE: - The scale of the Bursa/Wolfe or Seven Parameter Transformation, given as parts per
million as is ordinarily the case for this transformation. This value can be positive or negative. The
actual resulting scale factor used in the transformation is 1.0 + (BWSCALE * 1.0E-06).

ROT_X: - The rotation about the X axis, given in seconds of arc. Positive values indicate clockwise
rotation of the right handed Helmert coordinate system.

ROT_Y: - The rotation about the Y axis given in seconds of arc. Positive values indicate clockwise
rotation of the right handed Helmert coordinate system.

ROT_Z: - The rotation about the Z axis given in seconds of arc. Positive values indicate clockwise
rotation of the right handed Helmert coordinate system.

SOURCE: - The source of information from which this definition was developed.

Support of other keywords has been coded into the CS_COMP module; but use of these is reserved by
OSGeo contributors for future use.

Elipsoid.asc

Records in the ELIPSOID.ASC source file consist of a line of text. Blank lines of text are ignored. All
characters following an un-escaped pound sign character ('#') are ignored. The pound sign character
can be escaped by the backslash ('\\') or pound sign ('#') characters. Note that this is required to get a
pound sign character into an ellipsoid description as these descriptions are not quoted. Leading and
trailing white space on all records is also ignored. Records to be processed must start with one of the
five keywords described below. The colon separator character is considered to be part of the keyword.
The value of the keyword must follow the keyword on the same line of text, white space may be used
to separate the keyword from its value.

Each occurrence of the EL_NAME: keyword indicates the beginning of a new ellipsoid definition and
the end of any previous ellipsoid definition. Otherwise, the order of the specifications is not important.
However, to maintain your source in a comprehensible format, it is strongly recommended that each
ellipsoid definition begin with the EL_NAME: keyword and be terminated by one or more blank lines.
No blank lines should appear within the definition itself. Further, while CS_COMP will sort the resulting
binary Ellipsoid Dictionary file, maintaining the ellipsoid definition source file in sorted order makes it
(relatively) easy to locate a definition should review or editing be required.

The five keywords and their required values are:

76 CS-MAP User's Guide User's Guide

 EL_NAME: - Used to specify the key name of the ellipsoid which is to be defined, 23 characters max.

DESC_NM: - Used to specify the 63 character descriptive name of the ellipsoid being defined.

E_RAD: - Used to specify the equatorial radius of the ellipsoid being defined. This radius must be
specified in meters.

P_RAD: - Used to specify the polar radius of the ellipsoid being defined. This radius must be specified
in meters. Use the same value given for E_RAD: to define a spherical ellipsoid.

SOURCE: - The source of the information used to make this definition.

GROUP: - This keyword is used to mark ellipsoid definitions as being for testing only. Additional
groups may be established in the future.

 CS_COMP will calculate the eccentricity and flattening from the provided radii.

MReg.asc

Records in a MREG.ASC source file consist of a line of text. Blank lines are ignored. All characters
following an un-escaped pound sign character ('#') are ignored. The pound sign character can be
escaped by the backslash ('\\') or pound sign ('#') characters. Note that this is required to get a pound
sign character into a datum description as these descriptions are not quoted. Leading and trailing
white space on all records is also ignored. Records to be processed must start with one of the 12
keywords described below. The colon separator character is considered to be part of the keyword.
The value of the keyword must follow the keyword on the same line of text, white space may be used
to separate the keyword from its value. In certain cases, the actual keyword contains numeric
qualifiers which indicate the specific power series term the keyword applies to.

Each occurrence of the DATUM_NAME: keyword indicates the beginning of a new multiple regression
definition and the end of any previous multiple regression definition. The order of the specifications is
not important. However, to maintain your source in a comprehensible format, it is strongly
recommended that each multiple regression definition begin with the DATUM_NAME: keyword and be
terminated by one or more blank lines. No blank lines should appear within the definition itself.
Maintaining the multiple regression source file in sorted order makes it (relatively) easy to locate a
definition should review or editing be required.

Please note that a test case is required for each datum. A binary multiple regression coefficient data
file will not be written unless the provided coefficients satisfy the provided test case. In the terminology
used in this module, LAMBDA refers to longitude, and PHI refers to latitude. In preparation for future
enhancements to CS-MAP, the HEIGHT coefficients are also required. If such are not currently
available, simply use values which will produce a zero change in height to get around the required
coefficient check.

Values for the various keywords are given in a manner which is somewhat inconsistent with CS-MAP.
However, the manner in which these values are specified is consistent with the conventions used in the
source for most of this type of information: DMA TR-8350.2B.

The 12 keywords and their required values are:

 Chapter 3 Chapter 3 -- Executables 77

DATUM_NAME: - Used to specify the 23 character name of the datum for which the following
coefficients represent the multiple regression coefficients. This is the name, with the .MRT extension
appended, which is given to the coefficient data file. The association of a datum in the Datum
Dictionary and the multiple regression data file is established by this name.

TEST_LAMBDA: - This keyword must be followed by the longitude of the test point. This longitude
must be given in degrees, minutes, and seconds form, where west longitudes are given as values greater
than 180. This entry is processed by a "%d %d %lf" sscanf format specification.

TEST_PHI: - This keyword must be followed by the latitude of the test point. This latitude must be
given in degrees, minutes, and seconds form. Use a negative value to indicate south latitude. This
entry is processed by a "%d %d %lf" sscanf format specification.

DELTA_LAMBDA: - This keyword must be followed by a single real value which represents the amount
of longitude shift, in seconds of arc, which is expected at the provided test point.

DELTA_PHI: - This keyword must be followed by a single real value which represents the amount of
latitude shift, in seconds of arc, which is expected at the provided test point.

DELTA_HEIGHT: - This keyword must be followed by a single real value which represents the amount
of elevation shift, in meters, which is expected at the provided test point.

LAMBDA_OFF: - This keyword must be followed by the longitude offset used to normalize the
coefficient formula. This value must be given in decimal degrees, use negative values for west
longitude.

PHI_OFF: - This keyword must be followed by the latitude offset used to normalize the coefficient
formula. This value must be given in decimal degrees, use negative values for west longitude.

KK - This keyword must be followed by the scale factor which is used to normalize the regression
formula. This value is unitless.

LAMBDA - This keyword is used to identify a longitude formula coefficient. The keyword itself must
be followed by a Un and a Vn sequence which indicates which coefficient follows. For example,

 LAMBDA U1 V2: 1.23456

indicates that 1.23456 is the coefficient for the longitude times latitude squared term in the regression
formula. CS-MAP does not support terms with powers higher than 9.

PHI - This keyword is used to identify a latitude formula coefficient. The keyword itself must be
followed by a Un and a z sequence which indicates which coefficient follows. For example,

 PHI U2 V1: 1.23456

indicates that 1.23456 is the coefficient for the longitude squared times latitude term in the regression
formula. CS-MAP does not support terms with powers higher than 9.

HEIGHT - This keyword is used to identify an elevation formula coefficient. The keyword itself must
be followed by a Un and a z sequence which indicates which coefficient follows. For example,

78 CS-MAP User's Guide User's Guide

 HEIGHT U0 V0: 1.23456

indicates that 1.23456 is the constant term in the regression formula. CS-MAP does not support terms
with powers higher than 9.

TEST -- TEST program
TEST [/t12345...] [/dmap_dir] [/pnn] [/s] [/v] [/b] [test_data_file_name]

TEST will exercise most (but not all) of the functions included in the Coordinate System Mapping
Package library. It can be used to verify the correct operation of the library in different environments,
especially useful after compiling the library with a new or different C compiler or on a different platform.

Since TEST relies on the test coordinate systems, datums, and ellipsoids, CS_COMP should be run with
the /t option prior to using the TEST program.

The program requires no arguments and normally expects the Ellipsoid Dictionary, the Datum
Dictionary, the Coordinate System Dictionary, all Multiple Regression Transformation files, and
Geodetic Data Catalogs to reside in their default locations and the file TEST.DAT to reside in the
current working directory when executed. As a convenience, however, if a file named COORDSYS
exists in the same directory from which TEST was executed, TEST will look to that directory for all
supporting data files (except the TEST.DAT file). Alternatively, you may use the /d option to specify
the directory you want TEST to look to for all supporting data files.

TEST will write all diagnostic messages to the console screen. On Windows 95/98/NT systems, you
will need to use the MS-DOS option character (i.e. the forward slash) when specifying options.

The provided test file, TEST.DAT, includes tests for the NAD27 to NAD83 datum conversion software.
Therefore, the NADCON CONUS database file system must exist in the default data directory (see
CSdata(5CS)) if these tests are to be successful. TEST.DAT also includes tests for the Canadian
National Transformation. However, since OSGeo cannot distribute the data files associated with the
Canadian National Transformation, these tests have been commented out. Canadian users may wish
to uncomment these tests before using TEST.

The command line options can be used to modify the operation of the test procedure. There are,
currently, 16 separate tests performed by TEST, and each is designated with a number or a letter.
Normally, TEST performs each of the first fifteen tests twice; first in forward numeric order, and then in
reverse numeric order. Use the /t option to specify the specific test(s) you would like performed, and
the order in which they are to be performed; one test per character (120 maximum).

Individual Tests
The nature of the 16 tests are:

 Chapter 3 Chapter 3 -- Executables 79

Test 1 - This test manipulates the Ellipsoid Dictionary using CS_eldef, CS_elupd, and CS_eldel.

Test 2 - This test manipulates the Datums Dictionary using CS_dtdef, CS_dtupd, and CS_dtdel.

Test 3 - This test manipulates the Coordinate System Dictionary using CS_csdef, CS_csupd, and
CS_csdel.

Test 4 - This test reads the file named TEST.DAT in the current directory and performs all of the
conversions indicated, comparing the calculated results with the expected results recorded in the file.
Of course, all discrepancies are reported to the user. You may specify an alternate file name (and
directory) on the command line as the only positional argument. Each supported projection (except the
Equidistant Cylindrical) has at least one test from a source other than CS-MAP in TEST.DAT.
TEST.DAT also includes tests of datum conversions.

Test 5 - Test 5 is a performance test. Normally, it records the amount of wall clock time necessary to
make 300,000 conversions from "UTM27-13" to "CO83-C" using the High Performance Interface.
Each conversion, therefore, includes an inverse Transverse Mercator, a NAD27 to NAD83 datum shift,
and a forward Lambert Conformal Conic conversion. The test cycles through a list of 10 different
coordinate pairs to add some reality to the test without distorting the numeric results with I/O time
and/or system overhead. The elapsed time and the effective conversion rate are reported to the user.
The /p option can be used to change the number of conversions in the test. For example, /p45 would
instruct TEST to perform 450,000 conversions whenever it performs test number 5.

Test 6 - This test exercises the sorting and binary search functions of CS-MAP well beyond what
would be experienced in normal use. This is accomplished by sorting the Coordinate System
Dictionary into reverse order, binary searching the result, and resorting back into normal order.
Finally, the order of the result is verified to be correct.

Test 7 - This test exercises the CS_csgrp function and its supporting data.

Test 8 - For each coordinate system in the Coordinate System Dictionary, this test will cause a
coordinate to be converted in both the forward and inverse direction, as well as calculate the grid scale
factor and the convergence angle. This test does not verify the accuracy of the results, but simply
assures that every calculation function is exercised at least once. This test is somewhat superfluous
now that Test C is available.

Test 9 - This test exercises the functions which are used to calculate the power series solutions to the
elliptical integrals used quite frequently in CS-MAP. It verifies the results against an outside source,
and then compares forward and inverse calculations with each other. Please note that the external
source for the correct values is limited in precision. Therefore the RMS discrepancy values may be
alarmingly high. This is not the case, however, as indicated by the RMS discrepancies between forward
and reverse calculations.

Test A - This test is identical to test 4 in every way except it uses the High Level Interface function
CS_cnvrt function for all conversions, thus testing the caching system for coordinate systems and
datum conversions.

80 CS-MAP User's Guide User's Guide

Test B - Test B tests the grid scale and convergence angle functions of all non-azimuthal projections. It
uses an empirical technique to determine the grid scale and convergence angle of several random
points within the useful range of each coordinate system. Azimuthal projections are skipped as the grid
scale functions in these cases usually return scale factors along and normal to radials from the origin.
An empirical means of calculating these scale factors eludes us at the current time.

Test C - This test tries very hard to produce a floating point exception. Very regular and randomly
generated coordinate values, both geographic and cartesian, are generated and passed to all functions
for each coordinate system in the coordinate system dictionary. The coordinates are, in most cases,
completely outlandish numbers. Reporting floating point exceptions is very difficult, however, varying
from compiler to compiler, system to system. However, CS-MAP has passed this test many times, on
four different compilers.

Test D - This test tests the forward and inverse functions of each projection against each other. That is,
random geographic coordinates within the useful range of each coordinate system are converted to
cartesian form using the forward function, and then back to geographic using the inverse function. The
results are then compared.

Test E - This test performs all the functions of Test D; but in this case the useful range of each of the
projections is reduced by about one half, and thus enabling the error tolerance to be substantially
reduced.

Test F - Test F tests the CS_atof and CS_ftoa functions in two phases. First, the standard system
function sprintf is used to check the operation of the CS_atof function. In the second phase, CS_atof is
used to test the CS_ftoa function. Neither phase, currently, tests the operation of the degree, minute.
and/or second processing.

Test G - Test G is the coordinate creep test. Creep is defined as the number of millimeters a coordinate
moves after repeated conversions from cartesian to geographic and back. Test G starts with a specific
cartesian coordinate well within the useful range of a projection (but certainly not the natural origin)
and converts the coordinate to geographic and back to cartesian 1,000 times. The distance between the
original coordinate and the final result is calculated in millimeters to arrive at the creep value. A creep
value greater than 10 is considered a failure. As of release 8.01, only the four most used projections
are tested.

Test S - This is not really a test, per se, but a request that the test program switch its mode with regard
to byte ordering. Thus, on an little endian processor such as Intel, the initial S in a test sequence will
cause all binary data files to be swapped to big endian byte ordering and the CS_bswap module
adjusted to cause the necessary byte swaps for the program to function. Thus, all byte swapping
mechanisms can be tested on a single processor. Since the byte swap algorithm is its own inverse, a
second occurrence of Test S reverses the effect of a previous execution. Note, including an odd
number of S specifications in the test specification will leave all dictionary files in a swapped
condition.

Test V - This is not a test. Occurrence of a V in the test string simply toggles the verbose flag. Thus,
the verbose flag can be turned off , or on, for specific tests individually.

Test Z - This is not a test. When TEST encounters this character in the test sequence, it simply starts the
test sequence again from the beginning. Thus, an infinite loop can be established. Typically, a
CONTROL-C is used to terminate the program at some point.

 Chapter 3 Chapter 3 -- Executables 81

Test Data
The TEST.DAT file specifies the actual coordinates which are to be converted and the expected results.
TEST ignores empty lines in the file and lines which begin with the pound sign (#) character. Other
records are expected to contain 8 fields separated by commas. The eight fields are expected to
contain:

1 Key name of the coordinate system of the coordinates specified in fields 2 and 3 of this line.
That is, the name of the source coordinate system of the test conversion to be performed.

2 & 3 The X and then Y coordinates to be converted. These are expected in decimal form and are
converted to binary using the CS_atof function of the CS-MAP library. Thus a variety of forms can be
used.

4 Key name of the coordinate system to which the coordinates given in fields 2 & 3 are to be
converted.

5 & 6 The expected X and Y coordinates of the conversion. Again, any form acceptable to CS_atof
can be used.

7 & 8 The X and Y tolerance within which the converted values must agree with the expected values.
If the converted values do not match the expected values within the specified tolerance, a diagnostic
message is printed.

Most conversion examples provided in TEST.DAT were obtained from reputable sources other than
CS_MAP itself. Comments in the TEST.DAT file itself will indicate those specific tests which have not
been verified with sources outside other than CS-MAP. The tolerance values given in the provided
TEST.DAT file should not be considered as an indication of the accuracy or precision of the CS-MAP
library. Rather, these values usually indicate the accuracy and precision of the source data from which
the examples were obtained. Occasionally, the tolerance values do indicate the accuracy of the CS-
MAP library; comments in the TEST.DAT file indicate when this is the case.

Other Command Line Options
Finally, the /v option can be used to cause TEST to operate in verbose mode. In this mode, TEST will
report its progress through each test. In order to enable use of TEST as a Windows NT console
application, TEST normally requires an acknowledgment when all tests are complete. The /b option
can be used to suppress this feature. The /s option can be used to instruct TEST to start out in big
endian mode; useful when testing the automatic byte swapping feature. Use the /d option to provide
TEST with the full path to the directory containing the binary dictionary files it is to use. In the absence
of this option, TEST uses the directory encoded into the CSdata module; except that if a valid
COORDSYS file exists in the directory from which TEST was executed, that directory is used (MS-DOS
only). Use the /p option to indicate the length of the performance test (i.e. Test 5). The value provided
is multiplied by 10,000 to obtain the number of conversions which are performed and timed in order to
produce the conversion rate.

82 CS-MAP User's Guide User's Guide

BUGS
Test C, the floating point exception test, does not exercise the datum conversion functions as yet.

mfcTEST -- MFC Dialog TEST
mfcTEST

mfcTest is designed to test the MFC based GUI interactive dialogs provided with CS-MAP. The
program is a simple dialog box MFC program which contains a menu. The single menu entry provides
a selection for each of the primary dialogs provided. Note also, that the Test dialog can be very
convenient for testing projection and datum shift calculations in an interactive environment (assuming
you're using Windows, of course).

This test program requires no arguments. All testing must be done in an interactive manner. Note,
that each of the dialogs has a help button, and expects to find the help file in the same directory as the
primary mapping data files. The help buttons are grayed out if the help file does not exist in this
location.

Dictionary Differences Program
The source to Dictionary Difference program, DictDiff, is conveyed in a file named CS_DictDiff.c;
the distribution places this file in the Dictnary directory. The main module calls functions named
CS_csDiff, CS_dtDiff, and CS_elDiff which are defined in a module named CSdictDiff.c which the
distribution deposits in the Source directory. These three functions are a part of the normal library
build.

Messages which report differences refer to "was" and "is". That is, messages report the previous value
and the new value for all detected changes.

DictDiff is a command line program and can used in virtually any environment that supports a C
compiler. It compares the binary forms of dictionary files and reports all differences detected. It
requires exactly two positional arguments. The first command line argument is the directory
containing the "was" or previous dictionary files. The second argument is the directory of the "is" or
current dictionary files. All messages are reported to stdout, i.e. the terminal.

In producing the differences, some tolerance numbers had to be chosen to delineate what a change
consists of. You should examine the source code in file named CSdiffDict.c to verify that you are
comfortable with the tolerance values that were chosen. The tolerance values are manipulated
throughout the program, but the variable name okValue is consistent.

 83

This section includes a technical description of 500+ functions in the CS-MAP library. The
descriptions are organized by the interface of which they are a part. An index is provided elsewhere in
this document.

High Level Interface Functions
Functions described in this section are designed to be called from high level languages such as Visual
Basic. Therefore, descriptions of most functions in this section also include a function declaration
appropriate for use in Visual Basic and Delphi in addition to the standard C prototype.

CS_altdr ALTernate DiRectory
Function CS_altdr (ByVal new_dir As String) As Integer
function CS_altdr (alt_dr :PChar):Integer;
int CS_altdr (Const char alt_dir);

Normally, all functions in the Coordinate System Mapping Package library expect to find data files in
the C:\MAPPING directory as defined in CSdata. CS_altdr can be used to specify an alternate directory
at run time; that indicated by the alt_dir argument. CS_altdr returns zero if a coordinate system
dictionary was indeed found in the directory provided; otherwise, it returns -1.

Calling CS_altdr with the NULL pointer as its argument instructs CS_altdr to use the value of the
environmental variable CS_MAP_DIR as the location of the CS-MAP data files. Again a zero is
returned if this was successful, -1 if not. (The string defining the name of the environmental variable
name is defined in the cs_map.h header file.)

Calling CS_altdr with the alt_dir argument pointing to the null string instructs CS_altdr to use the
current directory on the current drive as the location of CS-MAP data files. Again a zero is returned if
this selection produces a directory which contains a Coordinate System Dictionary File. Otherwise -1
is returned.

Notice, that using the return status as a guide, several attempts at locating the CS-MAP data directory
can be made in any application.

The name of the directory which is searched for all data files is maintained in a global character array
cs_Dir, which is defined in the CSdata module. The cs_Dir array must, initially, contain a null
terminated string, the last non-null character of which must be the directory separator character. The
global character pointer cs_DirP (also defined in CSdata) is expected to point to the terminating null
character of the string in cs_Dir. Under this scheme, Coordinate System Mapping Package data files
are accessed as follows:

extern char cs_Dir [];
extern char *cs_DirP;

Chatper 4 -- Library Functions

84 CS-MAP User's Guide User's Guide

.

.
strcpy (cs_DirP,"file_name");
fd = open (cs_Dir,O_MODE);
.
.

Achieving this particular setup is relatively easy using CS_stcpy:

cs_DirP = CS_stcpy (cs_Dir,"C:\\MAPPING\\");

BUGS

The purpose of this function is to insulate the library from system implementation issues. Without a
function of this nature, all applications using CS-MAP would have to implement a specific directory on
a specific drive. Not very pleasant. There does not appear to be a nice clean solution to this problem.

CS_atof Ascii TO Floating point
Function CS_atof (ByRef result As Double,ByVal value As String) As Long
function CS_atof (var result :double;value: PChar) :LongInt;
long CS_atof (double *result,Const char *value);

CS_atof will convert the ASCII, null terminated string provided by the value argument to double
precision floating point form, returning this result in the location pointed to by the result argument.
Obviously, the string provided by value is expected to be an ASCII representation of a numeric value.

CS_atof has several features built into it for handling numeric formats that are commonly used in
mapping, specifically, large numbers, and values in degrees, minutes, and seconds format. Use of
thousands separators is supported and, when present, their improper use is reported. Other than
leading white space, spaces in the input value are interpreted to indicate degrees, minutes, and
seconds format. Values can be entered using minutes only (a single space) or minutes and seconds
(two spaces encountered). Use of either directional characters (i.e. N, S, E, W) or plus and hyphen
characters for sign is also supported. CS_atof returns a long that carries a complete specification of
the format used to enter the value, suitable for use by CS_ftoa for formatting the value for output.
CS_atof will also correctly process scale factors entered as ratios, and this feature can be mixed with
the thousands separator feature. Thus, scale reduction for state plane coordinate systems can be
entered as "1:17,000."

The return value is a bitmap of information used to contain precision, formatting specifications, and
error status values. The following descriptions refer to constants defined in the various header files.
Construct a format specification by inclusively or'ing the desired options:

 Chapter 3 Chatper 4 -- Library Functions 85

cs_ATOF_PRCMSK The least significant five bits are used to indicate the number
of digits found after the decimal point. The value is actually
the number of digits plus one. (Zero is reserved to indicate
automatic precision determination on output.) This constant is
a mask that will mask out the precision value.

cs_ATOF_VALLNG The value processed is acceptable for a longitude value.

cs_ATOF_VALLAT The value processed is acceptable for a latitude value.

cs_ATOF_MINSEC The value processed was in degrees, minutes, and seconds
form.

cs_ATOF_MINUTE The value processed was in degrees and minutes form.

cs_ATOF_EXPNT The value processed was in scientific notation form.

cs_ATOF_COMMA The value processed included thousands separators to the left
of the decimal point.

 cs_ATOF_DIRCHR The value processed included directional characters to indicate
sign.

cs_ATOF_XEAST The directional characters used to indicate the sign came from
the E and W set, as opposed to the N and S set.

cs_ATOF_MINSEC0 The value processed included leading zeros in the minutes or
seconds fields.

 cs_ATOF_DEG0 The value processed included leading zeros in the degrees
field.

cs_ATOF_0BLNK The value processed was the null string.

cs_ATOF_FORCE3 The value processed used minutes or minutes and seconds
format, and 3 digits of degrees were encountered; implying a
longitude value.

cs_ATOF_RATIO The processed value was provided in the form of a ratio, e.g.
1:2500, to indicate a value such as, for example, 0.9996.

Bits defined by the following constants are set to indicate the associated error condition. The
cs_ATOF_FMTERR bit is set if any error condition is detected and forces the return value to negative.
In all such cases, CS_atof will report the error condition and a subsequent call to CS_errmsg will return
an appropriate error message.

86 CS-MAP User's Guide User's Guide

cs_ATOF_SECS60 What was interpreted to be the seconds field of the processed
value produced a value greater than or equal to 60.

cs_ATOF_MINS60 What was interpreted to be the minutes field of the processed
value produced a value greater than or equal to 60.

cs_ATOF_MLTPNT More than one decimal point was encountered in the input
value.

cs_ATOF_MLTSGN More than one sign indication was encountered in the input
value.

cs_ATOF_ERRCMA Improper positioning of the thousands separator character was
detected in the input value.

cs_ATOF_RATERR A string that contained the ratio character, usually ':', did not
conform to the normal convention for a ratio. Usually, the
character immediately left of the colon was not a '1'.

cs_ATOF_FMTERR A general format error, not covered by the above, was
encountered in the input value.

cs_ATOF_ERRFLG This bit is set, producing a negative return value, if any of the
above error conditions are encountered during processing.
Whenever this bit is set, the error condition will have been
reported to CS_erpt, and a subsequent call to CS_errmsg will
produce an appropriate error message.

CS_azddll LatLong Azimuth Distance calculator
Function CS_azddll (ByVal e_rad As Double, ByVal e_sq As Double,
 ByRef ll_from As Double,
 ByVal azimuth As Double,
 ByVal distance As Double,
 ByRef ll_to As Double) As Integer
function CS_azddll (e_rad,e_sq :Double; var ll_from :Double;
 azimuth, distance :Double;
 var ll_to :Double) :Integer;
int CS_azddll (double e_rad,double e_sq,double ll_from [3],
 double azimuth,
 double dist,
 double ll_to [3]);

 Chapter 3 Chatper 4 -- Library Functions 87

CS_azddll calculates the latitude and longitude of a target point given an initial point, an azimuth from
the initial point, and a distance. The initial point and the result are in degrees, where the longitude
occupies the first element in the array and latitude the second element. The reference of the longitude
is immaterial, as both (the initial point and the calculated point) will share the same reference whatever
it is. Currently, the third element in each array is unused (i.e. un-referenced and unmodified). This
may change in future releases. e_rad is the equatorial radius, and e_sq the eccentricity squared, of the
ellipsoid to be used. The units of the radius are immaterial other than they must be the same as that
used to specify the distance. Azimuth is the azimuth at the initial point given in degrees east of north.
distance is the distance traveled in the same units as used to specify the equatorial radius of the
ellipsoid. The result is returned in the array pointed to by the ll_to argument.

CS_azddll returns a zero to indicate success, -1 for failure. Failure of the internal Newton Rhapson
iterative calculation is the only possible cause of failure. This can be caused by rather strange input
values, specifically values that would produce results that are antipodal to the initial point.

The algorithm used is known as: "Solution of the geodetic inverse problem after T. Vincenty modified
Rainsford's Method with Helmert's elliptical terms," whatever all that means. This algorithm is
appropriate for any combination of points that are not antipodal.

CS_azsphr AZimuth on a SPHeRe
Function CS_azsphr (ByRef ll_1 As Double, ByRef ll_2 As Double) As Double
function CS_azsphr (var ll_1, ll_2 :Double) : Double;
double CS_azshpr (Const double ll0 [2],Const double ll1 [2]);

CS_azsphrl returns the azimuth, in degrees east of north, from the geographic location given by ll0 to
the geographic location given by ll1. The calculation assumes a spherical earth, so a radius and
eccentricity is not required.

CS_cnvrg CoNVeRGence function
Function CS_cnvrg (ByVal cs_name As String, ByRef ll_ary As Double) As
Double
function CS_cnvrg (cs_name :PChar;var ll_ary :double) :Double;
double CS_cnvrg (Const char *cs_name,Const double ll_ary [2]);

CS_cnvrg returns the convergence angle of the coordinate system whose key name is provided by the
cs_name argument, at the location provided by the ll_ary argument. The position provided by the
ll_ary argument must be in longitude and latitude form, in degrees, where the first element of the array
is the longitude and the second element of the array is the latitude. Use negative values for west
longitude and south latitude. The returned value is in degrees, east of north.

CS_cnvrg uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

ERRORS

CS_cnvrg will return a value of -360.0 (clearly a bogus value for a convergence angle) if an error is
detected during the calculation. The most common cause of errors is an invalid coordinate system
name.

88 CS-MAP User's Guide User's Guide

CS_cnvrt generalized CoNVeRT function
Function CS_cnvrt (ByVal src_cs As String,ByVal trg_cs As String,
 ByRef coord As Double) As Integer
function CS_cnvrt (src_cs,trg_cs :PChar;var coord :double) :Integer;
int CS_cnvrt (Const char *src_cs,Const char *trg_cs,double coord [3]);

CS_cnvrt is in essence a High Level Interface to the CS_MAP library. Using this single function, one
can convert coordinates from any defined system to any other. Simply provide the key name of the
source system via the src_cs argument, and the key name of the destination coordinate system via
the trg_cs argument, and CS_cnvrt will cause the coordinate in the array given by the coord argument
is converted from the source system to the destination system. CS_cnvrt returns zero if the conversion
completed successfully without incident. Otherwise, a CS-MAP error code value is returned (see
cs_map.h).

CS_cnvrt relies on a cache of coordinate systems, and for each conversion linearly searches the cache
for the definitions of the two coordinate system definitions, and the datum conversion definition, it
needs to perform its function. Thus, the performance penalty incurred from using this High Level
Interface is not as great as one may think.

Currently, the third element of the coord argument is unused; but may be used in the future.

CS_cnvrt3D 3D generalized CoNVeRT function
Function CS_cnvrt3D (ByVal src_cs As String,ByVal dst_cs As String,
 ByRef coord As Double) As Integer
function CS_cnvrt3D (src_cs,dst_cs :PChar; var coord :Double) :Integer
int CS_cnvrt3D (Const char *src_cs,Const char *dst_cs,double coord [3]);

CS_cnvrt3D is in essence a High Level Interface with regard to three dimensional conversions. Using
this single function, one can convert three dimensional coordinates from any defined system to any
other. Simply provide the key name of the source system via the src_cs argument, and the key name
of the destination coordinate system via the dst_cs argument, and CS_cnvrt3D will cause the
coordinate in the array given by the coord argument to be converted from the source system to the
destination system. CS_cnvrt3D returns a zero if the conversion completed successfully without
incident. Otherwise, a CS_MAP error code value is returned.

CS_cnvrt3D relies on a cache of coordinate systems, and for each conversion linearly searches the
cache for the definitions of the two coordinate system definitions, and the datum conversion definition,
it needs to perform its function. Thus, the performance penalty incurred from using this High Level
Interface is not as great as one may think.

Use CS_cnvrt3D only when converting data maintained in a three dimensional database. Note that if
the application is able to supply the returned Z value during an inverse calculation, the inverted result
may not match the original values.

CS_csEnum Coordinate System ENUMerator
Function CS_csEnum (ByVal index As Integer,ByVal key_name As String,
 ByVal size As Integer) As Integer
function CS_csEnum (index :Integer;key_name :Pchar;size :Integer) :Integer;
int CS_csEnum (int index,char *key_name,int size);

 Chapter 3 Chatper 4 -- Library Functions 89

CS_csEnum is used to enumerate all coordinate systems in the Coordinate System Dictionary.
CS_csEnum returns in the memory buffer pointer to by the key_name argument the key name of the
index'th entry in the Coordinate System Dictionary. CS_csEnum will never write more than size bytes
to the indicated location. Index is a zero based index; the index of the first entry in the Coordinate
System Dictionary is zero.

CS_csEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_csEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. See CS_altdr.

cs_IOERR A physical I/O error occurred in accessing the Coordinate
System Dictionary.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number or was of an incompatible
release level.

cs_INV_INDX The index argument was negative.

CS_csIsValid Coordinate System key name Is Valid
Function CS_csIsValid (ByVal key_name As String) As Integer
function CS_csIsValid (key_name :PChar) :Integer;
int CS_csIsValid (Const char *key_name);

CS_csIsValid is used to validate coordinate system key names. CS_csIsValid returns a positive 1 if
key_name is a valid coordinate system key name, a zero if not.

ERRORS

CS_csEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

90 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. (See CS_altdr.)

cs_IOERR A physical I/O error occurred in accessing the Coordinate
System Dictionary.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number. This can also be caused by an
incompatible release.

CS_csRangeEnum Coordinate System Useful Range Enumerator
Function CS_csRangeEnum (ByVal index As Integer,ByVal csKeyName As String,

 ByVal size As Integer) As Integer
function CS_csRangeEnum (index :Integer;csKeyName :Pchar;size :Integer)
:Integer;
int CS_csRangeEnum (int index,char *csKeyName,int size);

CS_csRangeEnum is used to enumerate all coordinate systems which were located by the last call to
the CS_csRangeEnumSetup function. Using these two functions, it is possible to obtain a list of only
those coordinate systems whose useful range include a specific point. CS_csRangeEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the list
generated by CS_csRangeEnumSetup. CS_csRangeEnum will never write more than size bytes to the
indicated location. Index is a zero based index; the index of the first entry in the Coordinate System
Dictionary is zero.

CS_csEnum returns a positive 1 to indicate success. If index is too large, a zero is returned. A
negative value is returned for a serious error, such as failure to call CS_csRangeEnumSetup prior to
calling this function.

CS_csRangeEnumSetup Coordinate System Range Enumeration Setup
Function CS_csRangeEnumSetup (ByVal longitude As DOuble,

 ByVal latitude As Double) As Integer

function CS_csRangeEnumSetup (longitude, latitutde :Double) : Integer

int CS_csRangeEnumSetup (double longitude,double latitude);

Use this function to set the base location for subsequent CS_csEnumRange useage. That is, use this
function to produce (internally) a list of all coordinate systems whose useful range includes the given
location. Essentially, this function will generate the list, and the application programmer then uses the
CS_csEnumRange function to enumerate the list.

 Chapter 3 Chatper 4 -- Library Functions 91

The location is specified in geographical terms (i.e. latitude and longitude). These values must be in
degrees, relative to Greenwich. Since datum differences are on the order of, at most, a few hundred
meters, the datum upon which these coordinates are based is immaterial for the purpose of this
function.

CS_csRangeEnumSetup will return a negative value in the event of a serious error, such as beung
unable to access the Coordinate System Dictionary. Use CS_errmsg to get a textual description of the
error which can be reported to the application user. Otherwise, CS_csRangeEnumSetup will return the
number of coordinate systems located, which can be zero.

Finally, note that the CS_recvr function will recover all allocated resources, including the list of
coordinate systems generated by the last call to this function.

CS_dtEnum DaTum ENUMerator
Function CS_dtEnum (ByVal index As Integer,ByVal key_name As String,
 ByVal size As Integer) As Integer
function CS_dtEnum (index :Integer;key_name :Pchar;size :Integer) :Integer;
int CS_dtEnum (int index,char *key_name,int size);

CS_dtEnum is used to enumerate all datums in the Datum Dictionary. CS_dtEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the Datum
Dictionary. CS_dtEnum will never write more than size bytes to the indicated location. Index is a zero
based index; the index of the first entry in the Datum Dictionary is zero.

CS_dtEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_dtEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_DTDICT The Datum Dictionary could not be found or otherwise opened.
(See CS_altdr.)

cs_IOERR A physical I/O error occurred in accessing the Datum
Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Datum Dictionary by virtue of its
name was not a Datum Dictionary; it had an invalid magic
number. This can also be caused by a dictionary file of an
incompatible release.

cs_INV_INDX The index argument was negative.

92 CS-MAP User's Guide User's Guide

CS_dtIsValid DaTum key name Is Valid
Function CS_dtIsValid (ByVal key_name As String) As Integer
function CS_dtIsValid (key_name :PChar) :Integer;
int CS_dtIsValid (Const char *key_name);

CS_dtIsValid is used to validate datum key names. CS_dtIsValid returns a positive 1 if key_name is a
valid datum key name, a zero if not.

ERRORS

CS_dtIsValid will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_DTDICT The Datum Dictionary could not be found or otherwise
opened. (See CS_altdr.)

cs_IOERR A physical I/O error occurred in accessing the Datum
Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Datum Dictionary by virtue of its
name was not a Datum Dictionary; it had an invalid magic
number. This can also be caused by a dictionary file of an
incompatible release.

CS_elEnum ELlipsoid ENUMerator
Function CS_elEnum (ByVal index As Integer,ByVal key_name As String,
 ByVal size As Integer) As Integer
function CS_elEnum (index :Integer;key_name :Pchar;size :Integer) :Integer;
int CS_elEnum (int index,char *key_name,int size);

CS_elEnum is used to enumerate all ellipsoids in the Ellipsoid Dictionary. CS_elEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the
Ellipsoid Dictionary. CS_elEnum will never write more than size bytes to the indicated location. Index
is a zero based index; the index of the first entry in the Ellipsoid Dictionary is zero.

CS_elEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_elEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

 Chapter 3 Chatper 4 -- Library Functions 93

cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise
opened. (See CS_altdr.)

cs_IOERR A physical I/O error occurred in accessing the Ellipsoid
Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name was not an Ellipsoid Dictionary; it had an invalid magic
number. Note that dictionary magic numbers can be different for
different releases.

cs_INV_INDX The index argument was negative.

CS_elIsValid ELlipsoid key name Is Valid
Function CS_elIsValid (ByVal key_name As String) As Integer
function CS_elIsValid (key_name :PChar) :Integer;
int CS_elIsValid (Const char *key_name);

CS_elIsValid is used to validate ellipsoid key names. CS_elIsValid returns a positive 1 if key_name is a
valid ellipsoid key name, a zero if not.

 ERRORS

CS_elIsValid will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise
opened. (See CS_altdr.)

 cs_IOERR A physical I/O error occurred in accessing the Ellipsoid
Dictionary.

cs_EL_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name was not a Ellipsoid Dictionary; it had an invalid magic
number. Note that magic numbers can be different for
different releases.

CS_errmsg ERRor MeSsaGe
Sub CS_errmsg (ByVal my_bufr As String,ByVal bufr_size As Integer)
procedure CS_errmsg (msg_bufr :PChar;bufr_size :Integer);
void CS_errmsg (char msg_bufr,int bufr_size);

CS_errmsg returns to the calling function a null terminated string which describes the last error

94 CS-MAP User's Guide User's Guide

condition detected by the CS_MAP library. The result is returned in the buffer pointed to by the
msg_bufr argument, which is assumed to be bufr_size bytes long. The message is returned in one
character per byte ANSI code characters.

CS_errmsg will return the null string if called before any error condition is detected.

BUGS

After returning an error message to the user, CS_errmsg should reset itself to the null string preventing
the same error message from being returned a second time. It should, but it doesn't.

CS_erpt Error RePorT
extern int cs_Error,cs_Errno;
void CS_erpt (int err_num);

CS_erpt is called by all functions in the Coordinate System Mapping Package whenever an error
condition is detected. The value of err_num indicates the specific error condition detected and must
be one of the manifest constants defined in cs_map.h.

At the current time, CS_erpt does nothing other than set the value of global variable cs_Error to the
supplied value of err_num and set the global variable of cs_Errno to the current value of the
system's global variable errno.

It is expected that users will want to write their own CS_erpt function that will properly inform the
operator of the nature of the problem encountered.

Each function in the Coordinate System Mapping Package is programmed to clean up after itself after
return from CS_erpt. That is, upon return from CS_erpt, all memory malloc'ed by the function detecting
the error is free'ed and any temporary file created by the function detecting the error is removed.

CS_fast FAST mode
Sub CS_fast (ByVal fast As Integer)
procedure CS_fast (fast :Integer);
void CS_fast (int fast);

CS_fast can be used to improve the performance of applications using the High Level Interface. When
incorporated into a DLL, the High Level Interface normally verifies the veracity of each pointer
argument provided by the application. This is convenient, of course, but also somewhat time
consuming. Calling CS_fast with a non-zero value for the fast argument will disable this checking. It is
recommended that calling CS_fast be added to your application only after it has been debugged. Fast
mode can be turned off by calling CS_fast with argument fast set to zero.

CS_ftoa Floating point TO Ascii
Function CS_ftoa (ByVal buffer As String,ByVal size As Integer,ByVal value
As Double,
 ByVal format As Long) As Long
function CS_ftoa (buffer :Pchar; size :Integer;value :Double;format
:Longint) :Longint;
long CS_ftoa (char *buffer,int size,double value,long format);

 Chapter 3 Chatper 4 -- Library Functions 95

CS_ftoa formats the double precision floating point value provided by the value argument into ASCII
form returning the result in the character array pointed to by the buffer argument. The result is always
a null terminated string, and the length of the string is never longer than size - 1 characters. The
format of the character string is controlled by the format argument. CS_ftoa returns a long that
indicates the actual format used to format the value. The returned format specification may be different
from the requested format if the buffer provided was not large enough, or if the requested format is not
appropriate for the value provided.

CS_ftoa is intended to be a generalized formatting function that accommodates the formats commonly
used in mapping. That is, large numbers and values in degrees minutes and seconds form. The
somewhat awkward format argument is designed such that the value returned by CS_atof is suitable
for use by CS_ftoa.

The original intent behind the design of the format specification was to enable users to indicate the
desired format of output by simply entering a suitable value in the form they desire. The application
would then use CS_atof to convert the value to binary form. If no errors occurred during the
conversion, the returned long could then be used to format output. Experience will determine the
success of this approach.

The format argument is a bitmap of information used to contain precision, formatting specifications,
and error status values. The following descriptions refer to constants defined in the various header
files. Construct a format specification by inclusively or'ing the desired options.

96 CS-MAP User's Guide User's Guide

cs_ATOF_PRCMSK The least significant five bits are used to indicate the number of
digits to be produced after the decimal point. The value is
actually the number of desired digits plus one. Zero indicates
that the precision is to be calculated automatically. This
constant is a mask that will mask out the precision value.

cs_ATOF_MINSEC Output is to be in degrees, minutes, and seconds form.

cs_ATOF_MINUTE Output is to be in degrees and minutes form.

cs_ATOF_EXPNT This bit is set in the returned value if CS_ftoa had to resort to
scientific notation in order to format the value in the space
provided.

cs_ATOF_OVRFLW This bit is set in the returned value if CS_ftoa could only output
the overflow indication (i.e. *.*) in the space provided.

cs_ATOF_COMMA Output is to include thousands separators to the left of the
decimal point as appropriate.

cs_ATOF_DIRCHR Output is to include directional characters to indicate the sign of
the numbers rather than plus or minus signs.

cs_ATOF_XEAST Meaningful only when the cs_ATOF_DIRCHR bit is set.
Indicates that character set used to indicate positive or negative
are E and W as opposed to N and S.

cs_ATOF_MINSEC0 Output is to include leading zeros in the minutes and seconds
fields instead of leading spaces.

cs_ATOF_DEG0 Output is to include leading zeros in the degrees field rather
than spaces.

cs_ATOF_0BLNK Output a null string if the provided value is zero.

cs_ATOF_FORCE3 Used to force at least three character output in the degree field.
Usually used when formatting a longitude.

cs_ATOF_RATIO Output the result in a ratio format, e.g. 1:2500. Can be used in
conjunction with cs_ATOF_COMMA to get something like
1:2,500.

CS_geoctrSetUp GEOCenTRic setup
Function CS_geoctrSetUp (ByVal ellipsoid As String) As Integer
function CS_geoctrSetUp (ellipsoid :PChar) :Integer;
int CS_geoctrSetUp (const char *ellipsoid);

 Chapter 3 Chatper 4 -- Library Functions 97

Use this function to specify the ellipsoid definition that is to be used in geocentric coordinate
calculations. The ellipsoid argument must be the key name of an ellipsoid defined in the ellipsoid
dictionary. Zero is returned on success, -1 on error. Errors are usually caused by invalid ellipsoid
names.

CS_geoctrGetXyz GEOCenTRic GET XYZ
Function CS_geoctrGetXyz (ByRef xyz As Double,ByRef llh As Double) As
Integer
function CS_geoctrGetXyz (var xyz, llh :Double) :Integer;
int CS_geoctrGetXyz (double xyz [3], double llh [3]);

Given the geographic coordinates of a point via the llh argument, CS_geoctrGetXyz returns the
corresponding geographic coordinate in the array indicated by the xyz argument. Use the
CS_geoctrSetUp to specify the ellipsoid that is to be used in the calculation. Note that the returned
geocentric coordinates will be in meters, and the third element of the llh argument is considered to be
the ellipsoidal height in meters. CS_geoctrGetXyz returns zero on success and –1 on failure. Failure
can be caused by failing to specify an ellipsoid by calling CS_geoctrSetUp, or providing a bogus set of
geographic coordinates.

CS_geoctrGetLlh GEOCenTRic GET LatLongHgt
Function CS_geoctrGetLlh (ByRef llh As Double,ByRef xyz As Double) As
Integer
function CS_geoctrGetLlh (var llh, xyz :Double) :Integer;
int CS_geoctrGetLlh (double llh [3], double xyz [3]);

Given the geocentric coordinates of a point via the xyz argument, CS_geoctrGetLlh returns the
corresponding geographic coordinate in the array indicated by the llh argument. Use the
CS_geoctrSetUp to specify the ellipsoid that is to be used in the calculation. Note that the geocentric
coordinates must be in meters, and the height (i.e. the third element of the llh result) is the ellipsoidal
height in meters. CS_geoctrGetLlh returns zero on success and –1 on failure. Failure can be caused
by failing to specify an ellipsoid by calling CS_geoctrSetUp, or providing a bogus set of geocentric
coordinates.

CS_getCountyFips Get County Federal Information Processing
Standard code

Function CS_getCountyFips (ByVal stateFips As Integer,ByVal countyName As
String) As Integer

function CS_getDataDirectory (stateFips :Integer; countyName :PChar)
:Integer;

int CS_getCountyFips (int stateFips,Const char* countyName);

98 CS-MAP User's Guide User's Guide

This function returns the Federal Information Processing Standard code value assigned to a county
indicated by the countyName argument. This is appropriate for the US only. You can obtain the
appropriate value for the stateFips argument by using CS_getStateFips. Note, that countyName must
be the complete offical name of the county without any punctuation. The lookup procedure is NOT
case sensitive. The function returns zero if the information provided by the two arguments fails to
produce a county code.

CS_getDataDirectory GET DATA DIRECTORY
Function CS_getDataDirectory (ByVal data_dir As String,

 ByVal dir_sz As Integer) As Integer
function CS_getDataDirectory (data_dir :PChar; dir_sz :Integer) :Integer;
int CS_getDataDirectory (char *data_dir,int dir_sz);

CS_getDataDirectory will return in the character array pointed to by the data_dir argument the full path
to the directory it is searching for supporting data file. It will always return a null terminated string, but
never write more than dir_sz characters to the array. CS_getDataDirectory will return TRUE if the
directory returned does indeed contain a Coordinate System Dictionary file (i.e. a file named
COORDSYS).

CS_getDatumOf Get Datum of a Coordinate System
Function CS_getDatumOf (ByVal csKeyName As String,ByVal datumName As
String,ByVal size As Integer) As Integer

function CS_getDatumOf (csKeyName, datumName :PChar; size :Integer)
:Integer;

int CS_getDatumOf (Const char *csKeyName,char *datumName,int size);

Use this function to obtain the key name of the datum assigned to the coordinate system whose key
name is provided by the csKeyName argument. The datum key name is returned in the string pointed
to by the datumName argument. CS_getDatumOf will never write more than size characters to the
datumName string. A zero value is returned for success, and -1 for failure. Failure is almost always
caused by providing an invalid coordinate system key name. The string at datumName will be the
empty string if the coordinate system referred to is cartographically referenced (i.e. referenced directly
to an ellipsoid).

CS_getDescriptionOf Get Description of a Coordinate System
Function CS_getDescriptionOf (ByVal csKeyName As String,

 ByVal description As String,

 ByVal size As Integer) As Integer

function CS_getDescriptonOf (csKeyName, description :PChar; size :Integer)
:Integer;

int CS_getDescriptionOf (Const char *csKeyName,char *description,int size);

Use this function to obtain the description the coordinate system whose key name is provided by the
csKeyName argument. The description is returned in the string pointed to by the description
argument. CS_getDescriptionOf will never write more than size characters to the datumName
string. A zero value is returned for success, and -1 for failure. Failure is almost always caused by

 Chapter 3 Chatper 4 -- Library Functions 99

providing an invalid coordinate system key name. Note that description field of a coordinate system
definition is limited to 63 characters, and size is typically 64 (to accommodate for the null terminating
character used in C).

CS_getEllipsoidOf Get Ellipsoid Of a Coordinate System
Function CS_getEllipsoidOf (ByVal csKeyName As String,

 ByVal ellipsoidName As String,

 ByVal size As Integer) As Integer

function CS_getEllipsoidOf (csKeyName, ellipsoidName :PChar;

 size :Integer) :Integer;

int CS_getEllipsoidOf (Const char *csKeyName,char *ellipsoidName,int size);

Use this function to obtain the ellipsoid referenced by the coordinate system whose key name is
provided by the csKeyName argument. The ellipsoid key name is returned in the string pointed to by
the ellipsoidName argument. CS_getEllipsoidOf will never write more than size characters to the
ellipsoidName string. A zero value is returned for success, and -1 for failure. Failure is almost
always caused by providing an invalid coordinate system key name. Note that key names are limited
to 23 characters, and size is typically 24 (to accommodate for the null terminating character used in C).

This function usually returns the empty string as most coordinate systems are referenced to a datum
rather than an ellipsoid. Use this function only in those cases where the CS_getDatumOf function
returns the empty string, indicating a coordinate system which is cartographically referenced.

CS_getReferenceOf Get Reference Of a Coordinate System
Function CS_getReferenceOf (ByVal csKeyName As String,

 ByVal reference As String,

 ByVal size As Integer) As Integer

function CS_getReferenceOf (csKeyName, reference :PChar;

 size :Integer) :Integer;

int CS_getReferenceOf (Const char *csKeyName,char *reference,int size);

Use this function to obtain an ASCII representation of what the coordinate system referenced by the
csKeyName argument is referenced to. This operates correctly for both geodetic and cartographic
references. The returned ASCII string will include an indication of the type of reference, and also the
key name imvolved. The reference description is returned in the string pointed to by the reference
argument. CS_getRefernceOf will never write more than size characters to the reference string. A
zero value is returned for success, and -1 for failure. Failure is almost always caused by providing an
invalid coordinate system key name. 32 is a customary value for the size argument. A geodetic
reference looks something like: Datum: WGS84.

CS_getSourceOf Get Source Of Coordinate System
Function CS_getSourceOf (ByVal csKeyName As String,ByVal source As String,

 ByVal size As Integer) As Integer

function CS_getSourceOf (csKeyName, source :PChar; size :Integer) :Integer;

int CS_getSourceOf (Const char *csKeyName,char *source,int size);

100 CS-MAP User's Guide User's Guide

Use this function to obtain the source of information field of the coordinate system definition whose key
name is provided by the csKeyName argument. The source information is returned in the string
pointed to by the source argument. CS_getSourceOf will never write more than size characters to
the source string. A zero value is returned for success, and -1 for failure. Failure is almost always
caused by providing an invalid coordinate system key name. Note that source of information field of a
coordinate system definition is limited to 63 characters, and size is typically 64 (to accommodate for
the null terminating character used in C).

CS_getUnitsOf Get Units of a Coordinate System
Function CS_getUnitsOf (ByVal csKeyName As String,ByVal units As String,

 ByVal size As Integer) As Integer

function CS_getUnitsOf (csKeyName, units :PChar; size :Integer) :Integer;

int CS_getUnitsOf (Const char *csKeyName,char *units,int size);

Use this function to obtain the key name of the units of the coordinate system definition whose key
name is provided by the csKeyName argument. The unit key name is returned in the string pointed to
by the units argument. CS_getUnitsOf will never write more than size characters to the units
string. A zero value is returned for success, and -1 for failure. Failure is almost always caused by
providing an invalid coordinate system key name. Note that unit key name field of a coordinate system
definition is limited to 23 characters, and size is typically 24 (to accommodate for the null terminating
character used in C).

CS_getElValues Get Ellipsoid Values
Function CS_getElValues (ByVal elKeyName As String,ByRef eRadius As Double,

 ByRef eSquared As Double) As Integer

function CS_getElValues (elKeyName :PChar; var eRadius, eSquared :Double)
:Integer;

int CS_getElValues (Const char *elKeyName,double *eRadius,double
*eSquared);

Use this function to obtain the equatorial radius and the eccentricity squared values for the ellipsoid
referenced by elKeyName argument. The appropriate values are returned in the double variables
pointed to by the eRadius and eSquared arguments.. A zero value is returned for success, and -1 for
failure. Failure is almost always caused by providing an invalid ellipsoid key name. Note that the value
returned in eRadius is the equatorial radius and is always in meters. The value returned in the
eSquared variable is unitless, and will be zero if the ellipsoid definition referenced by the elKeyName
argument ia actually the definition of a sphere.

CS_getCurvatureAt get CURVATURE AT specified latitude
Function CS_getCurvatureAt (ByVal csKeyName As String,

 ByVal latitude As Double) As Double

function CS_getCurvatureAt (csKeyName, source :PChar; latitude :double)
:Double;

double CS_getCurvatureAt (Const char *csKeyName,double latitude);

 Chapter 3 Chatper 4 -- Library Functions 101

This function uses the ellipsoid underlying the coordinate system definition indicated by the
csKeyName argument, and computes the Gaussian curvature at the specified latitude. The key name
argument must be that of a coordinate system definition, and the latitude argument is specified in
degrees.

The function returns a hard zero in the event of an error, which can be caused by providing an invalid
coordinate system key name. The latitude argument is not checked and used as is, since only the sine
of the latitude is necessary for the calculation (and all real values have, technically, a sine value).

CS_isgeo IS GEOgraphic
Function CS_isgeo (ByVal key_nm As String) As Integer
function CS_isgeo (key_nm :PChar) :Integer;
int *CS_isgeo (Const char *key_nm);

CS_isgeo will check the coordinate system definition with the key name indicated by the key_nm
argument and return +1 (i.e. TRUE) if the coordinate system does return geographic coordinates. A
zero is returned if the named coordinate system is not geographic.

CS_isgeo returns a negative value in the event of a hard error. The most frequent cause of a hard error
is providing an invalid coordinate system name.

CS_llazdd Lat/Long to AZimuth and Distance calculator
Function CS_llazdd (ByVal e_rad As Double, ByVal e_sq As Double,
 ByRef ll_from As Double,
 ByRef ll_to As Double,
 ByRef dist As Double) As Double
function CS_llazdd (e_rad,e_sq :Double;var ll_from,ll_to :Double;
 var dist :Double) :Double;
double CS_llazdd (double e_rad,double e_sq,Const double ll_from [2],
 Const double ll_to [2],
 double *dist);

CS_llazdd returns the ellipsoidal azimuth and distance between two points on the surface of an ellipsoid
specified in terms of latitude and longitude. e_rad specifies the equatorial radius and e_sq specifies
the square of the eccentricity of the ellipsoid. The returned azimuth is calculated from the location
specified by ll_from to that specified by ll_to, and the distance between the two points is returned at
the location pointed to by dist. The units of the returned distance are the same as those used to
specify the equatorial radius.

Latitude and longitude values are in degrees where the first element in each array is the longitude and
the second element is the latitude. West longitude and south latitude are negative.

The algorithm used is known as: "Solution of the geodetic inverse problem after T. Vincenty modified
Rainsford's Method with Helmert's elliptical terms."

ERRORS

102 CS-MAP User's Guide User's Guide

CS_llazdd makes no checks for possible errors. The algorithm used is appropriate for any combination
of points that are not antipodal. That is, the points used must not be exactly opposite each other, i.e.
on the endpoints of a straight line that passes through the center of the earth.

CS_llFromMgrs calculate Lat/Long FROM MGRS
Function CS_mgrsFromLl (ByRef latLng As Double, ByVal mgrs As String) As
Integer
function CS_mgrsFromLl (var latLng :Double; mgrs :PChar) :Integer;
double CS_mgrsFromLl (double latLng [2],const char *mgrs);

CS_llFromMgrs returns in the array indicated by the latLng argument the geographic coordinate
equivalent of the MGRS (Military Grid Reference System) string provided by the mgrs argument. This
function is aware of the poles and the rather strange stuff that happens in the northern Europe.

CS_llFromMgrs returns a zero for success, and –1 for failure. Failure can be caused by failing to call
the CS_mgrsSetUp prior to calling CS_llFromMgrs or providing an invalid MGRS string.

CS_mgrsFromLl calculate MGRS FROM Lat/Long
Function CS_mgrsFromLl (ByVal mgrs As String, ByRef latLng As Double,
 ByVal precision As Integer) As Integer
function CS_mgrsFromLl (mgrs :PChar; var latLng :Double;precision :Integer)
:Integer;
double CS_mgrsFromLl (char *mgrs,double latLng [2],int precision);

CS_mgrsFromLl returns the MGRS (Military Grid Reference System) equivalent of the geographic
position provided by the latLng argument in the character array (string) indicated by the mgrs
argument. The precision of the result is controlled by the precision argument that must have a value
between 1 and 5 (inclusive). The result array is assumed to be at least 16 bytes in length. The latLng
argument must adhere to the convention established for internal coordinates. This function is aware of
the poles and the rather strange stuff that happens in the northern Europe.

CS_mgrsFromLl returns a zero for success, and –1 for failure. Failure can be caused by failing to call
the CS_mgrsSetUp prior to calling CS_mgrsFromLl or providing an invalid geographic coordinate.

CS_mgrsSetUp MGRS SETUP
Function CS_mgrsSetUp (ByVal ellipsoid As String, ByVal bessel As Integer)
As Integer
function CS_mgrsSetUp (ellipsoid :PChar; bessel :Integer) :Integer;
double CS_mgrsSetUp (const char* ellipsoid, int bessel);

Use the CS_mgrsSetUp to specify the ellipsoid that is to be used in the MGRS (Military Grid Reference
System) calculations. Use the ellipsoid argument to provide the key name of the ellipsoid definition
that is to be used. There are two alphabetic code sequences used with MGSR. A zero value for the
bessel argument causes the normal code sequence to be used, a value of +1 indicates that the code
sequence associated with the Bessel ellipsoid is to be used.

CS_mgrsFromLl returns a zero for success, and –1 for failure. Failure is usually caused by a invalid
ellipsoid name.

 Chapter 3 Chatper 4 -- Library Functions 103

CS_recvr RECoVeR resources
Sub CS_recvr
procedure CS_recvr;
void CS_rcvr (void);

 CS_rcvr will release all system resources allocated by use of the single function user interface
functions CS_cnvrt, CS_cnvrg, and CS_scale. It essentially frees up the coordinate system cache and
the datum conversion cache established by these functions to enhance performance.

CS_scale grid SCALE factor function
Function CS_scale (ByVal cs_name As String,ByRef ll As Double) As Double
function CS_scale (cs_name :PChar;var ll :Double) :Double;
double CS_scale (Const char *cs_name,double ll [2]);

CS_scale returns the grid scale factor of the coordinate system whose key name is provided by the
cs_name argument, at the location provided by the ll argument. The position provided by the ll
argument must be in longitude and latitude form, in degrees, where the first element of the array is the
longitude and the second element of the array is the latitude. Use negative values for west longitude
and south latitude. The returned value is the grid scale factor.

CS_scale uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

In the case of a conformal projection, the K and H scale factors are the same; there is no ambiguity.
For non-conformal projections, however, the K and H functions are not the same. In these cases, this
function will return the more interesting of the two factors. For example, for the Equidistant Conic, the
K factor is always 1.0, and this function would return the H factor for this projection.

ERRORS

CS_scale will return a negative one (i.e. -1.0) if an error occurs. Providing an invalid coordinate system
name is the most common source of error.

CS_scalh grid SCALE factor(H) function
Function CS_scalh (ByVal cs_name As String,ByRef ll As Double) As Double
function CS_scalh (cs_name :PChar;var ll :Double) :Double;
double CS_scalh (Const char *cs_name,double ll [2]);

CS_scalh returns the grid scale factor along a meridian of the coordinate system whose key name is
provided by the cs_name argument, at the location provided by the ll argument. The position provided
by the ll argument must be in longitude and latitude form, in degrees, where the first element of the
array is the longitude and the second element of the array is the latitude. Use negative values for west
longitude and south latitude. The returned value is the grid scale factor.

CS_scalh uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

ERRORS

104 CS-MAP User's Guide User's Guide

CS_scalh will return a negative one (i.e. -1.0) if an error occurs. Providing an invalid coordinate system
name is the most common source of error.

CS_scalk grid SCALE factor(K) function
Function CS_scalk (ByVal cs_name As String,ByRef ll As Double) As Double
function CS_scalk (cs_name :PChar;var ll :Double) :Double;
double CS_scalk (Const char *cs_name,double ll [2]);

CS_scalk returns the grid scale factor along a parallel of the coordinate system whose key name is
provided by the cs_name argument, at the location provided by the ll argument. The position provided
by the ll argument must be in longitude and latitude form, in degrees, where the first element of the
array is the longitude and the second element of the array is the latitude. Use negative values for west
longitude and south latitude. The returned value is the grid scale factor.

CS_scalk uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

ERRORS

CS_scalk will return a negative one (i.e. -1.0) if an error occurs. Providing an invalid coordinate system
name is the most common source of error.

CS_setHelpPath SET HELP PATH
Function CS_setHelpPath (ByVal helpPath As String) As Integer
function CS_setHelpPath (helpPath :PChar) :Integer;
int CS_setHelpPath (const char *helpPath);

Use the CS_setHelpPath function to set the directory that you desire to have CS-MAP search when
seeking the MFC dialog help file. The helpPath argument must point to a null terminated string that
carries the full path to the desired directory.

CS_setHelpPath returns +1 (i.e. TRUE) if a properly named file exists in the indicated directory. Zero
(i.e. FALSE) is returned if such a file does not exist.

CS_spZoneNbrMap State Plane ZONE NumBeR MAPper
Function CS_spzone (ByValue csKeyName As String,ByVal is83 As Integer) As
Integer
function CS_spzone (csKeyName :PChar; is83 :Integer) :Integer
int CS_spzone (char *csKeyName,int is83);

CS_spZoneNbrMap examines the character array provided by the csKeyName argument and if it
determines that the array contains a valid state plane zone number specification, the contents of the
array is replaced with the appropriate corresponding coordinate system key name. If the is83
parameter is non-zero, the zone number is interpreted as a NAD83 zone number. Otherwise, the zone
number is interpreted as a NAD27 zone number.

If the original content of the character array pointed to be the csKeyName argument is not a valid
state plane zone number, the contents of the array remains unchanged.

 Chapter 3 Chatper 4 -- Library Functions 105

CS_spZoneNbrMap returns 0 if a substitution was made. A positive one is returned if a substitution was
not made because the value passed was not considered to be a valid state plane zone number. Minus
one is returned if the original passed value is close to a state plane zone number (i.e. consisted of
three or four digits), but did not match a valid state plane zone number.

CS_unEnum UNits ENUMerator
Function CS_unEnum (ByVal index As Integer,ByVal type As Integer,
 ByVal key_name As String,
 ByVal name_sz As Integer) As Integer
function CS_unEnum (index, type :Integer;key_name :Pchar;name_sz :Integer)
:Integer;
int CS_unEnum (int index,int type,char *key_name,int nm_size);

CS_unEnum is used to enumerate all units of a specific type in the CS-MAP units table. CS_unEnum
returns in the memory buffer pointer to by the key_name argument the name of the index'th entry in
the unit table of the type specified by the type argument. CS_unEnum will never write more than
nm_size bytes to the indicated location. Index is a zero based index; the index of the first entry in the
unit table is zero.

Currently, only two types of units supported, length and angular measure. Manifest constants defined
in the cs_map.h header file are used to distinguish the desired type. These are cs_UTYP_LEN, for
linear units, and cs_UTYP_ANG, for angular units. The type argument must be one of these values.

CS_unEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_unEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_INV_INDX The index argument was negative.

BUGS

If called with an invalid type, CS_unEnum should probably return an error condition, but it doesn't.
Calling CS_unEnum with an invalid type causes a return value of zero for all positive values of the
index argument.

CS_unitlu UNIT Look Up
Function CS_unitlu (ByVal type As Integer,ByVal unit_nm As String) As
Double
function CS_unitlu (type :Integer;unit_nm :PChar) :Double;
double CS_unitlu (short type,Const char *unit_nm);

Given the type of measurement, either length or angular, as specified by the type argument and the
unit name as specified by the unit_nm argument, CS_unitlu will return a double which represents the
multiplier required to convert a value in the unit system indicated by unit_nm to units of meters or
degrees.

106 CS-MAP User's Guide User's Guide

Currently, only two types of units supported, length and angular measure. Manifest constants defined
in the cs_map.h header file are used to distinguish the desired type. These are cs_UTYP_LEN and
cs_UTYP_ANG. The type argument must be one of these values.

unit_nm must be a null terminated string matching one of the supported units as defined in CSdataU.
CS_unitlu returns zero in the event the provided unit name is not known. unit_nm may be one of the
supported abbreviations for any of the units defined in the unit table.

For example, to convert a value in feet to meters, one could code:
double CS_unitlu ();
{
 meters = feet * CS_unitlu (cs_UTYP_LEN,"FOOT");
}

Or to convert degrees to grads:
double CS_unitlu ();
{
 grads = degrees / CS_unitlu (cs_UTYP_ANG,"GRAD");
}

CS_unitlu knows about the first and second abbreviations provided for in the cs_Unittab_ structure.
Therefore, the following are equivalent to the above:

double CS_unitlu ();
{
 meters = feet * CS_unitlu (cs_UTYP_LEN,"FT");
}

double CS_unitlu ();
{
 grads = degrees / CS_unitlu (cs_UTYP_ANG,"GR");
}

ERRORS

CS_unitlu will return zero and set cs_Error to cs_INV_UNIT if the unit name pointed to by unit_nm
is not defined in cs_Unittab for the specified type, or the specified type is not valid.

High Performance Interface
Functions which are considered part of the High Performance Interface are described in this section.
Several of these functions return addresses (i.e. pointers to) malloc'ed memory, and therefore these
functions are not suitable for all languages. Function prototype definitions are given in the C syntax
only.

CS_audflt Angular Unit DeFauLT
char *CS_audlt (Const char *new_dflt);

Use CS_audflt to control the status of the "defaultable" angular unit reference feature of CS-MAP.
new_dflt must be either a pointer to a valid angular unit name, a pointer to the null string, or the NULL
pointer. In the case where new_dflt is a pointer to a valid angular unit name, CS_audflt causes the
default angular unit feature to be activated, using the angular unit name provided as the, possibly new,
default value. When new_dflt is a pointer to the null string, CS_audflt disables the default angular unit
feature. When new_dflt is the NULL pointer, the status of the angular unit default feature remains

 Chapter 3 Chatper 4 -- Library Functions 107

unchanged.

In all cases, CS_audflt returns the previous status (or in the case of new_dflt == NULL, the current
status) in the form of a pointer to a static character array that contains the name of the previous default
angular unit. Should the returned pointer point to a null string, the indicated previous status is
disabled.

ERRORS

CS_audflt will return the NULL pointer if the key name provided is not that of a valid angular unit. In
this event, the current status of the default angular unit feature remains unchanged.

CS_cs2ll Coordinate System TO Latitude/Longitude
void CS_cs2ll (Const struct cs_Csprm_ *csprm,double ll [2],Const double xy
[2]);

Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_cs2ll will
convert the coordinates xy to latitude and longitude, returning the results in ll. The ll and xy arguments
may point to the same array.

In the array arguments, the X coordinate and the longitude occupy the first element, the Y coordinate
and the latitude the second element. West longitudes and south latitudes are negative. The returned
values are in degrees.

CS_cscnv Coordinate System CoNVergence
double CS_cscnv (Const struct cs_Csprm_ *csprm,Const double ll [2]);

Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_cscnv will
return the convergence angle in degrees east of north at the location given by ll.

The location, as given by ll is in terms of latitude and longitude. The longitude is the first element of
the ll array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

CS_csdef Coordinate System DEFinition locator
struct cs_Csdef_ *CS_csdef (Const char *key_nm);

CS_csdef will return a pointer to a malloc'ed cs_Csdef_ structure that contains the definition of the
coordinate system indicated by key_nm. Key_nm must point to an array that contains the null
terminated key name of the desired coordinate system. The memory allocated for the coordinate
system definition may be released by calling CS_free when no longer needed.

ERRORS

CS_csdef will return a NULL pointer and set cs_Error if any of the following conditions are detected:

108 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary file could not be found or
otherwise opened. (See CS_altdr.

cs_IOERR A physical I/O error occurred during access to the Coordinate
System Dictionary file.

cs_CS_BAD_MAGIC The file accessed under the assumption that it was a
Coordinate System Dictionary wasn't a Coordinate System
Dictionary after all; it had an invalid magic number on the
front end.

cs_CS_NOT_FND A coordinate system definition with the name given by
key_nm was not found in the Coordinate System Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for the cs_Csdef_ structure.

CS_csdel Coordinate System definition DELete
int CS_csdel (struct cs_Csdef_ *csdef);

CS_csdel will delete from the Coordinate System Dictionary the definition of the coordinate system
pointed to by csdef.

The delete is accomplished by creating a new Coordinate System Dictionary file and copying all but the
referenced coordinate system definitions from the existing dictionary to the new one. This implies that
sufficient disk space must exist to perform the copy. A zero is returned if the delete was successfully
completed, a -1 if a problem occurred. An attempt to delete a non-existent coordinate system definition
is NOT considered an error.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_csdel will not delete
a coordinate system which is marked as being a distribution coordinate system (i.e.
cs_Csdef_.protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined coordinate system is protected. For example, is
cs_Protect is 60, a user-defined coordinate system becomes protected 60 days after it is last
modified.

ERRORS

CS_csdel will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

 Chapter 3 Chatper 4 -- Library Functions 109

cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred in copying the Coordinate System
Dictionary to the new file.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number.

cs_TMP_CRT The attempt to create a new file, to which the modified
Coordinate System Dictionary was to be copied, failed.

cs_DISK_FULL Insufficient disk space was available to accommodate the
copying of the Coordinate System Dictionary to the new file.

cs_UNLINK The request to remove the old copy of the Coordinate System
Dictionary failed.

cs_RENAME The request to rename the new Coordinate System Dictionary
file from its temporary name to COORDSYS failed.

cs_CS_PROT The coordinate system to be deleted is a distribution coordinate
system and may not be deleted.

cs_CS_UPROT The coordinate system is a user defined coordinate system that
has not been modified for 60 days and is therefore protected.

CS_csEnumByGroup Coordinate System ENUMerator By Group
int CS_csEnumByGroup (int index,Const char *grp_name,struct cs_Csgrplst_
*cs_descr);

CS_csEnumByGroup is used to enumerate a specific group of coordinate systems in the Coordinate
System Dictionary. CS_csEnumByGroup returns a completed cs_Csgrplst_ structure at the location
given by the cs_descr argument containing information that describes the index'th entry in the
coordinate system group named by the grp_name argument. Index is a zero based index; the index
of the first coordinate system in any group is zero. The next element of the returned cs_Csgrplst_
structure is always set to the NULL pointer.

CS_csEnumByGroup returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_csEnumByGroup will return a -1 and set cs_Error appropriately if any of the following conditions
are encountered:

110 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred in accessing the Coordinate
System Dictionary.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number.

cs_CSGRP_INVKEY The grp_name argument was not that of a valid group name.

cs_INV_INDX The index argument was negative.

CS_csGrpEnum Coordinate System GRouP ENUMerator
int CS_csGrpEnum (int index,char *grp_name,int name_sz,char *grp_dscr,int
dscr_sz);

CS_csGrpEnum is used to enumerate all groups in the Coordinate System Group table. CS_csGrpEnum
returns in the memory buffer pointer to by the grp_name argument the key name of the index'th entry
in the Coordinate System Group Table. CS_csGrpEnum will never write more than name_sz bytes to
the indicated location. Similarly, CS_csGrpEnum returns the Coordinate System Group description in
the buffer pointed to be grp_dscr and whose size in indicated by dscr_sz. The grp_name and/or the
grp_dscr arguments may be the NULL pointer to suppress return of the indicated item.

Index is a zero based index; the index of the first entry in the Coordinate System Group Table is zero.
CS_dtEnum returns a positive 1 to indicate success. If index is too large, a zero is returned. Inactive
groups (a feature planned for a future release) are ignored, and are not considered to exist as far as
index is concerned.

ERRORS

CS_csGrpEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_INV_INDX The index argument was negative.

CS_csloc Coordinate System LOCate and initialize
struct cs_Csprm_ *CS_csloc (Const char *cs_nam);
struct cs_Csprm_ *Cscsloc1 (Const struct cs_Csdef_ *cs_ptr);
struct cs_Csprm_ *Cscsloc2 (Const struct cs_Csdef_ *csPtr,
 Const struct cs_Dtdef_ *dtPtr,
 Const struct cs_Eldef_ *elPtr);
struct cs_Csprm_ *CScsloc (Const struct cs_Csdef_ *csPtr,
 Const struct cs_Datum_ *dtPtr);

 Chapter 3 Chatper 4 -- Library Functions 111

CS_csloc locates the coordinate system definition indicated by cs_nam and returns a pointer to a
malloc'ed, coordinate system parameter structure initialized for the specified coordinate system. The
return value is the argument required by CS_cs2ll, CS_ll2cs, CS_csscl, and CS_cscnv. When no longer
needed, the memory pointed to by the returned pointer should be released using CS_free.

CS_csloc accesses the definition dictionaries as is necessary to accomplish its task. The alternative
functions enable applications to create coordinate system parameter structures using definitions that
may have been obtained from sources other than the dictionaries. For example, certain applications
may store definitions in vehicles other than the dictionaries, and then desire to construct a coordinate
system parameter structure from these definitions.

Note that Cscsloc1 does not need to access the coordinate system dictionary as the coordinate system
definition is provided by the cs_ptr argument. However, it will need to access the datum and ellipsoid
dictionaries to resolve datum and ellipsoid references. Cscsloc2 is completely independent of all
dictionaries as all three definitions must be provided. CScsloc is simply a basic function is encapsulates
the basic functions of CS_csloc and its alternatives, and thus prevents duplication of large amounts of
code.

ERRORS

CS_csloc, CScsloc1, CScsloc2, and CScsloc return a NULL pointer and set cs_Error through the use of
CS_erpt if any of the following conditions occur:

cs_UNKWN_PROJ The projection specified in the coordinate system definition is
unknown to the system.

CS_csloc uses the following functions that detect a majority of the exceptional conditions that may
occur:

CS_csdef Locates and fetches the coordinate system definition from the
Coordinate System Dictionary.

CS_dtloc Locates and fetches the datum definition from the Datum
Dictionary.

CS_eldef Locates and fetches the ellipsoid definition from the Ellipsoid
Dictionary.

CScsloc1 uses the following functions that detect a majority of the exceptional conditions that may
occur:

CS_dtloc Locates and fetches the datum definition from the Datum
Dictionary.

CS_eldef Locates and fetches the ellipsoid definition from the Ellipsoid
Dictionary.

112 CS-MAP User's Guide User's Guide

CS_cssch Coordinate System SCale H, along a meridian
double CS_cssch (Const struct cs_Csprm_ *csprm,Const double ll [2]);

Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_cssch will
compute the grid scale factor along a meridian at the location given by ll and return this value. See
CS_cssck for the grid scale factor along a parallel. Note that in conformal projections, the grid scale
along a parallel equals the grid scale along a meridian at any point.

The location, as given by ll, is in terms of latitude and longitude. The longitude is the first element of
the ll array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

CS_cssck Coordinate System SCale K, along a parallel
double CS_cssck (Const struct cs_Csprm_ *csprm,Const double ll [2]);

Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_cssck will
compute the grid scale factor along a parallel at the location given by ll and return this value. See
CS_cssch for the grid scale factor along a meridian. Note that in conformal projections, the grid scale
along a parallel equals the grid scale along a meridian at any point.

The location, as given by ll is in terms of latitude and longitude. The longitude is the first element of
the ll array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

CS_csscl Coordinate System SCaLe
double CS_csscl (Const struct cs_Csprm_ *csprm,Const double ll [2]);

Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_csscl will
compute the grid scale factor at the location given by ll and return this value.

The location, as given by ll, is in terms of latitude and longitude. The longitude is the first element of
the ll array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

Non-conformal projections have two different grid scale factors: the scale along a meridian and the
scale along a parallel. In the case of azimuthal projections, the two scale factors are along a radial line
from the origin and normal to such radial lines, respectively. In these cases, CS_csscl will return the
more interesting of the two. For example, in the American Polyconic, the grid scale factor along all
parallels is always 1.0; therefore CS_csscl return the grid scale factor along a meridian for this
projection.

CS_csupd Coordinate System dictionary UPDate
int CS_csupd (struct cs_Csdef_ *csdef,int crypt);

 Chapter 3 Chatper 4 -- Library Functions 113

CS_csupd will cause coordinate system definition pointed to by csdef to be added to the Coordinate
System Dictionary. If a coordinate system with the same key name already exists, it is replaced by the
definition provided. If no such definition exists, the new definition is added to the dictionary. If crypt is
non-zero, the entry will be encrypted before being written to the dictionary.

In the event that the indicated coordinate system already exists, CS_csupd will return a 1 to indicate a
successful update. In the event that the provided coordinate system had to be added to the
Coordinate System Dictionary, a zero is returned. A -1 is returned if the update failed for any reason.

Please note that the addition of a new coordinate system definition requires the sorting of the
Coordinate System Definition file. This may take a few seconds to complete, depending upon the size
of the Coordinate System Dictionary.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_csupd will not
change a coordinate system which is marked as being a distribution coordinate system (i.e.
cs_Csdef_.protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined coordinate system is protected. For example, if
cs_Protect is 60, a user-defined coordinate system becomes protected 60 days after it is last modified.

Additionally, if the value of the global character variable cs_Unique is not the null character, CS_csupd
will not add a coordinate system definition if its key name does not contain the character indicated. For
example, if cs_Unique is set to the colon character, CS_csupd will not add a coordinate system whose
key name does not contain a colon character.

ERRORS

CS_csupd will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

114 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary file could not be opened.
(See CS_altdr).

cs_IOERR A physical I/O error occurred during the update process.

cs_CS_BAD_MAGIC The file that, by virtue of its name and location, was supposed
to be a Coordinate System Dictionary wasn't a Coordinate
System Dictionary; its magic number was invalid.

 cs_DISK_FULL There was insufficient disk space available to add the
coordinate system definition to the dictionary.

cs_CS_PROT The coordinate system to be updated is a distribution coordinate
system and may not be updated.

cs_CS_UPROT The coordinate system is a user defined coordinate system that
has not been modified for 60 days and is therefore protected.

cs_UNIQUE The coordinate system provided does not already exist and
would need to be added; but the key name does not contain the
unique character.

CS_dtcls DaTum conversion CLoSe
void CS_dtcls (struct cs_Dtcprm_ *dtc_ptr);

Initializing a datum conversion can use file descriptors (handles) and allocate memory from the heap.
Applications may need to recover these system resources for other use prior to exiting. CS_dtcls will
release all system resources allocated to the datum conversion indicated by the dtc_ptr argument (as
returned by CS_dtcsu). This function is, essentially, the inverse of CS_dtcsu.

CS_dtcsu DaTum Conversion Set Up
struct cs_Dtcprm_ *CS_dtcsu (Const struct cs_Csprm_ *src_cs,
 Const struct cs_Crprm_ *dest_cs,
 int dat_err,
 int blk_err);

CS_dtcsu, CS_dtcvt, and CS_dtcls, are designed to provide a generic application interface for datum
conversion. The objective is to enable application programmers to incorporate datum conversion
capabilities into applications with a minimum of impact. Therefore, application programmers use
CS_dtcsu to set up a datum conversion and CS_dtcvt to perform the actual conversions independently
of the number or type of datum conversions that may or may not be supported. CS_dtcls provides a
means of recovering any system resources that may be allocated by the activation of a datum
conversion.

Application programmers use CS_dtcsu to initiate a datum conversion process. Src_cs points to the
coordinate system definition of the source data that is to be converted while dest_cs points to the

 Chapter 3 Chatper 4 -- Library Functions 115

coordinate system definition for the results. CS_dtcsu examines the datum references in these
coordinate systems, initializes the appropriate datum shift conversion, and returns a pointer to a
malloc'ed datum conversion parameter block. The returned pointer is a required argument for the
CS_dtcvt function.

As is often the case, should the source and destination coordinate systems share the same datum, the
null datum conversion is activated. That is, source latitudes and longitudes are copied directly to the
destination array without modification.

The dat_err argument is used to indicate the desired disposition of certain errors that are encountered
during the setup of the datum conversion. The error disposition control afforded by dat_err applies
only to errors indicating that an unsupported datum conversion was requested. System errors, such as
physical I/O or insufficient memory for example, are always treated as fatal errors and a NULL pointer
is returned.

The following values for dat_err are recognized:

cs_DTCFLG_DAT_I Ignore unsupported datum conversion request errors and, in the
event of such an error, silently activate the null conversion.

cs_DTCFLG_DAT_W In the event of an unsupported datum conversion request error,
report the condition as a warning to CS_erpt
(cs_DTC_DAT_W) and activate the null conversion. In this
case, the user is notified, but data processing continues.

cs_DTCFLG_DAT_F In the event of any error, report the condition as a fatal error to
CS_erpt (cs_DTC_DAT_F) and return the NULL pointer.

The blk_err argument is used to indicate the desired disposition of certain errors that are encountered
during the conversion of individual coordinate values. The error disposition control afforded by blk_err
applies only to errors indicating that the required data for the geographic region containing the
coordinate to be converted is not available. System errors, such as physical I/O or insufficient memory
for example, are always treated as fatal errors.

The following values for blk_err are recognized:

116 CS-MAP User's Guide User's Guide

cs_DTCFLG_BLK_I Ignore datum conversion errors caused by data availability
problems and silently use the null conversion for the specific
coordinate that could not be converted and cause CS_dtcvt to
return a zero value.

cs_DTCFLG_BLK_W In the event a datum conversion fails due to data availability,
report a warning through CS_erpt (cs_DTC_BLK_W), convert
the coordinate using the null conversion, and cause a
CS_dtcvt to return a positive non-zero value for the specific
coordinate that could not be converted. The warning
message is issued for each coordinate that could not be
converted.

cs_DTCFLG_BLK_1 In the event a datum conversion fails due to data availability,
cause CS_dtcvt to return a positive non-zero value for the
specific coordinate that could not be converted. That such
an error has been reported is recorded in the datum
parameter block and this is used to suppress repeated
reporting of the error with regard to the same block.

cs_DTCFLG_BLK_F Report a fatal condition through CS_erpt (cs_DTC_BLK_F),
convert the coordinate using the null conversion, and cause
CS_dtcvt to return a negative non-zero value to indicate that
the expected conversion did not take place.

 Special Cases

Three special cases have been coded into this function. Normally, the geographic coodinates of the
source datum are converted to WGS84 values, and the resulting WGS84 values are then converted to
the target datum.

There are three cases where this genberal technique proved to be unsatisfactory. In these three cases,
CS_dtcsu has been expressly coded to look at the source and target datums, and implement direct
conversions where appropriate. Note, that in each case, a specific Geodetic Data Catalog file is also
involved. Thus, if the required Geodetic Data Catalog file is not present, all of the special processing is
disabled.

The following table defines the special cases:

Source Datum Target Datum Geodetic Data Catalog Description

NAD27 ATS77 Nad27ToAts77.gdc Converts directly from NAD27 to ATS77 using the
very special TRANSFORM algorithm.

ATS77 CSRS Ats77ToCsrs.gdc Converts directly as direct NTv2 format files are
generally available.

NAD27 CSRS Nad27ToCsrs.gdc Converts directly as direct NTv2 format files are
generally available.

ERRORS

 Chapter 3 Chatper 4 -- Library Functions 117

Should the requested datum conversion requested be unsupported, CS_dtcsu will perform as indicated
by the dat_err argument. Should the initialization of a supported datum conversion fail due to a
system error, the NULL pointer will be returned and cs_Error set to indicate the nature of failure.
Should a datum conversion for which appropriate code is present fail because a required data file is
not present, the failure is treated as an unsupported datum conversion request.

CS_dtcvt DaTum ConVerT
int CS_dtcvt (struct cs_Dtcprm_ *dtc_ptr,Const double src_ll [2],

 double dest_ll [2]);

CS_dtcvt performs the datum conversion indicated by dtc_ptr returning in the array pointed to by
dest_ll the result of converting the latitude and longitude values pointed to by src_ll. Src_ll and
dest_ll may point to the same array. Latitude and longitude values must be given in degrees, where
negative values indicate south and west. The longitude is carried in the first element of the array and
the latitude is carried in the second element. The dtc_ptr argument is that which is returned by
CS_dtcsu.

ERRORS

Should a system error occur during the conversion (e.g. a physical I/O error or insufficient memory)
CS_dtcvt returns a negative non-zero value and sets cs_Error to indicate the cause of the failure.

Conversion failures caused by a lack of data covering the specific coordinate to be converted are
handled as indicated by the blk_err element of the cs_Dtcprm_ structure pointed to by the dtc_ptr
argument. The blk_err element is set by CS_dtcsu to the value of its blk_err argument prior to
returning dtc_ptr. Refer to CS_dtcsu for a detailed description of how such errors are handled.

In all cases, the null conversion is always performed before any other processing is attempted.

EXAMPLE

This function, and its companion CS_dtcsu have been designed such that the following sequence of
code is all that is necessary to perform a complete coordinate conversion, including a datum
conversion (error handling omitted):

#define XX 0
#define YY 1
struct cs_Csprm *src_cs, *dest_cs;
struct cs_Dtcprm_ *dtc_ptr;
double src_xy [2], ll [2], dest_xy [2];
.
.
src_cs = CS_csloc (src_name);
dest_cs = CS_csloc (dest_name);
dtc_ptr = CS_dtcsu (src_cs,dest_cs,cs_DTCFLG_DAT_F,cs_DTCDLG_BLK_1);
.
.
while (TRUE)
{
 .
 .
 src_xy [XX] = ???;
 src_xy [YY] = ???;
 CS_cs2ll (src_cs,ll,src_xy);
 CS_dtcvt (dtc_ptr,ll,ll);
 CS_ll2cs (dest_cs,dest_xy,ll);

118 CS-MAP User's Guide User's Guide

 ??? = dest_xy [XX];
 ??? = dest_xy [YY];
 .
 .
}
CS_free (src_cs);
CS_free (dest_cs);
CS_dtcls (dtc_ptr);

Notice, that adding the datum conversion to a simple cartographic conversion requires only the
insertion of three lines of code (error handling aside) to the simple High Performance Interface
described elsewhere in this manual.

CS_dtdef DaTum DEFinition locator
struct cs_Dtdef_ *CS_dtdef (Const char *key_nm);

CS_dtdef will return a pointer to a malloc'ed cs_Dtdef_ structure which contains the definition of the
datum indicated by key_nm. Key_nm must point to an array that contains the null terminated key
name of the desired datum definition. The memory allocated for the datum definition should be
released by using CS_free when no longer needed.

ERRORS

CS_dtdef will return a NULL pointer and set cs_Error if any of the following conditions are detected:

cs_DTDICT The Datum Dictionary file could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Datum
Dictionary file.

cs_DT_BAD_MAGIC The file accessed under the assumption that it was a Datum
Dictionary wasn't a Datum Dictionary after all; it had an invalid
magic number on the front end.

cs_DT_NOT_FND A datum definition with the name given by key_nm was not
found in the Datum Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for the cs_Dtdef_ structure.

CS_dtdel DaTum definition DELete
int CS_dtdel (struct cs_Dtdef_ *dtdef);

CS_dtdel will delete from the Datum Dictionary the definition of the Datum pointed to by dtdef.

The delete is accomplished by creating a new Datum Dictionary file and copying all but the referenced
datum definition from the existing dictionary to the new one. This implies that sufficient disk space
must be available to perform this copy. A zero is returned if the delete was successfully completed, a -
1 if a problem occurred. An attempt to delete a non-existent datum definition is NOT considered a

 Chapter 3 Chatper 4 -- Library Functions 119

problem.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_dtdel will not delete
a datum definition which is marked as being a distribution datum definition (i.e. cs_Dtdef_.protect
== 1). If the value of cs_Protect is greater than zero, it is interpreted as the number of days after
which a user defined datum is protected. For example, is cs_Protect is 60, a user-defined datum
becomes protected 60 days after it is last modified.

ERRORS

CS_dtdel will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_DTDICT The Datum Dictionary could not be found or otherwise opened.
(See CS_altdr)

cs_IOERR A physical I/O error occurred in copying the Datum Dictionary
to the new file.

cs_DT_BAD_MAGIC The file assumed to be the Datum Dictionary by virtue of its
name and location was not a Datum Dictionary; it had an invalid
magic number.

cs_TMP_CRT The attempt to create a new file, to that the modified Datum
Dictionary was to be copied, failed.

cs_DISK_FULL Insufficient disk space was available to accommodate the
copying of the Datum Dictionary to the new file.

cs_UNLINK The request to remove the old copy of the Datum Dictionary
failed.

cs_RENAME The request to rename the new Datum Dictionary file from its
temporary name to DATUMS failed.

cs_DT_PROT The datum definition to be updated is a distribution datum
definition and may not be deleted.

cs_DT_UPROT The datum is a user-defined datum which has not been modified
for 60 days and is therefore protected.

CS_dtdflt DaTum DeFauLT
char *CS_dtdflt (Const char *new_dflt);

Use CS_dtdflt to control the status of the "defaultable" datum reference feature of CS-MAP. New_dflt
must be either a valid datum key name, a pointer to the null string, or the NULL pointer. In the case
where new_dflt is a pointer to a valid datum definition key name, CS_dtdflt causes the default datum

120 CS-MAP User's Guide User's Guide

feature to be active, using the datum key name provided as the default value. When new_dflt is a
pointer to the null string, CS_dtdflt disables the default datum feature. When new_dflt is the NULL
pointer, the status of the default feature remains unchanged.

In all cases, CS_dtdflt returns the previous status (or in the case of new_dflt == NULL, the current
status) in the form of a pointer to a static character array which shall contain the name of the previous
default datum. Should the returned pointer point to a null string, the indicated status is disabled.

ERRORS

CS_dtdflt will return the NULL pointer if the key name provided is not that of a valid datum. In this
event, the status of the default datum feature remains unchanged.

CS_dtloc DaTum LOCate
struct cs_Datum_ *CS_dtloc (Const char *key_nm);
struct cs_Datum_ *Csdtloc1 (Const struct cs_Dtdef_ *dtPtr);
struct cs_Datum_ *Csdtloc2 (Const struct cs_Dtdef_ *dtPtr,Const struct
cs_Eldef_ *elPtr);

CS_dtloc will return a pointer to a malloc'ed cs_Datum_ structure which contains the definition of the
datum indicated by key_nm along with the ellipsoid information referenced by the datum definition.
Key_nm must point to an array that contains the key name of the desired datum. The memory
allocated for the datum definition should be released using CS_free when no longer needed.

CSdtloc1 and CSdtloc2 are alternatives to CS_dtloc that enable alternative sources for datum and
ellipsoid definitions. These have been provided for applications that may, for example, store the
datum, and/or ellipsoid, definitions in an application database.

Note that while CSdtloc1 will not need to access the Datum Dictionary, it will need to access the
Ellipsoid Dictionary to resolve the ellipsoid reference in the datum definition provided. CSdtloc2 is
completely independent of both dictionaries.

ERRORS

CS_dtloc, Csdtloc, and CSdtloc2 will return a NULL pointer and set cs_Error if any of the following
conditions are detected:

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for the cs_Datum_ structure.

CS_dtloc uses CS_dtdef and CS_eldef to obtain definition records from the Datum and Ellipsoid
Dictionaries. Therefore, all of the error conditions detected by these functions apply to this function as
well.

CSdtloc1 uses CS_eldef to obtain definition records from the Ellipsoid Dictionary. Therefore, all of the
error conditions detected by this function apply to this function as well.

CS_dtupd DaTum dictionary UPDate
int CS_dtupd (struct cs_Dtdef_ *dt_def,int crypt);

 Chapter 3 Chatper 4 -- Library Functions 121

CS_dtupd will cause the datum definition pointed to by dt_def to be added to the Datum Dictionary. If
a datum with the same key name exists, it is replaced by the definition provided. If no such definition
exists, the new definition is added to the dictionary. If crypt is non-zero, the datum entry is encrypted
before being written.

In the event that the indicated datum already existed, CS_dtupd will return a 1 to indicate a successful
update. In the event that the provided datum definition had to be added to the Datum Dictionary, a
zero is returned. A -1 is returned if the update failed for any reason.

Please note that the addition of a new datum definition requires the sorting of the Datum Dictionary file.
This may take a few seconds to complete, depending upon the size of the Datum Dictionary.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_dtupd will not
change a datum definition which is marked as being a distribution datum definition (i.e.
cs_Dtdef_.protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined datum is protected. For example, is cs_Protect is 60,
a user-defined datum becomes protected 60 days after it is last modified.

Additionally, if the value of the global character variable cs_Unique is not the null character, CS_dtupd
will not add a datum definition if its key name does not contain the character indicated. For example, if
cs_Unique is set to the colon character, CS_dtupd will not add a datum definition whose key name
does not contain a colon character.

ERRORS

CS_dtupd will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_DTDICT The Datum Dictionary file could not be opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during the update process.

cs_DT_BAD_MAGIC The file which, by virtue of its name and location, was assumed
to be a Datum Dictionary wasn't a Datum Dictionary; its magic
number was invalid.

Cs_DISK_FULL There was insufficient disk space available to add the datum
definition to the Datum Dictionary.

Cs_DT_PROT The datum definition to be updated is a distribution datum
definition and may not be updated.

cs_DT_UPROT The datum is a user-defined datum that has not been modified
for 60 days and is therefore protected.

cs_UNIQUE The datum provided does not already exist and would need to
be added; but the key name does not contain the unique
character.

122 CS-MAP User's Guide User's Guide

CS_eldef ELlipsoid DEFinition locator
struct cs_Eldef_ *CS_eldef (Const char *key_nm);

CS_eldef will return a pointer to a malloc'ed cs_Eldef_ structure which contains the definition of the
ellipsoid indicated by key_nm. Key_nm must point to an array that contains the null terminated key
name of the desired ellipsoid definition. The memory allocated for the ellipsoid definition should be
released using CS_free when no longer needed.

ERRORS

CS_eldef will return a NULL pointer and set cs_Error if any of the following conditions are detected:

cs_ELDICT The Ellipsoid Dictionary file could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Ellipsoid
Dictionary file.

cs_EL_BAD_MAGIC The file accessed under the assumption that it was an Ellipsoid
Dictionary wasn't an Ellipsoid Dictionary after all; it had an
invalid magic number on the front end.

cs_EL_NOT_FND A ellipsoid definition with the name given by key_nm was not
found in the Ellipsoid Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for the cs_Eldef_ structure

CS_eldel ELlipsoid definition DELete
int CS_eldel (struct cs_Eldef_ *eldef);

CS_eldel will delete from the Ellipsoid Dictionary the definition of the Ellipsoid pointed to by eldef.

The delete is accomplished by creating a new Ellipsoid Dictionary file and copying all but the
referenced ellipsoid definition from the existing dictionary to the new one. This implies that sufficient
disk space must be available to perform this copy. A zero is returned if the delete was successfully
completed, a -1 if a problem occurred. An attempt to delete a non-existent ellipsoid definition is NOT
considered a problem.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_eldel will not delete
an ellipsoid definition which is marked as being a distribution ellipsoid definition (i.e.
cs_Eldef_.protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined ellipsoid is protected. For example, is cs_Protect is
60, a user-defined ellipsoid becomes protected 60 days after it is last modified.

ERRORS

 Chapter 3 Chatper 4 -- Library Functions 123

CS_eldel will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred in copying the Ellipsoid
Dictionary to the new file.

cs_EL_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name and location was not an Ellipsoid Dictionary; it had an
invalid magic number.

cs_TMP_CRT The attempt to create a new file, to which the modified
Ellipsoid Dictionary was to be copied, failed.

cs_DISK_FULL Insufficient disk space was available to accommodate the
copying of the Ellipsoid Dictionary to the new file.

cs_UNLINK The request to remove the old copy of the Ellipsoid Dictionary
failed.

cs_RENAME The request to rename the new Ellipsoid Dictionary file from
its temporary name to ELIPSOID failed.

cs_EL_PROT The ellipsoid definition to be updated is a distribution ellipsoid
definition and may not be deleted.

cs_EL_UPROT The ellipsoid is a user-defined ellipsoid which has not been
modified for 60 days and is therefore protected.

CS_eldflt ELlipsoid DeFauLT
char *CS_eldlt (Const char *new_dflt);

Use CS_eldflt to control the status of the "defaultable" ellipsoid reference feature of CS-MAP.
New_dflt must be either a pointer to a valid ellipsoid key name, a pointer to the null string, or the NULL
pointer. In the case where new_dflt is a pointer to a valid ellipsoid definition key name, CS_eldflt
causes the default ellipsoid feature to be activated, using the ellipsoid key name provided as the,
possibly new, default value. When new_dflt is a pointer to the null string, CS_eldflt disables the
default ellipsoid feature. When new_dflt is the NULL pointer, the status of the default feature remains
unchanged.

In all cases, CS_eldflt returns the previous status (or in the case of new_dflt == NULL, the current
status) in the form of a pointer to a static character array that shall contain the name of the previous
default ellipsoid. Should the returned pointer point to a null string, the indicated status is disabled.

124 CS-MAP User's Guide User's Guide

ERRORS

CS_eldflt will return the NULL pointer if the key name provided is not that of a valid ellipsoid. In this
event, the status of the default ellipsoid feature remains unchanged.

CS_elEnum ELlipsoid ENUMerator
int CS_elEnum (int index,char *key_name,int size);

CS_elEnum is used to enumerate all ellipsoids in the Ellipsoid Dictionary. CS_elEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the
Ellipsoid Dictionary. CS_elEnum will never write more than size bytes to the indicated location. Index
is a zero based index; the index of the first entry in the Ellipsoid Dictionary is zero.

CS_elEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_elEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise opened.
(See CS_altdr)

cs_IOERR A physical I/O error occurred in accessing the Ellipsoid
Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name was not an Ellipsoid Dictionary; it had an invalid magic
number.

cs_INV_INDX The index argument was negative.

CS_elupd ELlipsoid dictionary UPDate
int CS_elupd (struct cs_Eldef_ *el_def,int crypt);

CS_elupd will cause the ellipsoid definition pointed to by el_def to be added to the Ellipsoid Dictionary.
If an ellipsoid with the same key name exists, it is replaced by the definition provided. If no such
definition exists, the new definition is added to the dictionary. If crypt is non-zero, the ellipsoid entry is
encrypted before being written.

In the event that the indicated ellipsoid already existed, CS_elupd will return a 1 to indicate a successful
update. In the event that the provided ellipsoid had to be added to the Ellipsoid Dictionary, a zero is
returned. A -1 is returned if the update failed for any reason.

Please note that the addition of a new ellipsoid definition requires the sorting of the Ellipsoid Dictionary
file. This may take a few seconds to complete, depending upon the size of the Ellipsoid Dictionary.

 Chapter 3 Chatper 4 -- Library Functions 125

If the value of the global variable cs_Protect is greater than or equal to zero, CS_elupd will not
change an ellipsoid definition which is marked as being a distribution ellipsoid definition (i.e.
cs_Eldef_.protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined ellipsoid is protected. For example, is cs_Protect is
60, a user-defined ellipsoid becomes protected 60 days after it is last modified.

Additionally, if the value of the global character variable cs_Unique is not the null character, CS_elupd
will not add an ellipsoid definition if its key name does not contain the character indicated. For
example, if cs_Unique is set to the colon character, CS_elupd will not add an ellipsoid definition
whose key name does not contain a colon character.

ERRORS

CS_elupd will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_ELDICT The Ellipsoid Dictionary file could not be opened. (See
CS_altdr)

 cs_IOERR A physical I/O error occurred during the update process.

cs_EL_BAD_MAGIC The file which, by virtue of its name and location, was
assumed to be an Ellipsoid Dictionary wasn't an Ellipsoid
Dictionary; its magic number was invalid.

cs_DISK_FULL There was insufficient disk space available to add the ellipsoid
definition to the Ellipsoid Dictionary.

cs_EL_PROT The ellipsoid definition to be updated is a distribution ellipsoid
definition and may not be updated.

 cs_EL_UPROT The ellipsoid is a user-defined ellipsoid that has not been
modified for 60 days and is therefore protected.

cs_UNIQUE The ellipsoid provided does not already exist and would need
to be added; but the key name does not contain the unique
character.

CS_errmsg ERRor MeSsaGe
void CS_errmsg (char msg_bufr,int bufr_size);

CS_errmsg returns to the calling function a null terminated string that describes the last error condition
detected by the CS-MAP library. The result is returned in the buffer pointed to by the msg_bufr
argument, which is assumed to be bufr_size bytes long. The message is returned in one character
per byte ANSI code characters.

126 CS-MAP User's Guide User's Guide

CS_errmsg will return the null string if called before any error condition is detected.

BUGS

After returning an error message to the user, CS_errmsg should reset itself to the null string preventing
the same error message from being returned a second time. It should, but is doesn't.

CS_ll2cs Latitude/Longitude TO Coordinate System
void CS_ll2cs (Const struct cs_Csprm_ *csprm,double xy [2],Const double ll
[2]);

Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_ll2cs will
convert the latitude and longitude given by ll to X and Y coordinates, returning the results in xy. The ll
and xy arguments may point to the same array.

In the arrays, the X coordinate and the longitude occupy the first element, the Y coordinate and the
latitude the second element. The latitude and longitude must be given in degrees where negative
values are used to indicate west longitude and south latitude.

CS_llchk Lat/Long limits CHecK
int CS_llchk (Const struct cs_Csprm_ *csprm,int cnt,Const double pnts
[][3]);

CS_llchk determines if the points, great circles, and regions defined by the point list provided by the cnt
and pnts arguments are within the mathematical domain and useful range of the coordinate system
provided by the csprm argument. All points in the point list are expected to be geographic
coordinates. Use CS_xychk to check a list of cartesian coordinates.

CS_llchk returns cs_CNVRT_OK if all coordinate subject to the determination are both within the
mathematical domain of the coordinate system and the useful range of the coordinate system.
cs_CNVRT_DOMN is returned if one or more coordinates is outside of the mathematical domain of
the coordinate system. cs_CNVRT_USFL is returned if all coordinates subject to the determination
are within the mathematical domain of the coordinate system, but one or more coordinates are outside
of the useful range of the coordinate system.

The useful range of a coordinate system may be defined by the user as part of the coordinate system
definition. In the absence of such a definition, the setup function for each projection computes a useful
range based on the parameters for the projection. In some cases, this computed useful range will be
too liberal; in others it may be too conservative. In any case, checking coordinates to be converted
against the useful range is a good way to alert users of a possible problem, such as using the wrong
coordinate system for a set of coordinates.

CS_ludflt Linear Unit DeFauLT
char *CS_ludlt (Const char *new_dflt);

Use CS_ludflt to control the status of the "defaultable" linear unit reference feature of CS-MAP.
New_dflt must be either a pointer to a valid linear unit name, a pointer to the null string, or the NULL
pointer. In the case where new_dflt is a pointer to a valid linear unit name, CS_ludflt causes the

 Chapter 3 Chatper 4 -- Library Functions 127

default linear unit feature to be activated, using the linear unit name provided as the, possibly new,
default value. When new_dflt is a pointer to the null string, CS_ludflt disables the default linear unit
feature. When new_dflt is the NULL pointer, the status of the linear unit default feature remains
unchanged.

In all cases, CS_ludflt returns the previous status (or in the case of new_dflt == NULL,, the current
status) in the form of a pointer to a static character array which shall contain the name of the previous
default linear unit. Should the returned pointer point to a null string, the indicated status is disabled.

ERRORS

CS_ludflt will return the NULL pointer if the key name provided is not that of a valid linear unit. In this
event, the status of the default linear unit feature remains unchanged.

CS_xychk X and Y limits CHecK
int CS_xychk (Const struct cs_Csprm_ *csprm,int cnt,Const double pnts
[][3]);

CS_xychk determines if the points, line segments, and regions defined by the point list provided by the
cnt and pnts arguments are within the mathematical domain and useful range of the coordinate
system provided by the csprm argument. All points in the point list are expected to be cartesian
coordinates. Use CS_llchk to check a list of geographic coordinates.

CS_xychk returns cs_CNVRT_OK if all coordinate subject to the determination are both within the
mathematical domain of the coordinate system and the useful range of the coordinate system.
cs_CNVRT_DOMN is returned if one or more coordinates is outside of the mathematical domain of
the coordinate system. cs_CNVRT_USFL is returned if all coordinates subject to the determination
are within the mathematical domain of the coordinate system, but one or more coordinates are outside
of the useful range of the coordinate system.

The useful range of a coordinate system may be defined by the user as part of the coordinate system
definition. In the absence of such a definition, the setup function for each projection computes a useful
range based on the parameters for the projection. In some cases, this computed useful range will be
too liberal; in others it may be too conservative. In any case, checking coordinates to be converted
against the useful range is a good way to alert users of a possible problem, such as using the wrong
coordinate system for a set of coordinates.

CS_usrUnitPtr - Units Look Up Hook Function
double CS_usrUnitPtr (short type,Const char *unitName);

128 CS-MAP User's Guide User's Guide

This name, CS_usrUnitPtr, does not refer to a function. Rather, it refers to a global variable which
is defined as a pointer to a function which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
unit definitions in a dynamic manner.

If the global variable CS_usrUnitPtr (defined in CSdata.c) is not null, the indicated function is called
whenever the CS-MAP library is asked to access a specific unit definition. This function, then, can be
used to dynamically supply a unit conversion value which does not exist in the compiled unit table.
Applications can use this to implement their own unit definition table or dynamically generate such a
definition based on the unit name provided.

CS-MAP passes the unitName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired conversion value must be
returned. CS-MAP passed the unit type requested to the hook function using the type argument.

The hook function returns an integer value:

 a positive non-zero value to indicate that a conversion value is being supplied by the hook
function, and the value returned is indeed the conversion value.

 zero is returned to indicate that normal CS-MAP unit table access is to be performed.
 a negative value is returned to indicate that an error is to be reported. It is expect that the nature of

the error would have already reported through the use of CS_erpt.

CS_unitAdd - ADD UNIT to Table
int CS_unitAdd (struct cs_Unittab_ *unitPtr);

Use this function to add a new unit to the unit table at run time. Essentially, the unit definition pointed
to by the unitPtr argument is copied to a disabled entry in the compiled unit table. This function does
not check any of the entries in the provided unit definition, so use this function with great care.

Errors

 Chapter 3 Chatper 4 -- Library Functions 129

CS_unitAdd returns a zero value for success. A negative return value indicates a failure. In this case,
one of the following error conditions will have been reported through the use of CS_erpt:

cs_UADD_TYP The type of unit specified in the provided definition was
invalid. Must be either cs_UTYP_LIN or cs_UTYP_ANG.

cs_UADD_DUP A unit definition with the (singular) name of given in the
provided definition already exists in the unit table.

cs_UADD_FULL All of the disabled slots in the unit table have been filled; thus
the unit table is currently full.

CS_unitDel -- DELete UNIT from table
int CS_unitDel (short type,Const char *name);

Use this function to disable an entry in the unit table. The specific unit is identified by the type and
name arguments. Type must be given as either cs_UTYP_LIN or cs_UTYP_ANG. Note that
compiled (i.e. not necessarily added) unit entries can also be disabled. This will remove them from
subsequent unit enumerations performed by CS_unEnum.

Errors

CS_unitDel will return a zero for success. A negative 1 is return to indicate failure. In the event of
failure, one of the following error conditions will have been reported through CS_erpt:

cs_UDEL_NONE The named unit, of the provided type, did not exist in the unit table.

Low Level Interface Functions
Functions which are considered part of the Low Level Interface are described in this section. Several
of these functions require geographic arguments. Remember that these are required to be:

1. in longitude, latitude, and height order, and

2. given in degrees, and

130 CS-MAP User's Guide User's Guide

3. referenced to Greenwich meridian, and

4. where west lonigtude and south latitude are represented by negative values.

Function prototype definitions are given in the C syntax only.

 131

Cartographic Projection Funtions
Albers Equal Area Projection (CSalber)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Alber
Equal Area Conic Projection.

CSalberF Forward conversion
int CSalberF (Const struct cs_Alber_ *alber,double xy[2],Const double ll
[2]);

Given a properly initialized cs_Alber_ structure via the alber argument, CSalberF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSalberF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSalberI Inverse conversion
int CSalberI (Const struct cs_Alber_ *alber,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Alber_ structure via the alber argument, CSalberI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSalberI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSalberK grid scale (K) along parallel
double CSalberK (Const struct cs_Alber_ *alber,Const double ll [2]);

CSalberK returns the grid scale factor, along a parallel, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the ll array. (The use of the ll array is the
same as described above.)

CSalberH grid scale (H) along meridian
double CSalberH (Const struct cs_Alber_ *alber,Const double ll [2]);

CSalberH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSalberC Convergence angle
double CSalberC (Const struct cs_Alber_ *alber,Const double ll [2]);

CSalberC returns the convergence angle in degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array.

C H A P T E R 4

132 CS-MAP User's Guide User's Guide

CSalberQ definition Quality check
int CSalberQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
 int *err_list [],int list_sz);

CSalberQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Alber Equal Area Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSalberQ only examines those components specific to the Alber Equal Area
Projection. CSalberQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSalberQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSalberL Latitude/longitude check
int CSalberL (Const struct cs_Alber_ *alber,int cnt,Const double pnts
[][3]);

CSalberL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the alber argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSalbersL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSalberL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CSalberX Xy coordinate check
int CSalberX (Const struct cs-Alber_ *alber,int cnt,Const double pnts
[][3]);

CSalberX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the alber argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSalbersX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSalberL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSalberS Setup
void CSalberS (struct cs_Csprm_ *csprm);

The CSalberS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallels, the origin latitude and longitude,
and other projection parameters are known, there are many calculations that need only be performed
once. CSalberS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the single argument provided to CSalberS serves as the
source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure

 Chapter 4 Chatper 4 -- Library Functions 133

that must be initialized for the Albers projection are:

prj_prm1 Latitude, in degrees, of the northern standard parallel. Unlike
other conics, it is important to distinguish between the northern
and southern standard parallels for the Albers.

prj_prm2 Latitude, in degrees, of the southern standard parallel. This is,
rarely, the same as prj_prm1, to obtain a conic with a single
point of tangency.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, selected to
cause all X coordinates within the coordinate system to be
positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Quad an integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Alber_ Structure

The results of the one-time calculations are recorded in the alber element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSalberF, CSalberI,

134 CS-MAP User's Guide User's Guide

CSalberK, CSalberH, and CSalberC functions require as their first argument.

American Polyconic Projection (CSplycn)

This set of functions represent the Coordinate System Mapping Package's knowledge of the American
Polyconic Projection.

CSplycnF Forward conversion
int CSplycnF (Const struct cs_Plycn_ *plycn,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Plycn_ structure via the plycn argument, CSplycnF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSplycnF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSplycnI Inverse conversion
int CSplycnI (Const struct cs_Plycn_ *plycn,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Plycn_ structure via the plycn argument, CSplycnI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSplycnI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the ll and xy arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSplycnK grid scale (K) along parallel
double CSplycnK (Const struct cs_Plycn_ *plycn,Const double ll [2]);

CSplycnK returns the value 1.0 which represents the grid scale along a parallel of any coordinate
system based on this projection at any location.

CSplycnH grid scale (H) along meridian
double CSplycnH (Const struct cs_Plycn_ *plycn,Const double ll [2]);

CSplycnH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSplycnC Convergence angle
double CSplycnC (Const struct cs_Plycn_ *plycn,Const double ll [2]);

CSplycnC returns the convergence angle in degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. At the current
time, definitive formulas for the convergence angle of this projection elude us. The convergence angle
is computed using the CS_llazdd function.

 Chapter 4 Chatper 4 -- Library Functions 135

CSplycnQ definition Quality check
int CSplycnQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSplycnQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the American Polyconic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSplycnQ only examines those components specific to the American Polyconic
Projection. CSplycnQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSplycnQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSplycnL Latitude/longitude check
int CSplycnL (Const struct cs_Plycn_ *plycn,int cnt,Const double pnts
[][3]);

CSplycnL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the plycn argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSplycnsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSplycnL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSplycnX Xy coordinate check
int CSplycnX (Const struct cs_Plycn_ *plycn,int cnt,Const double pnts
[][3]);

CSplycnX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the plycn argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSplycnsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSplycnL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSplycnS Setup
void CSplycnS (struct cs_Csprm_ *csprm);

The CSplycnS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSplycnS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CSplycnS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;

136 CS-MAP User's Guide User's Guide

but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the American Polyconic projection are:

prj_prm1 Longitude, in degrees, of the central meridian.

 org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Plycn_ Structure

The results of the one-time calculations are recorded in the plycn element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSplycnF, CSplycnI,
CSplycnK, CSplycnH, and CSplycnC functions require as their first argument.

Azimuthal Equal Area Projection (CSazmea)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Lambert
Azimuthal Equal Area Projection.

CsazmeaF Forward conversion
int CSazmeaF (Const struct cs_Azmea_ *azmea,double xy [2],Const double ll

 Chapter 4 Chatper 4 -- Library Functions 137

[2]);

Given a properly initialized cs_Azmea_ structure via the azmea argument, CSazmeaF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSazmeaF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSazmeaI Inverse conversion
int CSazmeaI (Const struct cs_Azmea_ *azmea,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Azmea_ structure via the azmea argument, CSazmeaI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSazmeaI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CsazmeaK grid scale (K) normal
double CSazmeaK (Const struct cs_Azmea_ *azmea,Const double ll [2]);

CSazmeaK returns the grid scale factor normal to the radial at the geodetic location specified by the ll
argument. In the case of the ellipsoidal form of this projection, analytical formulas for this value have
not been located and the result is arrived at using the CS_llazdd function.

CSazmeaH grid scale (H) radial
double CSazmeaH (Const struct cs_Azmea_ *azmea,Const double ll [2]);

CSazmeaH returns the grid scale factor along a radial line from the coordinate system origin to the point
provided. Since this projection is authalic (i.e. equal area), the value returned is the reciprocal of that
returned by CSazmeaK.

CSazmeaC Convergence angle
double CSazmeaC (Const struct cs_Azmea_ *azmea,Const double ll [2]);

CSazmeaC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_llazdd function.

CSazmeaQ definition Quality check
int CSazmeaQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
 int *err_list [],int list_sz);

CSazmeaQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Azimuthal Equal Area Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSazmeaQ only examines those components specific to the Azimuthal Equal
Area Projection. CSazmeaQ returns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description
of the various error codes and their meaning. CSazmeaQ may be called with the NULL pointer and/or a

138 CS-MAP User's Guide User's Guide

zero for the err_list and list_sz arguments respectively.

CSazmeaL Latitude/longitude check
int CSazmeaL (Const struct cs_Azmea_ *azmea,int cnt,Const double pnts
[][3]);

CSazmeaL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the azmea argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSazmeasL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSazmeaL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSazmeaX Xy coordinate check
int CSazmeaX (Const struct cs_Azmea_ *azmea,int cnt,Const double pnts
[][3]);

CSazmeaX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the azmea argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSazmeasX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSazmeaL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSazmeaS Setup
void CSazmeaS (struct cs_Csprm_ *csprm);

The CSazmeaS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, and other projection
parameters are known, there are many calculations that need only be performed once. CSazmeaS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the argument provided to CSazmeaS serves as the source for input and the
repository for the results as described below

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

The following parameters must be set:

 Chapter 4 Chatper 4 -- Library Functions 139

prj_prm1 The azimuth, in degrees east of north, of the positive Y-axis of
the coordinate system.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is the
Y coordinate of the coordinate system origin.

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Azmea_ Structure

The results of the one-time calculations are recorded in the azmea element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSazmeaF, CSazmeaI,
CSazmeaK, CSazmeaH, and CSazmeaC functions require as their first argument.

140 CS-MAP User's Guide User's Guide

Azmuthal Equidistant Projection (Csazmed)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Azimuthal
Equidistant Projection.

CSazmedF Forward conversion
int CSazmedF (Const struct cs_Azmed_ *azmed,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Azmed_ structure via the azmed argument, CSazmedF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSazmedF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSazmedI Inverse conversion
int CSazmedI (Const struct cs_Azmed_ *azmed,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Azmed_ structure via the azmed argument, CSazmedI will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSazmedI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSazmedK grid scale (K) normal
double CSazmedK (Const struct cs_Azmed_ *azmed,Const double ll [2]);

CSazmedK returns the grid scale factor normal to the radial at the geodetic location specified by the ll
argument. In the case of the ellipsoidal form of this projection, analytical formulas for this value have
not been located and the result is arrived at using the CS_llazdd function.

CSazmedH grid scale (H) radial
double CSazmedH (Const struct cs_Azmed_ *azmed,Const double ll [2]);

CSazmedH returns the value 1.0; the scale at any point in the direction of a line emanating from the
origin and passing through the any point of any coordinate system based on this projection. (This is
what makes this projection an Equidistant Projection.)

CSazmedC Convergence angle
double CSazmedC (Const struct cs_Azmed_ *azmed,Const double ll [2]);

CSazmedC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_llazdd function.

CSazmedQ definition Quality check
int CSazmedQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
 int *err_list [],int list_sz);

CSazmedQ determines if the coordinate system definition provided by the csdef argument is consistent

 Chapter 4 Chatper 4 -- Library Functions 141

with the requirements of the Azimuthal Equidistant Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSazmedQ only examines those components specific to the Azimuthal
Equidistant Projection. CSazmedQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a
description of the various error codes and their meaning. CSazmedQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSazmedL Latitude/longitude check
int CSazmedL (Const struct cs_Azmed_ *azmed,int cnt,Const double pnts
[][3]);

CSazmedL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the azmed argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSazmedsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSazmedL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSazmedX Xy coordinate check
int CSazmedX (Const struct cs_Azmed_ *azmed,int cnt,Const double pnts
[][3]);

CSazmedX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the azmed argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSazmedsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSazmedL
returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSazmedS Setup
void CSazmedS (struct cs_Csprm_ *csprm);

The CSazmedS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, and other projection
parameters are known, there are many calculations that need only be performed once. CSazmedS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the first argument provided to CSazmedS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_ structure.
Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function; but can be
provided by the application at run time. There are two variations to this projection:

142 CS-MAP User's Guide User's Guide

 Lambert Azimuthal Equidistant (cs_PRJCOD_AZMED)
 Lambert Azimuthal Equidistant, Elevated Ellipsoid (cs_PRJCOD_AZEDE)

The following parameters are common to both variations:

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Lambert Azimuthal Equidistant Projection

This is the traditional variation of the Lambert Azimuthal Equidistant projection. Note that it differs
slightly from many other implementations in that it accepts a parameter value for the azimuth of the Y
axis relative to true north. This provides support for local/company coordinate system. Even better
local/company coordinate system support is provided by the Lambert Azimuthal Equidistant, Elevated
Ellipsoid variation.

The parameter must be specified in degrees east of north. An azimuth west of north would be
specified with a negative value.

The following parameters must be set:

prj_prm1 The azimuth, in degrees east of north, of the positive
Y-axis of the coordinate system.

Lambert Azimuthal Equidistant, Elevated Ellipsoid
(cs_PRJCOD_AZEDE)

This variation of the Lambert Azimuthal Equidistant projection accepts an average elevation parameter
which is added to the equatiorial radii of the ellipsoid. This better enbales CS-MAP to emulate a
local/company coordinate system.

 Chapter 4 Chatper 4 -- Library Functions 143

The parameter must be specified in system units. That is, if the coordinate system unit is, say, FEET;
the average elevation must also be specified in feet.

The following parameters must be set:

prj_prm1 The azimuth, in degrees east of north, of the positive
Y-axis of the coordinate system.

prj_prm2 The average elevation in the region of the system,
expressed in coordinate system units.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Azmed_ Structure

The results of the one-time calculations are recorded in the azmed element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSazmedF, CSazmedI,
CSazmedK, CSazmedH, and CSazmedC functions require as their first argument.

Bonne Projection Projection (CSbonne)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Bonne
Projection. Setting the standard parallel equal to the equator produces a Sinusoidal Projection.
Setting the standard parallel to either pole produces the Werner Projection.

CSbonneF Forward conversion
int CSbonneF (Const struct cs_Bonne_ *bonne,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Bonne_ structure via the bonne argument, CSbonneF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSbonneF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSbonneI Inverse conversion
int CSbonneI (Const struct cs_Bonne_ *bonne,double ll [2],Const double xy

144 CS-MAP User's Guide User's Guide

[2]);

Given a properly initialized cs_Bonne_ structure via the bonne argument, CSbonneI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSbonneI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSbonneK parallel scale (K)
double CSbonneK (Const struct cs_Bonne_ *bonne,Const double ll [2]);

CSbonneK returns the value 1.0 which is the grid scale factor, along any parallel, of the coordinate
system at the specific geodetic location defined by the latitude and longitude provided in the ll array.

CSbonneH meridian scale (H)
double CSbonneH (Const struct cs_Bonne_ *bonne,Const double ll [2]);

CSbonneK returns the grid scale, along a meridian, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the ll array. Analytical formulas for this value
have not been located and the result is arrived at using the CS_llazdd function.

CSbonneC Convergence angle
double CSbonneC (Const struct cs_Bonne_ *bonne,Const double ll [2]);

CSbonneC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the ll array. Analytical formulas for this value have not
been located and the result is arrived at using the CS_llazdd function.

CSbonneQ definition Quality check
int CSbonneQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
 int *err_list [],int list_sz);

CSbonneQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Boone Projection. CS_cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CSbonneQ only examines those components specific to the Bonne Projection. CSbonneQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CSbonneQ may be called with the NULL pointer and/or a zero for the err_list and
list_sz arguments respectively.

CSbonneL Latitude/longitude check
int CSbonneL (Const struct cs_Bonne_ *bonne,int cnt,Const double pnts
[][3]);

CSbonneL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the bonne argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSbonnesL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus

 Chapter 4 Chatper 4 -- Library Functions 145

defined. CSbonneL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CSbonneX Xy coordinate check
int CSbonneX (Const struct cs_Bonne_ *bonne,int cnt,Const double pnts
[][3]);

CSbonneX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the bonne argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSbonnesX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSbonneL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSbonneS Setup
void CSbonneS (struct cs_Csprm_ *csprm);

The CSbonneS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallel, the origin longitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSbonneS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CSbonneS serves as the source for input
and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Bonne Projection are:

146 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees, of the central meridian of the
projection.

org_lat The latitude, in degrees, of the standard parallel of the
projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Bonne_ Structure

The results of the one-time calculations are recorded in the bonne element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSbonneF, CSbonneI,
CSbonneK, CSbonneH, and CSbonneC functions require as their first argument.

Bipolar Oblique Conformal Conic Projection (CSbpcnc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Bipolar
Oblique Conformal Conic Projection. This projection was developed, by O. M. Miller (of Miller
Cylindrical fame), specifically for mapping both the North American and South American continents on
the same conformal map. This projection is supported for the sphere only. The equatorial radius of

 Chapter 4 Chatper 4 -- Library Functions 147

the referenced ellipsoid is used as the radius of the sphere.

CSbpcncF Forward conversion
int CSbpcncF (Const struct cs_Bpcnc_ *bpcnc,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Bpcnc_ structure via the bpcnc argument, CSbpcncF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSbpcncF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSbpcncI Inverse conversion
int CSbpcncI (Const struct cs_Bpcnc_ *bpcnc,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Bpcnc_ structure via the bpcnc argument, CSbpcncI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSbpcncI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSbpcncK parallel scale (K)
double CSbpcncK (Const struct cs_Bpcnc_ *bpcnc,Const double ll [2]);

CSbpcncK returns the grid scale factor, as measured along a parallel, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. Since this is a
conformal projection, there is no H function as the scale along a meridian equals the scale along a
parallel.

CSbpcncC Convergence angle
double CSbpcncC (Const struct cs_Bpcnc_ *bpcnc,Const double ll [2]);

CSbpcncC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the ll array. At the current time, formulas that
analytically define the convergence angle for this projection elude us. Thus, the convergence angle is
determined empirically through the use of the CS_llazdd function.

CSbpcncQ definition Quality check
int CSbpcncQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSbpcncQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Bi-Polar Conformal Conic Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSbpcncQ only examines those components specific to the Bi-Polar Conformal
Conic Projection. CSbpcncQ returns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description
of the various error codes and their meaning. CSbpcncQ may be called with the NULL pointer and/or a
zero for the err_list and list_sz arguments respectively.

148 CS-MAP User's Guide User's Guide

CSbpcncL Latitude/longitude check
int CSbpcncL (Const struct cs_Bpcnc_ *bpcnc,int cnt,Const double pnts
[][3]);

CSbpcncL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the bpcnc argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSbpcncsL's return
value will apply to all coordinates, coordinates on the great circles, and all coordinates within the
regions thus defined. CSbpcncL returns cs_CNVRT_OK if all subject coordinates are within the
mathematical domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the
subject geographic coordinates are outside of the mathematical domain of the coordinate system.

CSbpcncX Xy coordinate check
int CSbpcncX (Const struct cs_Bpcnc_ *bpcnc,int cnt,Const double pnts
[][3]);

CSbpcncX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the bpcnc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSbpcncsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSbpcncL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSbpcncS Setup
void CSbpcncS (struct cs_Csprm_ *csprm);

The CSbpcncS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the poles, the standard parallels, and other projection
parameters are known, there are many calculations that need only be performed once. CSbpcncS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CSbpcncS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. As far as we know, this projection is usually used
only for the specific coordinate system for which it was invented. However, to remain consistent with
the rest of CS-MAP, the following parameters can be specified. These parameters specify the location
of the two poles upon which the projection is based. The first is always specified by latitude and
longitude. The latitude of the second pole must always be specified. However, the longitude of the
second pole can be specified either directly (prj_prm3) or as an angular distance from the first pole
(prj_prm5). If prj_prm5 is greater than zero, the second method is used. In the listing of parameters
given below, the values used for the specific map for which this projection was developed are given.
The specific elements of the cs_Csdef_ structure that must be initialized for the Bipolar Oblique
Conformal Projection are:

 Chapter 4 Chatper 4 -- Library Functions 149

prj_prm1 Longitude, in degrees, of the first pole (usually the southwest). [-
110.0]

prj_prm2 Latitude, in degrees, of the first pole. [-20.0]

prj_prm3 Longitude, in degrees, of the second pole (usually the northeast).
[-19.99333333333]

prj_prm4 Latitude, in degrees, of the second pole. [+45.0]

prj_prm5 If greater than zero, this value is considered to be the angular
distance, in degrees, from the first pole to the second pole and
the longitude of the second pole is computed as such. If this
value is less than or equal to zero, the value provided in
prj_prm3 is considered the longitude of the second pole.
[+104.0]

prj_prm6 Angular distance, in degrees, from either pole to the first of two
standard parallels. [+31.0]

prj_prm7 Angular distance, in degrees, from either pole to the second of
two standard parallels. [+73.0]

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied. [1.0]

 x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. [0.0]

 y_off The false northing to be applied to all Y coordinates. [0.0]

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

150 CS-MAP User's Guide User's Guide

e_rad The radius of the earth, as a sphere, in meters.

cs_Bpcnc_ Structure

The results of the one-time calculations are recorded in the bpcnc element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSbpcncF, CSbpcncI,
CSbpcncK, CSbpcncH, CSbpcncC, and CSbpcncB functions require as their first argument.

Cassini Projection (CScsini)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Cassini
Projection

CScsiniF Forward
int CScsiniF (Const struct cs_Csini_ *csini,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Csini_ structure via the csini argument, CScsiniI will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CScsiniF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CScsiniI Inverse
int CScsiniI (Const struct cs_Csini_ *csini,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Csini_ structure via the csini argument, CScsiniI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CScsiniI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CScsiniK parallel scale (K)
double CScsiniK (Const struct cs_Csini_ *csini,Const double ll [2]);

CScsiniK returns the grid scale factor along a line normal to the central meridian of the coordinate
system at the geographic location defined by the latitude and longitude provided in the ll array. It is a
specific feature of this projection that this scale factor is unity.

CScsiniH meridian scale (H)
double CScsiniH (Const struct cs_Csini_ *csini,Const double ll [2]);

CScsiniH returns the grid scale factor along a line parallel to the central meridian of the coordinate
system at the geographic location defined by the latitude and longitude provided in the ll array.

CScsiniC Convergence angle
double CScsiniC (Const struct cs_Csini_ *csini,Const double ll [2]);

 Chapter 4 Chatper 4 -- Library Functions 151

CScsiniC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. As analytical
formulas for this quantity have not yet been located, the result is arrived at empirically using CS_aslldd.

CScsiniQ definition Quality check
int CScsiniQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CScsiniQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Cassini Projection. CS_cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CScsiniQ only examines those components specific to the Cassini Projection. CScsiniQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CScsiniQ may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

CScsiniL Latitude/longitude check
int CScsiniL (Const struct cs_Csini_ *csini,int cnt,Const double pnts
[][3]);

CScsiniL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the csini argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CScsinisL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CScsiniL returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain
the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CScsiniX Xy coordinate check
int CScsiniX (Const struct cs_Csini_ *csini,int cnt,Const double pnts
[][3]);

CScsiniX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the csini argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CScsinisX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CScsiniL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CScsiniS Setup
void CScsiniS (struct cs_Csprm_ *csprm);

The CScsiniS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CScsiniS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CScsiniS serves as the source for input and
the repository for the results as described below.

152 CS-MAP User's Guide User's Guide

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Cassini projection are:

prj_prm1 Longitude, in degrees, of the central meridian.

org_lat The latitude, in degrees, of the origin of the projection.

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units,
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Quad an integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Csini_ Structure

The results of the one-time calculations are recorded in the csini element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CScsiniF, CScsiniI,
CScsiniK, CScsiniH, and CScsiniC functions require as their first argument.

 Chapter 4 Chatper 4 -- Library Functions 153

Danish System 34 (CSsys34)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Danish
System 34 Projection. This projection is supported in ellipsoid form only; and most ordinary
parameters are hard coded and selected via the 'region' (prj_prm1) parameter.

CSsys34C Convergence angle
double CSsys34C (Const struct cs_Sys34_ *sys34,Const double ll [2]);

CSsys34C returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azlld function.

CSsys34F Forward conversion
int CSsys34F (Const struct cs_Sys34_ *sys34,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Sys34_ structure via the sys34 argument, CSsys34F will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSsys34F normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSsys34I Inverse conversion
int CSsys34I (Const struct cs_Sys34_ *sys34,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Sys34_ structure via the sys34 argument, CSsys34I will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSsys34I normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSsys34K parallel scale (K)
double CSsys34K (Const struct cs_Sys34_ *sys34,Const double ll [2]);

CSsys34K returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of the CS_llazdd function.

CSsys34H meridian scale (H)
double CSsys34H (Const struct cs_Sys34_ *sys34,Const double ll [2]);

CSsys34H returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of the CS_llazdd function.

CSsys34L Latitude/longitude check
int CSsys34L (Const struct cs_Sys34_ *sys34,int cnt,Const double pnts
[][3]);

154 CS-MAP User's Guide User's Guide

CSsys34L determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the sys34 argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSsys34sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSsys34L returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSsys34Q definition Quality check
int CSsys34Q (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSsys34Q determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Danish System 34 Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSsys34Q only examines those components specific to the Danish System 34
Projection. CSsys34Q returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSsys34Q may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSsys34X Xy coordinate check
int CSsys34X (Const struct cs_Sys34_ *sys34,int cnt,Const double pnts
[][3]);

CSsys34X determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the sys34 argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSsys34sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSsys34L returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSsys34S Setup (general)
void CSsys34S (struct cs_Csprm_ *csprm);

The CSsys34S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the zone and other projection parameters are known,
there are many calculations that need only be performed once. CSsys34S performs these calculations
and saves the results in the cs_Csprm_ structure provided by its argument, csprm. Thus, the
argument provided to CSsys34S serves as the source for input and the repository for the results as
described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

The following parameters must be set:

 Chapter 4 Chatper 4 -- Library Functions 155

prj_prm1 Indicates which of the three regions is to apply:

 1.0 ==> jylland;

 2.0 ==> sjælland,

 3.0 ==> bornholm.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to be
swapped after the coordinates have been placed in the indicated
quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Sys34_ Structure

The results of the one-time calculations are recorded in the sys34 element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSsys344F, CSsys344I,
CSsys344K, CSsys344H, and CSsys34C functions require as their first argument.

Equidistant Conic Projection (CSedcnc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Equidistant Conic Projection, also known as the Simple Conic Projection.

CSedcncF Forward conversion
int CSedcncF (Const struct cs_Edcnc_ *edcnc,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Edcnc_ structure via the edcnc argument, CSedcncF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSedcncF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSedcncI Inverse conversion
int CSedcncI (Const struct cs_Edcnc_ *edcnc,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Edcnc_ structure via the edcnc argument, CSedcncI will convert the X

156 CS-MAP User's Guide User's Guide

and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSedcncI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSedcncK parallel scale (K)
double CSedcncK (Const struct cs_Edcnc_ *edcnc,Const double ll [2]);

CSedcncK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSedcncH meridian scale (H)
double CSedcncH (Const struct cs_Edcnc_ *edcnc,Const double ll [2]);

CSedcncH returns the value of 1.0 that represents the grid scale, along a meridian, of the coordinate
system at the specific geodetic location defined by the latitude and longitude provided in the ll array.
That is, all distances meaured along a meridian of this projection are true to scale, the essence of this
projection.

CSedcncC Convergence angle
double CSedcncC (Const struct cs_Edcnc_ *edcnc,Const double ll [2]);

CSedcncC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the ll array.

CSedcncQ definition Quality check
int CSedcncQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSedcncQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Equidistant Conic Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSedcncQ only examines those components specific to the Equidistant Conic
Projection. CSedcncQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSedcncQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSedcncL Latitude/longitude check
int CSedcncL (Const struct cs_Edcnc_ *edcnc,int cnt,Const double pnts
[][3]);

CSedcncL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the edcnc argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSedcncsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSedcncL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject

 Chapter 4 Chatper 4 -- Library Functions 157

geographic coordinates are outside of the mathematical domain of the coordinate system.

CSedcncX Xy coordinate check
int CSedcncX (Const struct cs_Edcnc_ *edcnc,int cnt,Const double pnts
[][3]);

CSedcncX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the edcnc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSedcncsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSedcncL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSedcncS Setup
void CSedcncS (struct cs_Csprm_ *csprm);

The CSedcncS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallels, the origin latitude and longitude,
and other projection parameters are known, there are many calculations that need only be performed
once. CSedcncS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the single argument provided to CSedcncS serves as the
source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Equidistant Conic projection are:

158 CS-MAP User's Guide User's Guide

prj_prm1 Latitude, in degrees, of the first standard parallel, usually the
northernmost (it makes no difference).

prj_prm2 Latitude, in degrees, of the second standard parallel, usually the
southernmost. This is, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency (i.e. a single standard
parallel).

org_lng The longitude, in degrees, of the origin of the projection.

 org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

 quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Edcnc_ Structure

The results of the one-time calculations are recorded in the edcnc element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSedcncF, CSedcncI,
CSedcncK, CSedcncH, and CSedcncC functions require as their first argument.

 Chapter 4 Chatper 4 -- Library Functions 159

Equidistant Cylindrical Projection (CSedcyl)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Equidistant Cylindrical Projection. This projection is supported in spherical form only. The equatorial
radius of the supplied ellipsoid is used as the radius of the sphere. This projection is also known as the
Equirectangular or Rectangular projection. When the reference latitude of this projection is set to zero
(i.e. the equator) the result is equivalent to what is known as the Plate Carrée or Simple Cylindrical
projection. When the reference latitude is set to 45? (north or south), a Gall Isographic projection
results.

CSedcylF Forward conversion
int CSedcylF (Const struct cs_Edcyl_ *edcyl,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Edcyl_ structure via the edcyl argument, CSedcylF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSedcylF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSedcylI Inverse conversion
int CSedcylI (Const struct cs_Edcyl_ *edcyl,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Edcyl_ structure via the edcyl argument, CSedcylI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSedcylI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSedcylK parallel scale (K)
double CSedcylK (Const struct cs_Edcyl_ *edcyl,Const double ll [2]);

CSedcylK returns the grid scale factor along a parallel at the geodetic location specified by the ll
argument.

CSedcylH meridional scale (H)
double CSedcylH (Const struct cs_Edcyl_ *edcyl,Const double ll [2]);

CSedcylH returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument.

CSedcylC Convergence angle
double CSedcylC (Const struct cs_Edcyl_ *edcyl,Const double ll [2]);

CSedcylC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_azsphr function.

CSedcylQ definition Quality check
int CSedcylQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

160 CS-MAP User's Guide User's Guide

 int *err_list [],int list_sz);

CSedcylQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Equidistant Cylindrical Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSedcylQ only examines those components specific to the Equidistant Cylindrical
Projection. CSedcylQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSedcylQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSedcylL Latitude/longitude check
int CSedcylL (Const struct cs_Edcyl_ *edcyl,int cnt,Const double pnts
[][3]);

CSedcylL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the edcyl argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSedcylsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSedcylL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSedcylX Xy coordinate check
int CSedcylX (Const struct cs_Edcyl_ *edcyl,int cnt,Const double pnts
[][3]);

CSedcylX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the edcyl argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSedcylsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSedcylL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSedcylS Setup
void CSedcylS (struct cs_Csprm_ *csprm);

The CSedcylS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the reference parallel, origin longitude, and other
projection parameters are known, there are many calculations which need only be performed once.
CSedcylS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the argument provided to CSedcylS serves as the source for input and the
repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

 Chapter 4 Chatper 4 -- Library Functions 161

prj_prm1 The latitude, in degrees, of the reference parallel.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Edcyl_ Structure

The results of the one-time calculations are recorded in the edcyl element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSedcylF, CSedcylI,
CSedcylK, CsedcylH, and CSedcylC functions require as their first argument.

Eckert IV Projection (CSekrt4)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Eckert IV
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSekrt4F Forward conversion
int CSekrt4F (Const struct cs_Ekrt4_ *ekrt4,double xy [2],Const double ll
[2]);

162 CS-MAP User's Guide User's Guide

Given a properly initialized cs_Ekrt4_ structure via the ekrt4 argument, CSekrt4F will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSekrt4F normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSekrt4I Inverse conversion
int CSekrt4I (Const struct cs_Ekrt4_ *ekrt4,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Ekrt4_ structure via the ekrt4 argument, CSekrt4I will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSekrt4I normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSekrt4K parallel scale (K)
double CSekrt4K (Const struct cs_Ekrt4_ *ekrt4,Const double ll [2]);

CSekrt4K returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSekrt4H meridian scale (H)
double CSekrt4H (Const struct cs_Ekrt4_ *ekrt4,Const double ll [2]);

CSekrt4H returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSekrt4C Convergence angle
double CSekrt4C (Const struct cs_Ekrt4_ *ekrt4,Const double ll [2]);

CSekrt4C returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CSekrt4Q definition Quality check
int CSekrt4Q (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSekrt4Q determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Eckert IV Projection. CS_cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CSekrt4Q only examines those components specific to the Eckert IV Projection. CSekrt4Q
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CSekrt4Q may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

 Chapter 4 Chatper 4 -- Library Functions 163

CSekrt4L Latitude/longitude check
int CSekrt4L (Const struct cs_Ekrt4_ *ekrt4,int cnt,Const double pnts
[][3]);

CSekrt4L determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ekrt4 argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSekrt4sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSekrt4L returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSekrt4X Xy coordinate check
int CSekrt4X (Const struct cs_Ekrt4_ *ekrt4,int cnt,Const double pnts
[][3]);

CSekrt4X determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ekrt4 argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSekrt4sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSekrt4L returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSekrt4S Setup (general)
void CSekrt4S (struct cs_Csprm_ *csprm);

The CSekrt4S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations that need only be performed once. CSekrt4S performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm. Thus,
the argument provided to CSekrt4S serves as the source for input and the repository for the results as
described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

164 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees, of the origin of the projection
(central meridian).

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Ekrt4 Structure

The results of the one-time calculations are recorded in the ekrt4 element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSekrt4F, CSekrt4I,
CSekrt4K, CSekrt4H, and CSekrt4C functions require as their first argument.

Eckert VI Projection (CSekrt6)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Eckert VI
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSekrt6F Forward conversion
int CSekrt6F (Const struct cs_Ekrt6_ *ekrt6,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Ekrt6_ structure via the ekrt6 argument, CSekrt6F will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSekrt6F normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate

 Chapter 4 Chatper 4 -- Library Functions 165

system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSekrt6I Inverse conversion
int CSekrt6I (Const struct cs_Ekrt6_ *ekrt6,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Ekrt6_ structure via the ekrt6 argument, CSekrt6I will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSekrt6I normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSekrt6K parallel scale (K)
double CSekrt6K (Const struct cs_Ekrt6_ *ekrt6,Const double ll [2]);

CSekrt6K returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSekrt6H meridian scale (H)
double CSekrt6H (Const struct cs_Ekrt6_ *ekrt6,Const double ll [2]);

CSekrt6H returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSekrt6C Convergence angle
double CSekrt6C (Const struct cs_Ekrt6_ *ekrt6,Const double ll [2]);

CSekrt6C returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CSekrt6Q definition Quality check
int Csekrt6Q (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSekrt6Q determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Eckert VI Projection. CS_cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CSekrt6Q only examines those components specific to the Eckert VI Projection. CSekrt6Q
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CSekrt6Q may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

CSekrt6L Latitude/longitude check
int Csekrt6L (Const struct cs_Ekrt6_ *ekrt4,int cnt,Const double pnts
[][3]);

166 CS-MAP User's Guide User's Guide

CSekrt6L determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ekrt6 argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSekrt6sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSekrt6L returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSekrt6X Xy coordinate check
int Csekrt6X (Const struct cs_Ekrt6_ *ekrt4,int cnt,Const double pnts
[][3]);

CSekrt6X determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ekrt6 argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSekrt6sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSekrt6L returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSekrt6S Setup (general)
void CSekrt6S (struct cs_Csprm_ *csprm);

The CSekrt6S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations which need only be performed once. CSekrt6S performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm. Thus,
the argument provided to CSekrt6S serves as the source for input and the repository for the results as
described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

 Chapter 4 Chatper 4 -- Library Functions 167

org_lng The longitude, in degrees, of the origin of the projection (central
meridian).

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. This is the X coordinate
of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is the
Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Ekrt6_ Structure

The results of the one-time calculations are recorded in the ekrt6 element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSekrt6F, CSekrt6I,
CSekrt6K, CSekrt6H, and CSekrt6C functions require as their first argument.

Gnomonic Projection (CSgnomc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Gnomonic
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

The Gnomonic projection cannot process locations that are 90 degrees or more away from the
projection origin. Coordinates that exceed this limit are adjusted to fall on the great circle that defines
this limit.

CsgnomcF Forward conversion
int CSgnomcF (Const struct cs_Gnomc_ *gnomc,double xy [2],Const double ll

168 CS-MAP User's Guide User's Guide

[2]);

Given a properly initialized cs_Gnomc_ structure via the gnomc argument, CSgnomcF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSgnomcF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CsgnomcI Inverse conversion
int CSgnomcI (Const struct cs_Gnomc_ *gnomc,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Gnomc_ structure via the gnomc argument, CSgnomcI will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSgnomcI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CsgnomcK grid scale (K) normal to radial
double CSgnomcK (Const struct cs_Gnomc_ *gnomc,Const double ll [2]);

CSgnomcK returns the grid scale factor normal to the radial at the geodetic location specified by the ll
argument.

CsgnomcH grid scale (H) along radial
double CSgnomcH (Const struct cs_Gnomc_ *gnomc,Const double ll [2]);

CSgnomcH returns the grid scale factor along a radial from the coordinate system origin to (and at) the
geodetic location specified by the ll argument.

CsgnomcC Convergence angle
double CSgnomcC (Const struct cs_Gnomc_ *gnomc,Const double ll [2]);

CSgnomcC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CsgnomcL Latitude/longitude check
int CSgnomcL (Const struct cs_Gnomc_ *gnomc,int cnt,Const double pnts
[][3]);

CSgnomcL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the gnomc argument. The pnts and cnt arguments can define a
single coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSgnomcsL's return
value will apply to all coordinates, coordinates on the great circles, and all coordinates within the
regions thus defined. CSgnomcL returns cs_CNVRT_OK if all subject coordinates are within the
mathematical domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the
subject geographic coordinates are outside of the mathematical domain of the coordinate system.

CSgnomcQ definition Quality check
int CSgnomcQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 Chapter 4 Chatper 4 -- Library Functions 169

 int *err_list [],int list_sz);

CSgnomcQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Gnomonic Projection. CS_cschk examines those definition components
that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSgnomcQ only examines those components specific to the Gnomonic Projection.
CSgnomcQ returns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the various
error codes and their meaning. CSgnomcQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CsgnomcX Xy coordinate check
int CSgnomcX (Const struct cs_Gnomc_ *gnomc,int cnt,Const double pnts
[][3]);

CSgnomcX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the gnomc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSgnomcsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSgnomcL
returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSgnomcS Setup
void CSgnomcS (struct cs_Csprm_ *csprm);

The CSgnomcS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude and other projection
parameters are known, there are many calculations that need only be performed once. CSgnomcS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the argument provided to CSgnomcS serves as the source for input and the
repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

170 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Gnomc_ Structure

The results of the one-time calculations are recorded in the gnomc element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSgnomcF, CSgnomcI,
CSgnomcK, CSgnomcH, and CSgnomcC functions require as their first argument.

Goode Homolosine Projection (CShmlsn)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Goode
Homolosine Projection. This projection is supported in spherical form only. The equatorial radius of
the supplied ellipsoid is used as the radius of the sphere.

CShmlsnF Forward conversion
int CShmlsnF (Const struct cs_Hmlsn_ *hmlsn,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Hmlsn_ structure via the hmlsn argument, CShmlsnF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy

 Chapter 4 Chatper 4 -- Library Functions 171

array. CShmlsnF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CShmlsnI Inverse conversion
int CShmlsnI (Const struct cs_Hmlsn_ *hmlsn,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Hmlsn_ structure via the hmlsn argument, CShmlsnI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CShmlsnI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CShmlsnK parallel scale (K)
double CShmlsnK (Const struct cs_Hmlsn_ *hmlsn,Const double ll [2]);

CShmlsnK returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CShmlsnH meridian scale (H)
double CShmlsnH (Const struct cs_Hmlsn_ *hmlsn,Const double ll [2]);

CShmlsnH returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CShmlsnC Convergence angle
double CShmlsnC (Const struct cs_Hmlsn_ *hmlsn,Const double ll [2]);

CShmlsnC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CShmlsnQ definition Quality check
int CShmlsnQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CShmlsnQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Goode Homolosine Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CShmlsnQ only examines those components specific to the Goode Homolosine
Projection. CShmlsnQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CShmlsnQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CShmlsnL Latitude/longitude check
int CShmlsnL (Const struct cs_Hmlsn_ *hmlsn,int cnt,Const double pnts

172 CS-MAP User's Guide User's Guide

[][3]);

CShmlsnL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the hmlsn argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CShmlsnsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CShmlsnL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CShmlsnX Xy coordinate check
int CShmlsnX (Const struct cs_Hmlsn_ *hmlsn,int cnt,Const double pnts
[][3]);

CShmlsnX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the hmlsn argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CShmlsnsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CShmlsnL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CShmlsnS Setup (general)
void CShmlsnS (struct cs_Csprm_ *csprm);

The CShmlsnS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations which need only be performed once. CShmlsnS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the argument provided to CShmlsnS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

 Chapter 4 Chatper 4 -- Library Functions 173

org_lng The longitude, in degrees, of the origin of the projection
(central meridian).

prj_prm1-24 The interrupted form of the Goode Homolosine Projection is
fully supported. cs_Csdef_ elements prj_prm1 thru
prj_prm24 can be used to specify the extents of the different
zones. See CS_zones for information on how to encode
zones.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

 x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Hmlsn_ Structure

The results of the one-time calculations are recorded in the hmlsn element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CShmlsnF, CShmlsnI,
CShmlsnK, CShmlsnH, and CShmlsnC functions require as their first argument.

Hotine Oblique Mercator Projection (CSoblqm)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Hotine
Oblique Mercator Projection. Since this projection is conformal, the K and H scale factors are the
same and there is no H function. Six variations of this projection are supported.

174 CS-MAP User's Guide User's Guide

CSoblqmF Forward conversion
int CSoblqmF (Const struct cs_Oblqm_ *oblqm,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Oblqm_ structure via the oblqm argument, CSoblqmF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSoblqmF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSoblqmI Inverse conversion
int CSoblqmI (Const struct cs_Oblqm_ *oblqm,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Oblqm_ structure via the oblqm argument, CSoblqmI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSoblqmI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSoblqmK scale (K)
double CSoblqmK (Const struct cs_Oblqm_ *oblqm,Const double ll [2]);

CSoblqmK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array. This is calculated using
CS_llazdd as we have been unable to locate definitive formulas for the grid scale factor for this
projection.

CSoblqmC Convergence angle
double CSoblqmC (Const struct cs_Oblqm_ *oblqm,Const double ll [2]);

CSoblqmC returns the convergence angle is degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. This is
calculated using CS_llazdd as we have been unable to locate definitive formulas for the convergence
angle for this projection.

CSoblqmQ definition Quality check
int CSoblqmQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSoblqmQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Oblique Mercator (Hotine) Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSoblqmQ only examines those components specific to the Oblique Mercator
(Hotine) Projection. CSoblqmQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a
description of the various error codes and their meaning. CSoblqmQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

 Chapter 4 Chatper 4 -- Library Functions 175

CSoblqmL Latitude/longitude check
int CSoblqmL (Const struct cs_Oblqm_ *oblqm,int cnt,Const double pnts
[][3]);

CSoblqmL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the oblqm argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSoblqmsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSoblqmL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSoblqmX Xy coordinate check
int CSoblqmX (Const struct cs_Oblqm_ *oblqm,int cnt,Const double pnts
[][3]);

CSoblqmX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the oblqm argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSoblqmsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSoblqmL
returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSoblqmS Setup
void CSoblqmS (struct cs_Csprm_ *csprm);

The CSoblqmS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central great circle, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSoblqmS performs these calculations and saves the results in the cs_Csprm_ structure provided by
the csprm argument. Thus, this one argument provides CSoblqmS its input data and the repository for
the results as described below.

CSoblqmS examines the prj_code element of the cs_Csprm_ structure to determine which of the six
variations of this projection is to be setup. In most cases, the variations require different usage of the
parameters in the cs_Csdef_ structure as defined below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csldef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Oblique Mercator projection are dependent upon the variation being
implemented.

The following parameters apply to all six variations of the projection:

176 CS-MAP User's Guide User's Guide

scl_red The scale reduction that is to be applied.

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Single Point, Unrectified Hotine Oblique Mercator
(cs_PRJCOD_HOM1UV)

This variation produces unrectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere". Rarely, if ever used; retained primarily for historical
purposes.

prj_prm1 Longitude, in degrees, of the central point of the projection.

prj_prm2 Latitude, in degrees, of the central point of the projection.

prj_prm3 The azimuth of the central great circle, in degrees east of north.

Two Point, Unrectified Hotine Oblique Mercator
(cs_PRJCOD_HOM2UV)

This variation produces unrectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere." Rarely, if ever used; retained primarily for historical
purposes.

 Chapter 4 Chatper 4 -- Library Functions 177

prj_prm1 Longitude, in degrees, of the first point on the central geodesic.

prj_prm2 Latitude, in degrees, of the first point on the central geodesic.

prj_prm3 Longitude, in degrees, of the second point on the central
geodesic.

prj_prm4 Latitude, in degrees, of the second point on the central
geodesic.

org_lat The latitude, in degrees, of the center of the coordinate system
being defined. That is, the point on the central geodesic that
has this latitude is the natural origin of the projection.

Alaska Variation, Hotine Oblique Mercator (cs_PRJCOD_HOM1XY)

This variation produces rectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere". The rectification technique is specific to Zone 1 of the
Alaska State Plane Coordinate System. It is possible that this variation should also be used for the
Great Lakes Survey, but this has not been verified as of this writing.

prj_prm1 Longitude, in degrees, of the central point of the projection.

prj_prm2 Latitude, in degrees, of the central point of the projection.

prj_prm3 The azimuth of the central great circle, in degrees east of north.

Two Point, Rectified Hotine Oblique Mercator (cs_PRJCOD_HOM2XY)

This variation produces rectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere". Rarely, if ever used; retained primarily for historical
purposes. To remain consistent with prior releases of CS-MAP, this variation uses the same
rectification technique as the Alaska variation described immediately above.

178 CS-MAP User's Guide User's Guide

prj_prm1 Longitude, in degrees, of the first point on the central geodesic.

prj_prm2 Latitude, in degrees, of the first point on the central geodesic.

prj_prm3 Longitude, in degrees, of the second point on the central
geodesic.

prj_prm4 Latitude, in degrees, of the second point on the central geodesic.

org_lat The latitude, in degrees, of the center of the coordinate system
being defined. That is, the point on the central geodesic that has
this latitude is the natural origin of the projection.

Rectified Skew Orthomorphic (cs_PRJCOD_RSKEW)

This variation produces rectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere". The rectification technique is that commonly used in
places other than Alaska.

prj_prm1 Longitude, in degrees, of the central point of the projection.

prj_prm2 Latitude, in degrees, of the central point of the projection.

prj_prm3 The azimuth of the central great circle, in degrees east of north.

Rectified Skew Orthomorphic Centered (cs_PRJCOD_RSKEWC)

This variation produces rectified cartesian coordinates, the origin of which is at the single defining
point. The rectification technique is that commonly used in places other than Alaska.

prj_prm1 Longitude, in degrees, of the central point of the projection.

prj_prm2 Latitude, in degrees, of the central point of the projection.

prj_prm3 The azimuth of the central great circle, in degrees east of north.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

 Chapter 4 Chatper 4 -- Library Functions 179

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Oblqm_ Structure

The results of the one-time calculations are recorded in the oblqm element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSoblqmF, CSoblqmI,
CSoblqmK, and CSoblqmC functions require as their first argument.

Krovak Oblique Conformal Conic

This set of functions represent the Coordinate System Mapping Package's knowledge of the Krovak
Oblique Conformal Conic Projection. This projection is used in what used to be Czechoslovokia, and
is now the Czech Republic and the Slovak Republic. Since this projection is conformal, the K and H
scale factors are the same and there is no H function. Two variations of this projection are supported.

The first variation is the traditional projection as used since the 1920's. The second includes the affine
transformation devised for use with the 1995 adjustment.

Please note that traditional Krovak X coordinates increase to the west. WHen such coordinates are
used in the traditional CAD environment, the resuling images are mirrored and are (for most folks
anyway) useless. Therefore, this implementation is such that what would normally be positive X
coordinates are actually negative coordinates, and the magnitude of the values will be correct. In this
way, the absolute value of the coordinate will be what is expected to see, but the coordinates will
actually increase to the east, thus making AutoCAD, MicroStation, and other CAD type systems happy
campers.

CSkrovkF Forward Conversion
int CSkrovkF (Const struct cs_Krovk_ *krovk,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Krovk_ structure via the krovk argument, CSkrovkF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSkrovkF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

The xy and ll arrays may be the same array. The X coordinate and the longitude are the first elements
in these arrays, the Y coordinate and the latitude are the second element. The latitude and longitude
values are in degrees where negative values are used to represent west longitude and south latitude.

CSkrovkI Inverse conversion
int CSkrovkI (Const struct cs_Krovk_ *krovk,double ll [2],Const double xy
[2]);

180 CS-MAP User's Guide User's Guide

Given a properly initialized cs_Krovk_ structure via the krovk argument, CSkrovkI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSkrovkI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

The xy and ll arrays may be the same array. The X coordinate and the longitude are the first elements
in these arrays, the Y coordinate and the latitude are the second element. The latitude and longitude
values are in degrees where negative values are used to represent west longitude and south latitude.

CSkrovkK scale (K)
double CSkrovkK (Const struct cs_Krovk_ *krovk,Const double ll [2]);

CSkrovkK returns the grid scale factor of the coordinate system at the specific geodetic location defined
by the latitude and longitude provided in the ll array. The value cs_SclInf (defined to be 9,999.00 is
CSdata.c) is returned if the ll provided is the oblique pole.

CSkrovkC Convergence angle
double CSkrovkC (Const struct cs_Krovk_ *krovk,Const double ll [2]);

CSkrovkC returns the convergence angle in degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array.

CSkrovkQ definition Quality check
int CSkrovkQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSkrovkQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Krovak Oblique Conformal Conic Projection. CS_cschk examines those
definition components that are common to all coordinates systems (datum or ellipsoid reference, map
scale, and units) and, therefore, CSkrovakQ only examines those components specific to the Krovak
Oblique Conformal Conic Projection. CSkrovkQ returns in err_list an integer code value for each error
condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerpt for a description of the various error codes and their meaning. CSkrovkQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

Bugs

In the original implementation of this projection, all parameters were hard coded and no checking was
necessary. For release 10, this projection was rewritten to accept user defined parameters, but this
Quailty check function was never updated. Therefore, at the current time, there is no parameter
checking performed for this projection.

CSkrovkL Latitude/longitude check
int CSoblqmL (Const struct cs_Oblqm_ *oblqm,int cnt,Const double pnts
[][3]);

CSoblqmL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the

 Chapter 4 Chatper 4 -- Library Functions 181

coordinate system provided by the oblqm argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSoblqmsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSoblqmL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSkrovkX Xy coordinate check
int CSoblqmX (Const struct cs_Oblqm_ *oblqm,int cnt,Const double pnts
[][3]);

At the current time, CSoblqmX returns cs_CNVRT_OK without performing any checks. The arguments
are currently ignored. Again, this is due to the unusual legacy of this projection, and the fact that
normal coordinates used in the Czech Repulic increase to the west rather than the east.

CSkrovkS Setup
void CSkrovkS (struct cs_Csprm_ *csprm);

The CSkrovkS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude, origin latitude, oblique pole location,
and other projection parameters are known, there are many calculations that need only be performed
once. CSkrovkS performs these calculations and saves the results in the cs_Csprm_ structure provided
by the csprm argument. Thus, this one argument provides CSkrovkS its input data and the repository
for the results as described below.

CSkrovkS examines the prj_code element of the cs_Csprm_ structure to determine which of the two
variations of this projection is to be setup. The projection code, therefore, simply determines if the
1995 adjustment transformation is applied to the resulting cartesian coordinates. The parameters for
the affine tranformation are (currently) hard coded.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csldef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Krovak Oblique Conformal Conic Projection are dependent upon the
variation being implemented.

The following parameters apply to both variations of the projection:

182 CS-MAP User's Guide User's Guide

org_lng Longitude, in degrees, of the origin of the projection. As is
commonly used in the Czech Repoublic, this is usually the
prime meridian of Ferro.

org_lat Latitude, in degrees, of the origin of the projection.

prj_prm1 Longitude, in degrees, of the location of the pole of the oblique
cone.

prj_prm2 Latitude, in degrees, of the location of the pole of the oblique
cone.

prj_prm3 Latitude, in degrees on the oblique gaussian surface, of the
single standard parallel of the conic projection surface.

scl_red The scale reduction that is to be applied.

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

 Quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Krovak Oblique Conformal Conic, Czechoslovokia (cs_PRJCOD_

This variation produces the traditional (i.e. unadjusted) Krovak coordinates used in Czechoslovakia
since the 1920's. There are no special parameter requirements. Specifying this variation simply turns
off the application of the 1995 adjustment.

Krovak Oblique Conformal Conic/95 Adjustment

This variation causes an affine transformation to be applied to the traditional coordinates, thus
producing coordinates appropriate for the 1995 adjustment. There are no special parameter
requirements (at this time). Specifiying this variation simply turns on the affine transformation, the
coefficients of which are hard coded.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

 Chapter 4 Chatper 4 -- Library Functions 183

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Krovk_ Structure

The results of the one-time calculations are recorded in the oblqm element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSkrovkF, CSkrovkI,
CSkrovkK, and CSkrovkC functions require as their first argument.

Lambert Conformal Conic Projection (CSlmbrt)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Lambert
Conformal Conic Projection. Since this projection is a conformal projection, the K and H scale factors
are the same and there is no H function. Five variations of this projection are supported.

CSlmbrtF Forward conversion
int CSlmbrtF (Const struct cs_Lmbrt_ *lmbrt,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Lmbrt_ structure via the lmbrt argument, CSlmbrtF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSlmbrtF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSlmbrtI Inverse conversion
int CSlmbrtI (Const struct cs_Lmbrt_ *lmbrt,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Lmbrt_ structure via the lmbrt argument, CSlmbrtI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSlmbrtI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSlmbrtK scale (K)
double CSlmbrtK (Const struct cs_Lmbrt_ *lmbrt,Const double ll [2]);

CSlmbrtK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

184 CS-MAP User's Guide User's Guide

CSlmbrtC Convergence angle
double CSlmbrtC (Const struct cs_Lmbrt_ *lmbrt,Const double ll [2]);

CSlmbrtC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the ll array.

CSlmbrtQ definition Quality check
int CSlmbrtQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSlmbrtQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Lambert Conformal Conic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSlmbrtQ only examines those components specific to the Lambert Conformal
Conic Projection. CSlmbrtQ returns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description
of the various error codes and their meaning. CSlmbrtQ may be called with the NULL pointer and/or a
zero for the err_list and list_sz arguments respectively.

CSlmbrtL Latitude/longitude check
int CSlmbrtL (Const struct cs_Lmbrt_ *lmbrt,int cnt,Const double pnts
[][3]);

CSlmbrtL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the lmbrt argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSlmbrtsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSlmbrtL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSlmbrtX Xy coordinate check
int CSlmbrtX (Const struct cs_Lmbrt_ *lmbrt,int cnt,Const double pnts
[][3]);

CSlmbrtX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the lmbrt argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSlmbrtsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSlmbrtL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSlmbrtS Setup
void CSlmbrtS (struct cs_Csprm_ *csprm);

The CSlmbrtS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallels, the origin latitude and longitude,
and other projection parameters are known, there are many calculations that need only be performed
once. CSlmbrtS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the single argument provided to CSlmbrtS serves as the

 Chapter 4 Chatper 4 -- Library Functions 185

source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

Five variations of this projection are supported. CSlmbrtS determines which variation is to be setup by
examining the prj_code element of the cs_Csprm_ structure. The actual use of parameters in the
cs_Csdef_ structure (an element of the cs_Csprm_ structure) is dependent on the variation being
setup.

The following elements of the cs_Csdef_ structure apply to all five variations:

Scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

 x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Parameter use specific to the five variations is:

Two Standard Parallels (cs_PRJCOD_LMBRT):

This is the traditional version of this projection. The degree of scale reduction to reduce and distribute
scale distorion is specified by two standard parallels:

prj_prm1 Latitude, in degrees, of the first standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard parallel, usually the
southernmost. This is, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

186 CS-MAP User's Guide User's Guide

Single Standard Parallel (cs_PRJCOD_LM1SP):

This variation is commonly used outside of North America. It is, mathematically, virtually identical to
what CS-MAP has long referred to as the Lambert Tangential. The degree of scale reduction to
reduce and distribute scale distortion is specified by the scale reduction factor:

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale of the projection at the origin defined by org_lng and
org_lat.

Belgian Variation (cs_PRJCOD_LMBLGN):

This is a minor variation to the traditional Two Standard Parallel version of the projection. This
variation will produce the results required by some Belgian coordinate systems:

prj_prm1 Latitude, in degrees, of the first standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard parallel, usually the
southernmost. This is, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Wisconsin Variation (cs_PRJCOD_WCCSL):

This is a minor variation to the traditional Two Standard Parallel version of the projection. This
variation supports the Wisconsin County Coordinate System group of coordinate systems. This
variation uses a parallel ellipsoid technique to adjust horizontal coordinates for average elevation of the
region being mapped:

 Chapter 4 Chatper 4 -- Library Functions 187

prj_prm1 Latitude, in degrees, of the first standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard parallel, usually the
southernmost. This is, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency.

prj_prm3 Average geoid separation, in meters, of the region being
mapped.

prj_prm4 Average elevation above the geoid (i.e. orthometric height), in
system units, of the region being mapped.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Minnesota Variation (cs_PRJCOD_MNDOTL):

This is a minor variation to the traditional Two Standard Parallel version of the projection. This
variation supports the county coordinate systems developed by the Minnesota Department of
Transportation. This variation uses a parallel ellipsoid technique (different from that used in Wisconsin,
of course) to adjust horizontal coordinates for average elevation of the region being mapped:

prj_prm1 Latitude, in degrees, of the first standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard parallel, usually the
southernmost. This is, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency.

prj_prm3 Average height above the ellipsoid, in system units, of the region
being mapped.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc

188 CS-MAP User's Guide User's Guide

function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Lmbrt_ Structure

The results of the one-time calculations are recorded in the lmbrt element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSlmbrtF, CSlmbrtI,
CSlmbrtK, and CSlmbrtC functions require as their first argument.

Lambert Tangential Projection (CSlmtan)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Lambert
Tangential Projection as used by the National Geographic Institute of France. Please note that the
current implementation of this projection does not support the spherical form of the projection. With the
addition of the single standard parallel variation of the Lambert Conformal Conic, these functions are
now redundant; and will be removed in a future release.

CSlmtanF Forward conversion
int CSlmtanF (Const struct cs_Lmtan_ *lmtan,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Lmtan_ structure via the lmtan argument, CSlmtanF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSlmtanF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSlmtanI Inverse conversion
int CSlmtanI (Const struct cs_Lmtan_ *lmtan,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Lmtan_ structure via the lmtan argument, CSlmtanI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSlmtanI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSlmtanK parallel scale (K)
double CSlmtanK (Const struct cs_Lmtan_ *lmtan,Const double ll [2]);

CSlmtanK returns the grid scale factor, along a parallel, of the coordinate system at the geodetic

 Chapter 4 Chatper 4 -- Library Functions 189

location given by the ll argument. Formulas for this calculation have not been located, therefore the
result is obtained using the CS_llazdd function.

CSlmtanH meridian scale (H)
double CSlmtanH (Const struct cs_Lmtan_ *lmtan,Const double ll [2]);

CSlmtanH returns the grid scale factor, along a meridian, of the coordinate system at the geodetic
location given by the ll argument. Formulas for this calculation have not been located, therefore the
result is obtained from the use of the CS_llazdd function.

CSlmtanC Convergence angle
double CSlmtanC (Const struct cs_Lmtan_ *lmtan,Const double ll [2]);

CSlmtanC returns the convergence angle in degrees east of north of the coordinate system at the
geodetic location given by the ll argument. Formulas for this calculation have not been located,
therefore the result is obtained using the CS_llazdd function.

CSlmtanL Latitude/longitude check
int CSlmtanL (Const struct cs_Lmtan_ *lmtan,int cnt,Const double pnts
[][3]);

CSlmtanL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the lmtan argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSlmtansL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSlmtanL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSlmtanQ definition Quality check
int CSlmtanQ (Const struct cs_Csdef_ *csdef,iunsigned short prj_code,

 int *err_list [],int list_sz);

CSlmtanQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Lambert Tangential Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSlmtanQ only examines those components specific to the Lambert Tangential
Projection. CSlmtanQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSlmtanQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSlmtanX Xy coordinate check
int CSlmtanX (Const struct cs_Lmtan_ *lmtan,int cnt,Const double pnts
[][3]);

CSlmtanX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the lmtan argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSlmtansX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSlmtanL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate

190 CS-MAP User's Guide User's Guide

system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSlmtanS Setup
void CSlmtanS (struct cs_Csprm_ *csprm);

The CSlmtanS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, the scale reduction
factor, and other projection parameters are known, there are many calculations that need only be
performed once. CSlmtanS performs these calculations and saves the results in the cs_Csprm_
structure provided by its argument, csprm. Thus, the single argument provided to CSlmtanS serves as
the source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Lambert Tangential projection are:

org_lng The longitude, in degrees, of the origin of the projection relative
to Greenwich.

org_lat The latitude, in degrees, of the origin of the projection relative
to the equator.

scl_red The scale reduction factor that is to be applied to the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. This value is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This
value is the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

 Chapter 4 Chatper 4 -- Library Functions 191

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Lmtan_ Structure

The results of the one-time calculations are recorded in the lmtan element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSlmtanF, CSlmtanI,
CSlmtanK, CSlmtanH, and CSlmtanC functions require as their first argument.

Mercator Projection (CSmrcat)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Mercator
Projection. Since this projection is conformal, the K and H grid scales are the same and there is no H
function.

CSmrcatF Forward conversion
int CSmrcatF (Const struct cs_Mrcat_ *mrcat,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Mrcat_ structure via the mrcat argument, CSmrcatF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSmrcatF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSmrcatI Inverse conversion
int CSmrcatI (Const struct cs_Mrcat_ *mrcat,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Mrcat_ structure via the mrcat argument, CSmrcatI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSmrcatI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmrcatK scale (K) along a parallel
double CSmrcatK (Const struct cs_Mrcat_ *mrcat,Const double ll [2]);

CSmrcatK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSmrcatC Convergence angle
double CSmrcatC (Const struct cs_Mrcat_ *mrcat,Const double ll [2]);

192 CS-MAP User's Guide User's Guide

CSmrcatC returns the value 0.0 which represents the convergence in degrees east of north of nay
coordinate system based on this projection at any latitude and longitude.

CSmrcatQ definition Quality check
int CSmrcatQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSmrcatQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Mercator Projection. CS_cschk examines those definition components that
are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSmrcatQ only examines those components specific to the Mercator Projection. CSmrcatQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CSmrcatQ may be called with the NULL pointer and/or a zero for the err_list and
list_sz arguments respectively.

CSmrcatL Latitude/longitude check
int CSmrcatL (Const struct cs_Mrcat_ *mrcat,int cnt,Const double pnts
[][3]);

CSmrcatL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the mrcat argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmrcatsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmrcatL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmrcatX Xy coordinate check
int CSmrcatX (Const struct cs_Mrcat_ *mrcat,int cnt,Const double pnts
[][3]);

CSmrcatX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the mrcat argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSmrcatsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSmrcatL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmrcatS Setup
void CSmrcatS (struct cs_Csprm_ *csprm);

The CSmrcatS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallel, the origin longitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSmrcatS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CSmrcatS serves as the source for input
and the repository for the results as described below.

 Chapter 4 Chatper 4 -- Library Functions 193

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
which must be initialized for the Mercator Projection are:

prj_prm1 Longitude, in degrees, of the central meridian of the
coordinate system (or map).

prj_prm2 Latitude, in degrees, of the standard parallel, usually zero
indicating the equator. Using a non-zero value has an affect
similar to that of the scale reduction factor of other cylindrical
projections.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Mrcat_ Structure

The results of the one-time calculations are recorded in the mrcat element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmrcatF, CSmrcatI,

194 CS-MAP User's Guide User's Guide

CSmrcatK, and CSmrcatC functions require as their first argument.

Miller Projection (CSmillr)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Miller
Projection. This projection is only used in the spherical form. Thus, all functions assume a sphere with
a radius equal to the equatorial radius of the ellipsoid provided.

CSmillrF Forward conversion
int CSmillrF (Const struct cs_Millr_ *millr,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Millr_ structure via the millr argument, CSmillrF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSmillrF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSmillrI Inverse conversion
int CSmillrI (Const struct cs_Millr_ *millr,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Millr_ structure via the millr argument, CSmillrI will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSmillrI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmillrK scale (K) along a parallel
double CSmillrK (Const struct cs_Millr_ *millr,Const double ll [2]);

CSmillrK returns the grid scale factor, along a parallel, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the ll array.

CSmillrH scale (H) along a meridian
double CSmillrH (Const struct cs_Millr_ *millr,Const double ll [2]);

CSmillrH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSmillrC Convergence angle
double CSmillrC (Const struct cs_Millr_ *millr,Const double ll [2]);

CSmillrC returns the value 0.0 which represents the convergence angle in degrees east of north of any
coordinate system based on this projection at any latitude and longitude.

CSmillrL Latitude/longitude check
int CSmillrL (Const struct cs_Millr_ *millr,int cnt,Const double pnts
[][3]);

CSmillrL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the millr argument. The pnts and cnt arguments can define a single

 Chapter 4 Chatper 4 -- Library Functions 195

coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmillrsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmillrL returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain
the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSmillrQ definition Quality check
int CSmillrQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSmillrQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Miller Cylindrical Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSmillrQ only examines those components specific to the Miller Cylindrical
Projection. CSmillrQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSmillrQ may be called with the NULL pointer and/or a zero for
the err_list and list_sz arguments respectively.

CSmillrX Xy coordinate check
int CSmillrX (Const struct cs_Millr_ *millr,int cnt,Const double pnts
[][3]);

CSmillrX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the millr argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSmillrsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSmillrL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmillrS Setup
void CSmillrS (struct cs_Csprm_ *csprm);

The CSmillrS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations that need only be performed once. CSmillrS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CSmillrS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Miller Projection are:

196 CS-MAP User's Guide User's Guide

prj_prm1 Longitude, in degrees, of the central meridian of the coordinate
system (or map).

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Millr_ Structure

The results of the one-time calculations are recorded in the millr element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmillrF, CSmillrI, CSmillrK,
CSmillrH, and CSmillrC functions require as their first argument.

Modified Polyconic Projection (CSmodpc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Modified
Polyconic Projection. That is, the projection developed by Lallemand of France and adopted by the
International Map Committee (IMC) in London as the basis for the 1:1,000,000 scale International Map
of the World (IMW) series in 1909.

CSmodpcF Forward conversion
int CSmodpcF (Const struct cs_Modpc_ *modpc,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Modpc_ structure via the modpc argument, CSmodpcF will convert the
latitude and longitude provided in the a array to X and Y coordinates, returning the result in the xy
array. CSmodpcF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

 Chapter 4 Chatper 4 -- Library Functions 197

CSmodpcI Inverse conversion
int CSmodpcI (Const struct cs_Modpc_ *modpc,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Modpc_ structure via the modpc argument, CSmodpcI will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSmodpcI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmodpcK grid scale (K), along parallel
double CSmodpcK (Const struct cs_Modpc_ *modpc,Const double ll [2]);

CSmodpcK returns the grid scale factor, as measured along a parallel, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. (The use of the
ll array is the same as described above.) At the current time, formulas that analytically produce the
grid scale factor for this projection elude us. Thus, the grid scale factor is determined using the
CS_llazdd function.

CSmodpcH grid scale (H), along meridian
double CSmodpcH (Const struct cs_Modpc_ *modpc,Const double ll [2]);

CSmodpcH returns the grid scale factor, as measured along a meridian, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. At the current
time, formulas that analytically produce the grid scale factor for this projection elude us. Thus, the grid
scale factor is determined using the CS_llazdd function.

CSmodpcC Convergence angle
double CSmodpcC (Const struct cs_Modpc_ *modpc,Const double ll [2]);

CSmodpcC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the ll array. At the current time, formulas that
analytically produce the convergence angle for this projection elude us. Thus, the grid scale factor is
determined using the CS_llazdd function.

CSmodpcB Basic calculations
double CSmodpcB (Const struct cs_Modpc_ *modpc,Const double ll [2],double
xy [2],double *their_yc);

Inverse calculations for this projection are performed using an iterative algorithm calling the forward
function. CSmodpcB converts geographic coordinates to cartesian coordinates in a form that can be
used by both CSmodpcF and CSmodpcI; thus eliminating duplicate code in these modules. The
their_yc argument provides for the return to the calling function of an additional intermediary result
that is required for the inverse calculation.

CSmodpcQ definition Quality check
int CSmodpcQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

198 CS-MAP User's Guide User's Guide

CSmodpcQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Modified Polyconic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSmodpcQ only examines those components specific to the Modified Polyconic
Projection. CSmodpcQ returns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description
of the various error codes and their meaning. CSmodpcQ may be called with the NULL pointer and/or a
zero for the err_list and list_sz arguments respectively.

CSmodpcL Latitude/longitude check
int CSmodpcL (Const struct cs_Modpc_ *modpc,int cnt,Const double pnts
[][3]);

CSmodpcL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the modpc argument. The pnts and cnt arguments can define a
single coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmodpcsL's return
value will apply to all coordinates, coordinates on the great circles, and all coordinates within the
regions thus defined. CSmodpcL returns cs_CNVRT_OK if all subject coordinates are within the
mathematical domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the
subject geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmodpcX Xy coordinate check
int CSmodpcX (Const struct cs_Modpc_ *modpc,int cnt,Const double pnts
[][3]);

CSmodpcX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the modpc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSmodpcsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSmodpcL
returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmodpcS Setup
void CSmodpcS (struct cs_Csprm_ *csprm);

The CSmodpcS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard meridians, the standard parallels, and other
projection parameters are known, there are many calculations that need only be performed once.
CSmodpcS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CSmodpcS serves as the source for input
and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Modified Polyconic projection are:

 Chapter 4 Chatper 4 -- Library Functions 199

prj_prm1 Longitude, in degrees, of the central meridian.

prj_prm2 Longitude, in degrees, of the Eastern meridian. The Western
meridian is assumed to be west of the Central Meridian by the
same amount that the Eastern Meridian is east of the Central
Meridian. The Eastern meridian must be east of the central
meridian, and not more than 15 degrees of longitude from the
central meridian.

prj_prm3 Latitude, in degrees, of the Northern Standard Parallel.

prj_prm4 Latitude, in degrees, of the Southern Standard Parallel.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Neither standard parallel may be a pole, nor can the two standard parallels be the same as is
supported in other projections. In addition, the Northern Standard Parallel must be the northernmost of
the two standard parallels. Finally, the two standard parallels must be within 15 degrees of each other.
Note that the projection was designed for maps whose extents are 6 degrees of longitude and 4
degrees of latitude.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

200 CS-MAP User's Guide User's Guide

cs_Modpc_ Structure

The results of the one-time calculations are recorded in the modpc element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmodpcF, CSmodpcI,
CSmodpcK, CSmodpcH, CSmodpcC, and CSmodpcB functions require as their first argument.

BUGS

As is true with all other projections in CS-MAP, values submitted for conversion are not checked for
validity before conversion for performance reasons. In every other case, this does not appear to be a
problem. However, experience has show that values which are more than 50% outside the area
covered by the projection parameters can produce errors which get reported through matherr.
Checking of input values does need to be added to the functions of this projection.

Mollweide Projection (CSmolwd)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Mollweide
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSmolwdF Forward conversion
int CSmolwdF (Const struct cs_Molwd_ *molwd,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Molwd_ structure via the molwd argument, CSmolwdF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSmolwdF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSmolwdI Inverse conversion
int CSmolwdI (Const struct cs_Molwd_ *molwd,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Molwd_ structure via the molwd argument, CSmolwdI will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSmolwdI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmolwdK parallel scale (K)
double CSmolwdK (Const struct cs_Molwd_ *molwd,Const double ll [2]);

CSmolwdK returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSmolwdH meridian scale (H)
double CSmolwdH (Const struct cs_Molwd_ *molwd,Const double ll [2]);

 Chapter 4 Chatper 4 -- Library Functions 201

CSmolwdH returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSmolwdC Convergence angle
double CSmolwdC (Const struct cs_Molwd_ *molwd,Const double ll [2]);

CSmolwdC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CSmolwdQ definition Quality check
int CSmolwdQ (Const struct cs_Csdef_ *csdef,unsgined short prj_code,

 int *err_list [],int list_sz);

CSmolwdQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Mollweide Projection. CS_cschk examines those definition components
that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSmolwdQ only examines those components specific to the Mollweide Projection.
CSmolwdQ returns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the various
error codes and their meaning. CSmolwdQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSmolwdL Latitude/longitude check
int CSmolwdL (Const struct cs_Molwd_ *molwd,int cnt,Const double pnts
[][3]);

CSmolwdL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the molwd argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmolwdsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmolwdL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmolwdX Xy coordinate check
int CSmolwdX (Const struct cs_Molwd_ *molwd,int cnt,Const double pnts
[][3]);

CSmolwdX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the molwd argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSmolwdsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSmolwdL
returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmolwdS Setup (general)
void CSmolwdS (struct cs_Csprm_ *csprm);

202 CS-MAP User's Guide User's Guide

The CSmolwdS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations that need only be performed once. CSmolwdS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the argument provided to CSmolwdS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

org_lng The longitude, in degrees, of the origin of the projection
(central meridian).

prj_prm1-24 The interrupted form of the Mollweide Projection is fully
supported. cs_Csdef_ elements prj_prm1 thru prj_prm24 can
be used to specify the extents of the different zones. See
CS_zones for information on how to encode zones.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

 Chapter 4 Chatper 4 -- Library Functions 203

cs_Molwd_ Structure

The results of the one-time calculations are recorded in the molwd element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmolwdF, CSmolwdI,
CSmolwdK, CSmolwdH, and CSmolwdC functions require as their first argument.

Modified Stereographic Projection (CSmstro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Modified
Stereographic Projection. Since the Modified Stereographic Projection is a conformal projection, the K
(grid scale along a parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H
function for this projection.

CSmstroF Forward
int CSmstroF (Const struct cs_Mstro_ *mstro,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Mstro_ structure via the mstro argument, CSmstroF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSmstroF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSmstroI Inverse
int CSmstroI (Const struct cs_Mstro_ *mstro,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Mstro_ structure via the mstro argument, CSmstroI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSmstroI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmstroK scale (K)
double CSmstroK (Const struct cs_Mstro_ *mstro,Const double ll [2]);

CSmstroK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSmstroC Convergence angle
double CSmstroC (Const struct cs_Mstro_ *mstro,Const double ll [2]);

CSmstroC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. Analytical
formulas to compute the convergence angle for this projection to not exist; CS_llazdd is used to
empirically calculate the convergence angle.

CSmstroQ definition Quality check
int CSmstroQ (Const struct cs_Csdef_ *csdef,unsgined short prj_code,

 int *err_list [],int list_sz);

204 CS-MAP User's Guide User's Guide

CSmstroQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Modified Stereographic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSmstroQ only examines those components specific to the Modified
Stereographic Projection. CSmstroQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a
description of the various error codes and their meaning. CSmstroQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSmstroL Latitude/longitude check
int CSmstroL (Const struct cs_Mstro_ *mstro,int cnt,Const double pnts
[][3]);

CSmstroL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the mstro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmstrosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmstroL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmstroX Xy coordinate check
int CSmstroX (struct cs_Mstro_ *mstro,int cnt,Const double pnts [][3]);

CSmstroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the mstro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSmstrosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSmstroL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmstroS Setup
void CSmstroS (struct cs_Csprm_ *csprm);

The CSmstroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSmstroS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CSmstroS serves as the source for input
and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Modified Stereographic projection are:

 Chapter 4 Chatper 4 -- Library Functions 205

prj_prm1 thru prj_prm24 Use these elements to specify the power series coefficients. Odd
and even number pairs, e.g. prj_prm1 and prj_prm2, are used to
specify the real and imaginary components of the coefficients
respectively. All other prj_prm's that represent unused
coefficients must be set to zero. CSmstroS will determine the
order of the series by looking for zero coefficients. Thus, orders
as high as twelve are supported. Orders higher than twelve are
not supported.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red This element must be set to 1.0.

Scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

206 CS-MAP User's Guide User's Guide

cs_Mstro_ Structure

The results of the one-time calculations are recorded in the mstro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmstroF, CSmstroI,
CSmstroK, and CSmstroC functions require as their first argument.

New Zealand National Grid System (CSnzlnd)

This set of functions represent the Coordinate System Mapping Package's knowledge of the New
Zealand National Grid System. Since this projection is a conformal projection, the K (grid scale along a
parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H function for this
projection.

CSnzlndF Forward
int CSnzlndF (Const struct cs_Nzlnd_ *nzlnd,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Nzlnd_ structure via the nzlnd argument, CSnzlndF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSnzlndF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSnzlndI Inverse
int CSnzlndI (Const struct cs_Nzlnd_ *nzlnd,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Nzlnd_ structure via the nzlnd argument, CSnzlndI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSnzlndI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSnzlndK grid scale (K)
double CSnzlndK (Const struct cs_Nzlnd_ *nzlnd,Const double ll [2]);

CSnzlndK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array. While analytical
formulas for the grid scale factor for this projection have been located, they have not yet been coded.
The grid scale factor returned by CSnzlndK is determined empirically using CS_llazdd.

CSnzlndC Convergence angle
double CSnzlndC (Const struct cs_Nzlnd_ *nzlnd,Const double ll [2]);

CSnzlndC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array. While analytical
formulas for the convergence for this projection have been located, they have not yet been coded. The
convergence angle returned by CSnzlndC is determined empirically using CS_llazdd.

CSnzlndQ definition Quality check
int CSnzlndQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

 Chapter 4 Chatper 4 -- Library Functions 207

CSnzlndQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the New Zealand National Grid System Projection. CS_cschk examines those
definition components that are common to all coordinates systems (datum or ellipsoid reference, map
scale, and units) and, therefore, CSnzlndQ only examines those components specific to the New
Zealand National Grid System Projection. CSnzlndQ returns in err_list an integer code value for each
error condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerpt for a description of the various error codes and their meaning. CSnzlndQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

CSnzlndL Latitude/longitude check
int CSnzlndL (Const struct cs_Nzlnd_ *nzlnd,int cnt,Const double pnts
[][3]);

CSnzlndL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the nzlnd argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSnzlndsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSnzlndL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSnzlndX Xy coordinate check
int CSnzlndX (Const struct cs_Nzlnd_ *nzlnd,int cnt,Const double pnts
[][3]);

CSnzlndX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the nzlnd argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSnzlndsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSnzlndL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSnzlndS Setup
void CSnzlndS (struct cs_Csprm_ *csprm);

The CSnzlndS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSnzlndS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CSnzlndS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. Note that the coefficients of the complex power
series upon which this projection is based are hard coded into the CSnzlndS module and cannot be
changed by the user. The specific elements of the cs_Csdef_ structure that must be initialized for the
New Zealand National Grid System are:

208 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red This value must be set to 1.0.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units,
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Nzlnd_ Structure

The results of the one-time calculations are recorded in the nzlnd element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSnzlndF, CSnzlndI,
CSnzlndK, and CSnzlndC functions require as their first argument.

Non-Earth Coordinate System (CSnerth)

This set of functions represent the Coordinate System Mapping Package's knowledge of Non-Earth
Coordinate Systems. A non-earth coordinate system is a MapInfo invention (we believe). What this
consists of is a coordinate system which CS-MAP does very little with other than apply a translation
and, optionally, a units conversion. With the introduction of this coordinate system, the products of

 Chapter 4 Chatper 4 -- Library Functions 209

several of our clients can now perform these rudimentary operations on a large variety of different data
formats with a minimal amount of extra code. Perhaps more importantly, with a minimal amount of
additional user interface. This is probably why MapInfo invented these things.

Thus, this "projection" is not really a projection. It is yet another pseudo projection. In order for this
projection to function within the CS-MAP framework, there is a simple but necessary rule:

 You can only convert a non-earth coordinate system to another non-earth coordinate system.

This rule enables the "non-earth" business to co-exist with all the other stuff in CS-MAP without major
conflict. CS-MAP cannot enforce this explicitly. Your application must enforce this.

To enforce this rule implicity, the intermediary coordinates which are generated by the Forward
function and which are accepted by the Inverse function are incredibly small numbers. So small, that
doing anything with these numbers other than passing them to another "non-earth" function will
produce obviously ridiculous results (i.e. all zeros).

CSnerthF - Forward Conversion
int CSnerthF (Const struct cs_Nerth_ *nerth,double xy [2],Const double
inter [2]);

Given a properly initialized cs_Berth_ structure via the nerth argument, CSnerthF will convert the
intermediary coordinates provided in the inter array to X and Y coordinates, returning the result in the
xy array. CSnerthF always returns cs_CNVRT_NRML.

The xy and inter arrays may be the same array. The X coordinate is carried in the first element in the
xy array, the Y coordinate in the second element. The intermediary coordinates are designed to be
very small numbers on the order of 1.0E-50 to make sure they are never confused with latitude and
longitude.

CSnerthI
int CSnerthI (Const struct cs_Millr_ *nerth,double inter [2],Const double
xy [2]);

Given a properly initialized cs_Nerth_ structure via the nerth argument, CSnerthI will convert the X
and Y coordinates given in the xy array to intermediary coordinates and return the result in the inter
array. CSnerthI always returns cs_CNVRT_NRML.

The xy and inter arrays may be the same array. The X coordinate is carried in the first element of the
xy array, the Y coordinate. Intermediary coordinate are designed to be exceedingly small number so
that they will never be confused with longitude and latitude.

CSnerthK scale (K) along a parallel
double CSnerthK (Const struct cs_Nerth_ *nerth,Const double ll [2]);

CSnerthK ignores the ll argument and returns 1.0.

CSnerthC Convergence angle
double CSnerthC (Const struct cs_Nerth_ *nerth,Const double ll [2]);

CSnerthC ignores the ll argument and returns zero.

CSnerthQ definition Quality check
int CSnerthQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

210 CS-MAP User's Guide User's Guide

 int *err_list [],int list_sz);

CSnerthQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Non-Earth Coordinates Pseudo Projection. CS_cschk examines those
definition components that are common to all coordinates systems (datum or ellipsoid reference, map
scale, and units) and, therefore, CSnerthQ only examines those components specific to the Non-Earth
Coordinates Pseudo Projection. CSnerthQ returns in err_list an integer code value for each error
condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerpt for a description of the various error codes and their meaning. CSnerthQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

Currently, Non-Earth coordinate systems are required to be cartographically referenced as all
coordinate systems must be referenced to something and cartographiclly referencing a Non-Earth
system seems like a helpful way to make sure this pseudo projection is not used erroneously.
CSnerthQ only checks to see that the coordinate system is referenced to an ellipsoid.

CSnerthL
int CSnerthL (Const struct cs_Nerth_ *nerth,int cnt,Const double pnts
[][3]);

By design, "nerth" coordinates are very small numbers, on the order of 1.0E-50. CSnerthL determines
if the intermediary coordinates, great circles, and/or regions defined by the coordinate list provided by
the pnts and cnt arguments are less than annother small (but not so small) number. If so, the
coordinates are considered to be within the domain of the "nerth" system.

The pnts and cnt arguments can define a single coordinate (cnt == 1), a great circle (cnt == 2), or a
closed region (cnt > 3). CSnerthL's return value will apply to all coordinates, coordinates on the great
circles, and all coordinates within the regions thus defined. CSnerthL returns cs_CNVRT_OK if all
subject coordinates are within the "domain". cs_CNVRT_DOMN is returned if one or more of the
subject intermediary coordinates are outside of the "domain" of the coordinate system.

CSnerthX Xy coordinate check
int CSnerthX (Const struct cs_Nerth_ *nerth,int cnt,Const double pnts
[][3]);

By design, "nerth" coordinates are very small numbers, on the order of 1.0E-50. It is the nature of the
small numbers which enables CS-MAP to insure that "nerth" conversions are not mistakenly used by
other components of the system. CSnerthX, therefore, determines if the coordinates, great circles,
and/or regions defined by the coordinate list provided by the pnts and cnt arguments are sufficiently
large so as not to be considered "nerth" intermediary coordinates and less than a large number
(1.0E+07 at this writing) which represents a reasonable upper bound on "nerth" coordinates. If the
coordinates meet these two criteria, the coordinates are considered to be within the domain of the
"nerth" system.

The pnts and cnt arguments can define a single coordinate (cnt == 1), a great circle (cnt == 2), or a
closed region (cnt > 3). CSnerthX's return value will apply to all coordinates, coordinates on the great
circles, and all coordinates within the regions thus defined. CSnerthX returns cs_CNVRT_OK if all
subject coordinates are within the "domain". cs_CNVRT_DOMN is returned if one or more of the
subject cartesian coordinates are outside of the "domain" of the coordinate system.

CSnerthS Setup
void CSnerthS (struct cs_Csprm_ *csprm);

 Chapter 4 Chatper 4 -- Library Functions 211

The CSnerthS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. For the Non-Earth pseudo projection, there is very little to do.
However, the factor which is used to make "nerth" intermediary coordinates very small is hard coded in
this function. CSnerthS saves the results in the cs_Csprm_ structure provided by its argument,
csprm. Thus, the argument provided to CSmolwdS serves as the source for input and the repository
for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

While a datum definition reference is required to remain consistent with the remainder of the system
(i.e. it is included in the cs_Csprm_ structure), this pseudo projection ignores the contents of it.

cs_Nerth_ Structure

The results of the one-time calculations are recorded in the nerth element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSnerthF, CSnerthI,
CSnerthK, and CSnerthC functions require as their first argument.

Normal Aspect Authalic Cylindrical Projection (CSnacyl)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Normal
Aspect of the Equal Area (Authalic) Cylindrical projection.

CSnacylF Forward conversion
int CSnacylF (Const struct cs_Nacyl_ *nacyl,double xy [2],Const double ll
[2]);

212 CS-MAP User's Guide User's Guide

Given a properly initialized cs_Nacyl_ structure via the nacyl argument, CSnacylF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSnacylF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSnacylI Inverse conversion
int CSnacylI (Const struct cs_Nacyl_ *nacyl,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Nacyl_ structure via the nacyl argument, CSnacylI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSnacylI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSnacylK parallel scale (K)
double CSnacylK (Const struct cs_Nacyl_ *nacyl,Const double ll [2]);

CSnacylK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSnacylH meridian scale (H)
double CSnacylH (Const struct cs_Nacyl_ *nacyl,Const double ll [2]);

CSnacylH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array.

CSnacylC Convergence angle
double CSnacylC (Const struct cs_Nacyl_ *nacyl,Const double ll [2]);

CSnacylC returns the value 0.0 which is the convergence angle in degrees east of north of any
coordinate system based on this projection at the latitude and longitude provided by the ll argument.

CSnacylQ definition Quality check
int CSnacylQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSnacylQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Normal Aspect of the Equal Area Cylindrical Projection. CS_cschk
examines those definition components which are common to all coordinates systems (datum or
ellipsoid reference, map scale, and units) and, therefore, CSnacylQ only examines those components
specific to the Normal Aspect of the Equal Area Cylindrical Projection. CSnacylQ returns in err_list an
integer code value for each error condition detected, being careful not to exceed the size of err_list as
indicated by the list_sz argument. The number of errors detected, regardless of the size of err_list, is
always returned. Refer to CSerpt for a description of the various error codes and their meaning.
CSnacylQ may be called with the NULL pointer and/or a zero for the err_list and list_sz arguments
respectively.

CSnacylL Latitude/longitude check
int CSnacylL (Const struct cs_Nacyl_ *nacyl,int cnt,Const double pnts
[][3]);

 Chapter 4 Chatper 4 -- Library Functions 213

CSnacylL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the nacyl argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSnacylsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSnacylL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSnacylX Xy coordinate check
int CSnacylX (Const struct cs_Nacyl_ *nacyl,int cnt,Const double pnts
[][3]);

CSnacylX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the nacyl argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSnacylsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSnacylL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSnacylS Setup
void CSnacylS (struct cs_Csprm_ *csprm);

The CSnacylS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude, and other projection parameters are
known, there are many calculations which need only be performed once. CSnacylS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CSnacylS serves as the source for input and the repository for
the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Normal Aspect of the Equidistant Cylindrical Projection are:

214 CS-MAP User's Guide User's Guide

org_lng Longitude, in degrees, of the central meridian of the coordinate
system (or map).

prj_prm1 Latitude, in degrees, of the standard parallel, usually zero
indicating the equator. Using a non-zero value has an affect
similar to that of the scale reduction factor of other cylindrical
projections.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Nacyl_ Structure

The results of the one-time calculations are recorded in the nacyl element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSnacylF, CSnacylI,
CSnacylK, and CSnacylC functions require as their first argument.

Oblique Cylindrical Projection (CSswiss)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Oblique
Cylindrical Projection. Both spherical and ellipsoidal forms are supported. Since this projection is a

 Chapter 4 Chatper 4 -- Library Functions 215

conformal projection, the K (grid scale along a parallel) and H (grid scale along a meridian) are the
same. Therefore, there is no H function for this projection.

A specialized version of this projection was originally developed. It needed to be generalized in order
to support coordinate systems in Hungary. However, the original name, CSswiss?, is retained in the
code.

CSswissF Forward conversion
int CSswissF (Const struct cs_Swiss_ *swiss,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Swiss_ structure via the swiss argument, CSswissF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSswissF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSswissI Inverse conversion
int CSswissI (Const struct cs_Swiss_ *swiss,ll,Const double xy [2]);

Given a properly initialized cs_Swiss_ structure via the swiss argument, CSswissI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSswissI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSswissK parallel scale (K)
double CSswissK (Const struct cs_Swiss_ *swiss,Const double ll [2]);

CSswissK returns the grid scale factor along a parallel at the geodetic location specified by the ll
argument. Since the Swiss Oblique Cylindrical projection is conformal, the returned value is also valid
as the grid scale factor along a meridian.

CSswissC Convergence angle
double CSswissC (Const struct cs_Swiss_ *swiss,Const double ll [2]);

CSswissC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_llazdd function.

CSswissQ definition Quality check
int CSswissQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSswissQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Swiss Oblique Cylindrical Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSswissQ only examines those components specific to the Swiss Oblique
Cylindrical Projection. CSswissQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The

216 CS-MAP User's Guide User's Guide

number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a
description of the various error codes and their meaning. CSswissQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSswissL Latitude/longitude check
int CSswissL (Const struct cs_Swiss_ *swiss,int cnt,Const double pnts
[][3]);

CSswissL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the swiss argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSswisssL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSswissL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSswissX Xy coordinate check
int CSswissX (Const struct cs_Swiss_ *swiss,int cnt,Const double pnts
[][3]);

CSswissX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the swiss argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSswisssX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSswissL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSswissS Setup
void CSswissS (struct cs_Csprm_ *csprm);

The CSswissS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude and other projection
parameters are known, there are many calculations which need only be performed once. CSswissS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CSswissS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

Two variations of this projection are supported. The first variation described is the more general
variation, the second variation being a simple special case of the first. This may be considered
strange, but the simple special case was implemented first, and the more general case developed at a
later date.

The following elements of the cs_Csdef_ structure that must be initialized for boith variations the
Oblique Cylindrical Projection are as follows:

 Chapter 4 Chatper 4 -- Library Functions 217

org_lng The longitude of the origin of the projection, in degrees,
where positive indicates east longitude. This is the longitude
of the central point of the projection. This longitude is also
considered the X origin of the projection.

org_lat The latitude of the origin of the projection, in degrees, where
positive indicates north latitude. This is the latitude of the
central point of the projection. This latitude is also
considered the Y origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system
units and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the projection origin specified by the org_lng
parameter.

 y_off The false northing to be applied to all Y coordinates, usually
selected to cause all Y coordinates within the coordinate
system to be positive values of reasonable size. This is the Y
coordinate of the projection origin specified by the org_lat
parameter.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Oblique Cylindrical Projection, Generalized (cs_PRJCOD_OBQCYL)

This variation represents the generalized version of the Oblique Cylindrical projection.

The following elements of the cs_Csdef_ structure are specific to this variation of the projection:

scl_red The factor by which the cylindrical projection surface is shrunk
into the gaussian sphere before the actual projection process
begins.

prj_prm1 The latitude at which the radius of the gaussian sphere is
calculated.

218 CS-MAP User's Guide User's Guide

Oblique Cylindrical Projection, Switzerland (cs_PRJCOD_SWISS)

This variation represents the specialized version of the Oblique Cylindrical projection that was originally
implemented for use in Switzerland. There are no specific parameters required. The generalized
scale reduction parameter is hard coded to 1.0 for this variation, and the latitude at which the gaussian
sphere is calculated is hard coded to be equal to the origin latitude.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Swiss_ Structure

The results of the one-time calculations are recorded in the swiss element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSswissF, CSswissI,
CSswissK, and CSswissC functions require as their first argument.

Oblique Stereographic Projection (CSostro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Oblique
Stereographic Projection. Several other forms of the St6ereographic projection are also supported.
The algorithms implemented in this projection are those commonly in use. They are different from
those presented by Snyder in Map Projections - A Working Manual.

CSostroF Forward conversion
int CSostroF (Const struct cs_Ostro_ *ostro,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Ostro_ structure via the ostro argument, CSostroF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSostroF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

The xy and ll arrays may be the same array. The X coordinate and the longitude are carried in the first
element in these arrays, the Y coordinate and the latitude in the second element. The latitude and
longitude values are in degrees where negative values are used to represent west longitude and south
latitude.

CSostroI Inverse conversion
int CSostroI (Const struct cs_Ostro_ *ostro,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Ostro_ structure via the ostro argument, CSostroI will convert the X

 Chapter 4 Chatper 4 -- Library Functions 219

and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSostroI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

The xy and ll arrays may be the same array. The X coordinate and the longitude are carried in the first
element in these arrays, the Y coordinate and the latitude in the second element. The latitude and
longitude values are in degrees where negative values are used to represent west longitude and south
latitude.

CSostroK grid scale (K) normal to radial
double CSostroK (Const struct cs_Ostro_ *ostro,Const double ll [2]);

CSostroK returns the grid scale factor normal to the radial at the geodetic location specified by the ll
argument. As the Oblique Stereographic projection is conformal, the H scale factor is the same as the
K scale factor. Therefore, there is no CSostroH function.

CSostroC Convergence angle
double CSostroC (Const struct cs_Ostro_ *ostro,Const double ll [2]);

CSostroC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_llazdd function.

CSostroQ definition Quality check
int CSostroQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSostroQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Stereographic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSostroQ only examines those components specific to the Oblique Stereographic
Projection. CSostroQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSostroQ may be called with the NULL pointer and/or a zero for
the err_list and list_sz arguments respectively.

CSostroL Latitude/longitude check
int CSostroL (Const struct cs_Ostro_ *ostro,int cnt,Const double pnts
[][3]);

CSostroL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ostro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSostrosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSostroL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSostroX Xy coordinate check
int CSostroX (Const struct cs_Ostro_ *ostro,int cnt,Const double pnts
[][3]);

220 CS-MAP User's Guide User's Guide

CSostroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ostro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSostrosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSostroL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSostroS Setup
void CSostroS (struct cs_Csprm_ *csprm);

The CSostroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSostroS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the first argument provided to CSostroS serves as the source
for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

The following parameters must be set:

 Chapter 4 Chatper 4 -- Library Functions 221

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units, the scale
reduction factor, and the mapping scale that is to be applied.

scl_red The scale reduction factor, independent of all other scaling, is
obtained from this element and is necessary for correct
computation of the grid scale factor in some cases.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. This is the X coordinate
of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is the
Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Ostro_ Structure

The results of the one-time calculations are recorded in the ostro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSostroF, CSostroI,
CSostroK, and CSostroC functions require as their first argument.

222 CS-MAP User's Guide User's Guide

Orthographic Projection (CSortho)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Orthographic Projection. This projection is supported in spherical form only. The equatorial radius of
the supplied ellipsoid is used as the radius of the sphere.

CSorthoF Forward conversion
int CSorthoF (Const struct cs_Ortho_ *ortho,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Ortho_ structure via the ortho argument, CSorthoF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSorthoF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSorthoI Inverse conversion
int CSorthoI (Const struct cs_Ortho_ *ortho,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Ortho_ structure via the ortho argument, CSorthoI will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSorthoI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSorthoK grid scale (K) normal to radial
double CSorthoK (Const struct cs_Ortho_ *ortho,Const double ll [2]);

CSorthoK returns the value 1.0 which is the grid scale factor normal to the radial at the geodetic
location specified by the ll argument.

CSorthoH grid scale (H) along radial
double CSorthoH (Const struct cs_Ortho_ *ortho,Const double ll [2]);

CSorthoH returns the grid scale factor along a radial from the coordinate system origin to (and at) the
geodetic location specified by the ll argument.

CSorthoC Convergence angle
double CSorthoC (Const struct cs_Ortho_ *ortho,Const double ll [2]);

CSorthoC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_azsphr function.

CSorthoQ definition Quality check
int CSorthoQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSorthoQ determines if the coordinate system definition provided by the csdef argument is consistent

 Chapter 4 Chatper 4 -- Library Functions 223

with the requirements of the Orthographic Projection. CS_cschk examines those definition components
which are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSorthoQ only examines those components specific to the Orthographic Projection.
CSorthoQ returns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the various
error codes and their meaning. CSorthoQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSorthoL Latitude/longitude check
int CSorthoL (Const struct cs_Ortho_ *ortho,int cnt,Const double pnts
[][3]);

CSorthoL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ortho argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSorthosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSorthoL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSorthoX Xy coordinate check
int CSorthoX (Const struct cs_Ortho_ *ortho,int cnt,Const double pnts
[][3]);

CSorthoX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ortho argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSorthosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSorthoL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSorthoS Setup (general)
void CSorthoS (struct cs_Csprm_ *csprm);

The CSorthoS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSorthoS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the argument provided to CSorthoS serves as the source for
input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

224 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

 x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is the
Y coordinate of the coordinate system origin.

Quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Ortho_ Structure

The results of the one-time calculations are recorded in the ortho element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSorthoF, CSorthoI,
CSorthoK, CSorthoH, and CSorthoC functions require as their first argument.

Polar Stereographic Projection (CSpstro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Polar
Stereographic Projection. There exist several other forms of the Stereographic projection.

CSpstroF Forward conversion
int CSpstroF (Const struct cs_Pstro_ *pstro,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Pstro_ structure via the pstro argument, CSpstroF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSpstroF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate

 Chapter 4 Chatper 4 -- Library Functions 225

system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSpstroI Inverse conversion
int CSpstroI (Const struct cs_Pstro_ *pstro,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Pstro_ structure via the pstro argument, CSpstroI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSpstroI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSpstroK grid scale (K) normal to radial
double CSpstroK (Const struct cs_Pstro_ *pstro,Const double ll [2]);

CSpstroK returns the grid scale factor normal to the radial at the geodetic location specified by the ll
argument. As the Polar Stereographic projection is conformal, the H scale factor is the same as the K
scale factor. Therefore, there is no CSpstroH function.

CSpstroC Convergence angle
double CSpstroC (Const struct cs_Pstro_ *pstro,Const double ll [2]);

CSpstroC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_llazdd function.

CSpstroQ definition Quality check
int CSpstroQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSpstroQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Polar Stereographic Projection. CS_cschk examines those definition
components which are common to all coordinates systems (datum or ellipsoid reference, map scale,
and units) and, therefore, CSpstroQ only examines those components specific to the Polar
Stereographic Projection. CSpstroQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a
description of the various error codes and their meaning. CSpstroQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSpstroL Latitude/longitude check
int CSpstroL (Const struct cs_Pstro_ *pstro,int cnt,Const double pnts
[][3]);

CSpstroL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the pstro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSpstrosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSpstroL returns cs_CNVRT_OK if all subject coordinates are within the mathematical

226 CS-MAP User's Guide User's Guide

domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSpstroX Xy coordinate check
int CSpstroX (Const struct cs_Pstro_ *pstro,int cnt,Const double pnts
[][3]);

CSpstroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the pstro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSpstrosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSpstroL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSpstroS Setup
void CSpstroS (struct cs_Csprm_ *csprm);

The CSpstroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSpstroS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the first argument provided to CSpstroS serves as the source
for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

The following parameters must be set:

 Chapter 4 Chatper 4 -- Library Functions 227

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection. Must
be either 90 degrees north (i.e. positive), or 90 degrees south
(negative).

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units,
the scale reduction factor, and the mapping scale that is to be
applied.

scl_red The scale reduction factor, independent of all other scaling, is
obtained from this element and is necessary for correct
computation of the grid scale factor in some cases.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Pstro_ Structure

The results of the one-time calculations are recorded in the pstro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSpstroF, CSpstroI,

228 CS-MAP User's Guide User's Guide

CSpstroK, and CSpstroC functions require as their first argument.

Robinson Projection (CSrobin)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Robinson
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSrobinF Forward conversion
int CSrobinF (Const struct cs_Robin_ *robin,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Robin_ structure via the robin argument, CSrobinF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSrobinF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSrobinI Inverse conversion
int CSrobinI (Const struct cs_Robin_ *robin,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Robin_ structure via the robin argument, CSrobinI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSrobinI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSrobinK grid scale (K) normal to radial
double CSrobinK (Const struct cs_Robin_ *robin,Const double ll [2]);

CSrobinK returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSrobinH grid scale (H) along radial
double CSrobinH (Const struct cs_Robin_ *robin,Const double ll [2]);

CSrobinH returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSrobinC Convergence angle
double CSrobinC (Const struct cs_Robin_ *robin,Const double ll [2]);

CSrobinC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CSrobinQ definition Quality check
int CSrobinQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 Chapter 4 Chatper 4 -- Library Functions 229

 int *err_list [],int list_sz);

 CSrobinQ determines if the coordinate system definition provided by the csdef argument is
consistent with the requirements of the Robinson Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSrobinQ only examines those components specific to the Robinson Projection.
CSrobinQ returns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the various
error codes and their meaning. CSrobinQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSrobinL Latitude/longitude check
int CSrobinL (Const struct cs_Robin_ *robin,int cnt,Const double pnts
[][3]);

CSrobinL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the robin argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSrobinsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSrobinL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CSrobinX Xy coordinate check
int CSrobinX (Const struct cs_Robin_ *robin,int cnt,Const double pnts
[][3]);

CSrobinX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the robin argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSrobinsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSrobinL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSrobinS Setup (general)
void CSrobinS (struct cs_Csprm_ *csprm);

The CSrobinS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations that need only be performed once. CSrobinS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the argument provided to CSrobinS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

230 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

cs_Robin_ Structure

The results of the one-time calculations are recorded in the robin element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSrobinF, CSrobinI,
CSrobinK, CSrobinH, and CSrobinC functions require as their first argument.

Sinusoidal Projection (CSsinus)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Sinusoidal
Projection. Both spherical and ellipsoidal forms are supported.

CSsinusF Forward conversion
int CSsinusF (Const struct cs_Sinus_ *sinus,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Sinus_ structure via the sinus argument, CSsinusF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSsinusF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

 Chapter 4 Chatper 4 -- Library Functions 231

CSsinusI Inverse conversion
int CSsinusI (Const struct cs_Sinus_ *sinus,ll,Const double xy [2]);

Given a properly initialized cs_Sinus_ structure via the sinus argument, CSsinusI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSsinusI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSsinusK parallel scale (K)
double CSsinusK (Const struct cs_Sinus_ *sinus,Const double ll [2]);

CSsinusK returns the grid scale factor along a parallel at the geodetic location specified by the ll
argument. For the Sinusoidal Projection, this value is always 1.0.

CSsinusH meridian scale (H)
double CSsinusH (Const struct cs_Sinus_ *sinus,Const double ll [2]);

CSsinusH returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. For the sphere, specific formulas are used to compute this value. For the ellipsoid, specific
formulas could not be located and the result is arrived at using the CS_llazdd function.

CSsinusC Convergence angle
double CSsinusC (Const struct cs_Sinus_ *sinus,Const double ll [2]);

CSsinusC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_llazdd function.

CSsinusQ definition Quality check
int CSsinusQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSsinusQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Sinusoidal Projection. CS_cschk examines those definition components
that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSsinusQ only examines those components specific to the Sinusoidal Projection. CSsinusQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CSsinusQ may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

CSsinusL Latitude/longitude check
int CSsinusL (Const struct cs_Sinus_ *sinus,int cnt,Const double pnts
[][3]);

CSsinusL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the

232 CS-MAP User's Guide User's Guide

coordinate system provided by the sinus argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSsinussL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSsinusL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSsinusX Xy coordinate check
int CSsinusX (Const struct cs_Sinus_ *sinus,int cnt,Const double pnts
[][3]);

CSsinusX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the sinus argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSsinussX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSsinusL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSsinusS Setup
void CSsinusS (struct cs_Csprm_ *csprm);

The CSsinusS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations which need only be performed once. CSsinusS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CSsinusS serves as the source for input and the repository for
the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

The specific elements of the cs_Csdef_ structure that must be initialized for the Sinusoidal Projection
are as follows:

 Chapter 4 Chatper 4 -- Library Functions 233

org_lng The longitude of the central meridian of the projection, in
degrees, where positive indicates east longitude. It is this line
of longitude that is straight and true to scale. This longitude is
also considered the X origin of the projection. The Y origin of
the projection is always the equator.

prj_prm1-24 These 24 doubles can be used in groups of three to specify the
zones of an interrupted Sinusoidal projection. See
CS_zones(4CS) for more information on how to encode a
specific zone or zones. Leave all values set to zero for a
standard single zone projection based on the origin longitude
specified in the org_lng element.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units,
the scale reduction factor, and the mapping scale that is to be
applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

234 CS-MAP User's Guide User's Guide

cs_Sinus_ Structure

The results of the one-time calculations are recorded in the sinus element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSsinusF, CSsinusI,
CSsinusK, CSsinusH, and CSsinusC functions require as their first argument. Note that the cs_Sinus_
structure includes an array of eight cs_Zone_ structures in order to support an interrupted sinusoidal
projection with up to eight zones.

Oblique Stereographic ala Snyder (CSsstro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Oblique
Stereographic Projection. Several other forms of the Stereographic projection are also supported. The
algorithms implemented in this specific projection are those presented by John Parr Snyder in Map
Projections - A Working Manual. These fomulations are not widely used, and certainly not those used
in the maritime provinces of Canada, the Netherlands, amd Romania.

CSsstroF Forward conversion
int CSsstroF (Const struct cs_Sstro_ *sstro,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Sstro_ structure via the sstro argument, CSsstroF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSsstroF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSsstroI Inverse conversion
int CSsstroI (Const struct cs_Sstro_ *sstro,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Sstro_ structure via the sstro argument, CSsstroI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSsstroI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSsstroK grid scale (K) normal to radial
double CSsstroK (Const struct cs_Sstro_ *sstro,Const double ll [2]);

CSsstroK returns the grid scale factor normal to the radial at the geodetic location specified by the ll
argument. As Snyder's development of the Oblique Stereographic projection is conformal, the H scale
factor is the same as the K scale factor. Therefore, there is no CSsstroH function.

CSsstroC Convergence angle
double CSsstroC (Const struct cs_Sstro_ *sstro,Const double ll [2]);

CSsstroC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_llazdd function.

 Chapter 4 Chatper 4 -- Library Functions 235

CSsstroQ definition Quality check
int CSsstroQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSssteroQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Stereographic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSsstroQ only examines those components specific to Snyder's development of
the Oblique Stereographic Projection. CSsstroQ returns in err_list an integer code value for each error
condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerpt for a description of the various error codes and their meaning. CSsstroQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

CSsstroL Latitude/longitude check
int CSsstroL (Const struct cs_Sstro_ *sstro,int cnt,Const double pnts
[][3]);

CSssteroL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the sstro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSssterosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSssteroL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSsstroX Xy coordinate check
int CSsstroX (Const struct cs_Sstro_ *sstro,int cnt,Const double pnts
[][3]);

CSssteroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the sstro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSssterosX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSssteroL
returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSsstroS Setup
void CSsstroS (struct cs_Csprm_ *csprm);

The CSssteroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSssteroS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the first argument provided to CSssteroS serves as the source
for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;

236 CS-MAP User's Guide User's Guide

but can be provided by the application at run time.

The following parameters must be set:

prj_prm1 The azimuth, in degrees east of north, of the positive Y-axis
of the coordinate system.

org_lng The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system
units, the scale reduction factor, and the mapping scale that
is to be applied.

scl_red The scale reduction factor, independent of all other scaling,
is obtained from this element and is necessary for correct
computation of the grid scale factor in some cases.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. This is the X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

 Chapter 4 Chatper 4 -- Library Functions 237

cs_Sstro_ Structure

The results of the one-time calculations are recorded in the sstro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSssteroF, CSssteroI,
CSssteroK, and CSssteroC functions require as their first argument.

Transverse Authalic Cylindrical Projection (CStacyl)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Transverse Aspect of the Equal Area (Authalic) Cylindrical projection.

CStacylF Forward conversion
int CStacylF (Const struct cs_Tacyl_ *tacyl,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Tacyl_ structure via the tacyl argument, CStacylF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CStacylF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CStacylI Inverse conversion
int CStacylI (Const struct cs_Tacyl_ *tacyl,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Tacyl_ structure via the tacyl argument, CStacylI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CStacylI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CStacylK parallel scale (K)
double CStacylK (Const struct cs_Tacyl_ *tacyl,Const double ll [2]);

CStacylK returns the grid scale factor, along a parallel, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the ll array. As analytical formulas for this
value had not been located as yet, this value is arrived at empirically using CS_llazdd.

CStacylH meridian scale (K)
double CStacylH (Const struct cs_Tacyl_ *tacyl,Const double ll [2]);

CStacylH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the ll array. As analytical formulas
for this value had not been located as yet, this value is arrived at empirically using CS_llazdd.

CStacylC Convergence angle
double CStacylC (Const struct cs_Tacyl_ *tacyl,Const double ll [2]);

CStacylC returns the convergence angle in degrees east of north of any coordinate system based on
this projection at the latitude and longitude provided by the ll argument. As analytical formulas for this

238 CS-MAP User's Guide User's Guide

value had not yet been located, this value is arrived at empirically using CS_llazdd.

CStacylQ definition Quality check
int CStacylQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CStacylQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Transverse Aspect of the Equal Area Cylindrical Projection. CS_cschk
examines those definition components that are common to all coordinates systems (datum or ellipsoid
reference, map scale, and units) and, therefore, CStacylQ only examines those components specific to
the Transverse Aspect of the Equal Area Cylindrical Projection. CStacylQ returns in err_list an integer
code value for each error condition detected, being careful not to exceed the size of err_list as
indicated by the list_sz argument. The number of errors detected, regardless of the size of err_list, is
always returned. Refer to CSerpt for a description of the various error codes and their meaning.
CStacylQ may be called with the NULL pointer and/or a zero for the err_list and list_sz arguments
respectively.

CStacylL Latitude/longitude check
int CStacylL (Const struct cs_Tacyl_ *tacyl,int cnt,Const double pnts
[][3]);

CStacylL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the tacyl argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CStacylsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CStacylL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CStacylX Xy coordinate check
int CStacylX (Const struct cs_Tacyl_ *tacyl,int cnt,Const double pnts
[][3]);

CStacylX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the tacyl argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CStacylsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CStacylL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CStacylS Setup
void CStacylS (struct cs_Csprm_ *csprm);

The CStacylS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations that need only be performed once. CStacylS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CStacylS serves as the source for input and the repository for
the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_

 Chapter 4 Chatper 4 -- Library Functions 239

structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Transverse Aspect of the Equal Area Cylindrical Projection are:

org_lng Longitude, in degrees, of the central meridian of the coordinate
system (or map).

org_lat Latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to as the
scale of the central meridian.

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Tacyl_ Structure

The results of the one-time calculations are recorded in the tacyl element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CStacylF, CStacylI,
CStacylK, CStacylH, and CStacylC functions require as their first argument.

240 CS-MAP User's Guide User's Guide

Transverse Mercator, ala Snyder, Projection (CStrmrs)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Transverse Mercator Projection as formulated by John P. Snyder and published in Map Projections - A
Working Manual. Since the Transverse Mercator projection is a conformal projection, the K (grid scale
along a parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H function
for this projection. The standard Transverse Mercator provided elsewhere is a superior formulation,
but certain clients are comforted by obtaining the exact results they are used to. Thus, this projection
is provided largely for historical purposes.

CStrmrsF Forward
int CStrmrsF (Const struct cs_Trmrs_ *trmrs,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Trmrs_ structure via the trmrs argument, CStrmrsF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CStrmrsF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CStrmrsI Inverse
int CStrmrsI (Const struct cs_Trmrs_ *trmrs,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Trmrs_ structure via the trmrs argument, CStrmrsI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CStrmrsI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CStrmrsK parallel scale (K)
double CStrmrsK (Const struct cs_Trmrs_ *trmrs,Const double ll [2]);

CStrmrsK returns the grid scale factor of the coordinate system at the specific geographic location
defined by the latitude and longitude provided in the ll array.

CStrmrsC Convergence angle
double CStrmrsC (Const struct cs_Trmrs_ *trmrs,Const double ll [2]);

CStrmrsC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array.

CStrmrsQ definition Quality check
int CStrmrsQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CStrmrsQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Transverse Mercator Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CStrmrsQ only examines those components specific to the Transverse Mercator

 Chapter 4 Chatper 4 -- Library Functions 241

Projection. CStrmrsQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CStrmrsQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CStrmrsL Latitude/longitude check
int CStrmrsL (Const struct cs_Trmrs_ *trmrs,int cnt,Const double pnts
[][3]);

CStrmrsL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the trmrs argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CStrmrssL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CStrmrsL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CStrmrsX Xy coordinate check
int CStrmrsX (Const struct cs_Trmrs_ *trmrs,int cnt,Const double pnts
[][3]);

CStrmrsX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the trmrs argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CStrmrssX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CStrmrsL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CStrmrsS Snyder, Setup
void CStrmrsS (struct cs_Csprm_ *csprm);

The CStrmrsS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CStrmrsS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CStrmrsS serves as the source for input and
the repository for the results as described below. The prj_code element of this structure is ignored.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time.

The following parameters must be set:

242 CS-MAP User's Guide User's Guide

prj_prm1 Longitude, in degrees, of the central meridian.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to as
the scale of the central meridian.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Trmrs_ Structure

The results of the one-time calculations are recorded in the trmrs element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CStrmrsF, CStrmrsI,
CStrmrsK, and CStrmrsC functions require as their first argument.

Transverse Mercator Projection (CStrmer)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Transverse Mercator Projection. The algorithms used have also been referred to as the Gauss-Kruger
projection. Since the Transverse Mercator projection is a conformal projection, the K (grid scale along

 Chapter 4 Chatper 4 -- Library Functions 243

a parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H function for this
projection. Five variations of this projection are supported. The prj_code element of the cs_Csprm_
structure defines which of the eight variations is to be developed.

CStrmerF Forward
int CStrmerF (Const struct cs_Trmer_ *trmer,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Trmer_ structure via the trmer argument, CStrmerI will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CStrmerF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CStrmerI Inverse
int CStrmerI (Const struct cs_Trmer_ *trmer,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Trmer_ structure via the trmer argument, CStrmerI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CStrmerI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CStrmerK parallel scale (K)
double CStrmerK (Const struct cs_Trmer_ *trmer,Const double ll [2]);

CStrmerK returns the grid scale factor of the coordinate system at the specific geographic location
defined by the latitude and longitude provided in the ll array.

CStrmerC Convergence angle
double CStrmerC (Const struct cs_Trmer_ *trmer,Const double ll [2]);

CStrmerC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the ll array.

CStrmerQ definition Quality check
int CStrmerQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CStrmerQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Transverse Mercator Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CStrmerQ only examines those components specific to the Transverse Mercator
Projection. CStrmerQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CStrmerQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

244 CS-MAP User's Guide User's Guide

CStrmerL Latitude/longitude check
int CStrmerL (Const struct cs_Trmer_ *trmer,int cnt,Const double pnts
[][3]);

CStrmerL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the trmer argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CStrmersL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CStrmerL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CStrmerX Xy coordinate check
int CStrmerX (Const struct cs_Trmer_ *trmer,int cnt,Const double pnts
[][3]);

CStrmerX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the trmer argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CStrmersX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CStrmerL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CStrmerS Setup
void CStrmerS (struct cs_Csprm_ *csprm);

The CStrmerS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CStrmerS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CStrmerS serves as the source for input
and the repository for the results as described below. The prj_code element of this structure defines
which of the eight variations is to be setup.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The use of elements in the cs_Csdef_ structure is
dependent on the specific variation.

The following elements of the cs_Csdef_ structure are used for all eight variations:

 Chapter 4 Chatper 4 -- Library Functions 245

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system
units and the mapping scale that is to be applied.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Transverse Mercator, aka Gauss Kruger (cs_PRJCOD_TRMER)

This variation is the standard development of the Transverse Mercator projection as used throughout
the world.

prj_prm1 Longitude, in degrees, of the central meridian.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to as
the scale of the central meridian.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Universal Transverse Mercator (cs_PRJCOD_UTM)

This variation implements the same algorithms as the standard Transverse Mercator described above.
However, the definition parameters are expressly tailored for the definition of zones of the Universal
Transverse Mercator system of coordinate systems.

prj_prm1 UTM zone number. Note this must be an integer value between
1 and 60, even though it is carried in a variable of the double
type.

prj_prm2 The hemisphere of the zone. Use a positive one for northern
hemisphere, a negative one for the southern hemisphere.

South Oriented Transverse Mercator (cs_PRJCOD_SOTRM)

This variation of the standard development of the Transverse Mercator projection produces results
required by, for example, coordinate systems used in South Africa.

246 CS-MAP User's Guide User's Guide

prj_prm1 Longitude, in degrees, of the central meridian.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to as
the scale of the central meridian.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Wisconsin Variation (cs_PRJCOD_WCCST)

This is a minor variation of the traditional version of the projection. This variation supports the
Wisconsin County Coordinate System group of coordinate systems. This variation uses a parallel
ellipsoid technique to adjust horizontal coordinates for average elevation of the region being mapped.

prj_prm1 Longitude, in degrees, of the central meridian.

prj_prm2 Average geoid separation, in meters, of the region being
mapped.

prj_prm3 Average elevation above the geoid (i.e. orthometric height), in
system units, of the region being mapped.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to as the
scale of the central meridian.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Minnesota Variation (cs_PRJCOD_MNDOT):

This is a minor variation of the traditional version of the projection. This variation supports the county
coordinate systems developed by the Minnesota Department of Transportation. This variation uses a
parallel ellipsoid technique (different from that used in Wisconsin, or course) to adjust horizontal
coordinates for average elevation of the region being mapped.

It should be noted that the original MNDOT implementation of this coordinate system applied the scale
reduction factor in a non-standard way. Thus, using the standard Tranverse Mercator algorithms, even
with the elevated ellipsoid, failed to produce the same coordinate values as the MNDOT

 Chapter 4 Chatper 4 -- Library Functions 247

implementation. To overcome this issue, many vendors jiggle the false orign of the coordinate systems
for each county, and theref ore produce a close approximation. The CS-MAP implementation uses the
exact same algorithm as the MNDOT implementation, and thus can use the published flase origin
values and produce the precise values as the MNDOT version.

As a result, the definitions in the CS-MAP dictionary will vary from those in the dictionaries of other
vendors. However, the results produced by CS-MAP, using the official published definitions, match the
MNDOT implementation at the millimeter level.

prj_prm1 Longitude, in degrees, of the central meridian.

prj_prm2 Average elevation above the ellipsoid, in system units, of the
region being mapped.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to as the
scale of the central meridian.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Transverse Mercator (Gauss/Kruger) with Affine Post Process
(cs_PRJCOD_TRMERAF)

This is variation of the traditional Transverse Mercatoor has been implemented to support the Swedish
Land Survey system. It essentially adds an Affine Transformation post-process to the projection. The
affine post-process is applied as the last item in the calculation, even after the application of the false
origin. The form of the affine transformation is as follows:

newX = A0 + oldX * A1 + oldY * A2
newY = B0 + oldX * B1 + oldY * B2

The following parameters are used by this variation (in addition tot he standard ones for this
projection):

248 CS-MAP User's Guide User's Guide

prj_prm1 Longitude, in degrees, of the central meridian.

prj_prm2 Coefficient A0

prj_prm3 Coefficient B0

prj_prm4 Coefficient A1

prj_prm5 Coefficient A2

prj_prm6 Coefficient B1

prj_prm7 Coefficient B2

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. This is also referred to
as the scale of the central meridian.

x_off The false easting to be applied to all X coordinates,
usually selected to cause all X coordinates within the
coordinate system to be positive values of reasonable
size.

y_off The false northing to be applied to all Y coordinates.

Ordnance Survey National Grid Transformation of 1997
(cs_PRJCOD_OSTN97)

There are two elements which make this variation differ4ent from the standard Transverse Mercator
(aka Gauss Kruger) projection. First, the basic projection parameters are hard coded to be those of
the standard Ordnance Survey National Grid coordinate system. Thus, this variation really doesn't
have any parameters at all.

Second, after the basic projection calculation is performed, the transformation known as Ordnance
Survey National Transformation of 1997 (OSTN97) is applied. This transformation requires access to
a data file which is expected to be named "OSTN97.txt" and is expected to reside in the primary data
directory.

The end result of this variation is the ability to convert ETRF89 based geographic coordinates to
National Grid coordinates, where the actual National Grid coordinates are the same (for a specific
geographic point) as the 1936 National Grid coordinates.

Yes, this is strange as the datum shift calculation is actually performed on the cartesian coordinates
which result from the application of the projection. That is why this datum shift calculation had to be
performed here in the cartographic code.

 Chapter 4 Chatper 4 -- Library Functions 249

As described above, this variation does not require any parameters. (In fact, what is considered a
standard parameter for the Transverse Mercator projection, the Scale Reduction, is also ignored by this
variation. The OSGB value of 0.9996012717 is hard coded in.)

Ordnance Survey National Grid Transformation of 1997
(cs_PRJCOD_OSTN02)

There are two elements which make this variation different from the standard Transverse Mercator
(aka Gauss Kruger) projection. First, the basic projection parameters are hard coded to be those of
the standard Ordnance Survey National Grid coordinate system. Thus, this variation really doesn't
have any parameters at all.

Second, after the basic projection calculation is performed, the transformation known as Ordnance
Survey National Transformation of 2002 (OSTN02) is applied. This transformation requires access to
a data file which is expected to be named "OSTN02.txt" and is expected to reside in the primary data
directory.

The end result of this variation is the ability to convert ETRF89 based geographic coordinates to
National Grid coordinates, where the actual National Grid coordinates are the same (for a specific
geographic point) as the 1936 National Grid coordinates.

Yes, this is strange as the datum shift calculation is actually performed on the cartesian coordinates
which result from the application of the projection. That is why this datum shift calculation had to be
performed here in the cartographic code.

As described above, this variation does not require any parameters. (In fact, what is considered a
standard parameter for the Transverse Mercator projection, the Scale Reduction, is also ignored by this
variation. The OSGB value of 0.9996012717 is hard coded in.)

Note that the OSTN97 and OSTN02 variations are very similar, but do not produce precisely the same
results. Generally, it is assumed that the OSTN02 values are to be preffered. CS-MAP can be used to
convert data sets which were derived from the OSTN97 transformation to OSTN02.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e_rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84_via An integer code that specifies the technique that is to be
used to convert geographic coordinates based on this
datum to WGS84.

cs_Trmer_ Structure

The results of the one-time calculations are recorded in the trmer element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CStrmerF, CStrmerI,

250 CS-MAP User's Guide User's Guide

CStrmerK, and CStrmerC functions require as their first argument.

Unity Pseudo Projection (CSunity)

These functions implement the pseudo projection referred to as the Unity projection. This projection
enables coordinate systems to be defined in which the coordinates are actually latitude and longitude.
The projection does nothing other than converting latitude and longitude values to/from the internal
representation of degrees based on Greenwich to the form indicated by the coordinate system
definition.

Technically all values are within the domain of this function. However, for the purposes of limit
checking, the domain of this function is considered to consist of latitudes between -90 and +90
inclusive, and longitudes within the user defined range, inclusive of both the upper and lower limit. The
Q function requires that the user definable range must be less than 540 degrees in extent.

CSunityF Forward conversion
int CSunityF (Const struct cs_Unity_ *unity,double xy [2],Const double ll
[2]);

This function simply converts the contents of the ll array from the internal representation of degrees
based on Greenwich to the units and origin indicated by the unity argument and places the results in
the xy array. CSunityF normally returns cs_CNVRT_NRML. If ll is not within the domain of the
coordinate system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

The xy and ll arguments may point to the same array.

CSunityI Inverse conversion
int CSunityI (Const struct cs_Unity_ *unity,double ll [2],Const double xy
[2]);

This function expects the contents of xy to contain a latitude and longitude in the units and with the
origin specified by the unity argument. These values are converted to the standard internal form,
degrees based on Greenwich, and returned in ll. CSunityI normally returns cs_CNVRT_NRML. It will
return cs_CNVRT_RNG if the xy value is not within the domain of the coordinate system.

The ll and xy arguments may point to the same array.

CSunityK scale (K)
double CSunityK (Const struct cs_Unity_ *unity,Const double ll [2]);

This function simply returns a 1.0. Its arguments are ignored. Grid scale factor has no meaning with
regard to latitudes and longitudes. However, since applications are usually unaware of the coordinate
systems involved, this function provides an appropriate value.

CSunityC Covergence angle
double CSunityC (Const struct cs_Unity_ *unity,Const double ll [2]);

This function simply returns a 0.0. Its arguments are ignored.

CSunityQ definition Quality check
int CSunityQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSunityQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Unity Pseudo Projection. CS_cschk examines those definition components

 Chapter 4 Chatper 4 -- Library Functions 251

that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSunityQ only examines those components specific to the Unity Pseudo Projection.
CSunityQ returns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the various
error codes and their meaning. CSunityQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSunityL Latitude/longitude check
int CSunityL (Const struct cs_Unity_ *unity,int cnt,Const double pnts
[][3]);

CSunityL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the constraints placed on internal
geographic coordinates, namely (in terms of degrees) longitudes greater than -270 but less than or
equal to +270; and latitudes in the range of -90 and +90, inclusive.

CSunityX Xy coordinate check
int CSunityX (Const struct cs_Unity_ *unity,int cnt,Const double pnts
[][3]);

In this special case, the coordinates provided in the list are indeed geographic coordinates, but
possibly in units other than degrees and possibly referenced to a prime meridian other than Greenwich.
CSunityX essentially converts the geographic coordinates provided to internal form, and then verifies
that all of the resulting coordinates meet internal geographic coordinate requirements. If the converted
list does indeed meet internal requirements (after conversion), cs_CNVRT_OK is returned; otherwise,
cs_CNVRT_DOMN is returned.

CSunityS Setup
void CSunityS (struct cs_Csprm_ *csprm);

This function sets the projection scale to 1.0, captures the units and origin of the latitude and longitude
system, sets up the user defined range, and sets pointers to CSunityF, CSunityI, CSunityK, and
CSunityC in the appropriate locations of the csprm argument.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

252 CS-MAP User's Guide User's Guide

org_lng The longitude, in degrees relative to the Greenwich Prime
Meridian, of the prime meridian for this coordinate system.

Scale The scale of the coordinate system. This one factor must
convert degrees to coordinate system units by multiplication.

prj_prm1 The minimum value of the range of longitude desired for this
coordinate system. Must be specified in user units, and
relative to the user's origin. The range between this value and
prj_prm2, upon conversion to degrees, must be greater than or
equal to 360 and less than 540. Disable this feature by setting
both prj_prm1 and prj_prm2 equal to zero.

prj_prm2 The maximum value of the range of longitude desired for this
coordinate system. Must be specified in user units, and
relative to the user's origin. The range between this value and
prj_prm1, upon conversion to degrees, must be greater than or
equal to 360 and less than 540. Disable this feature by setting
both prj_prm2 and prj_prm1 equal to zero.

Van Der Grinten Projection (CSvdgrn)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Van Der
Grinten Projection. This projection is supported in spherical form only. The equatorial radius of the
supplied ellipsoid is used as the radius of the sphere.

CSvdgrnF Forward conversion
int CSvdgrnF (Const struct cs_Vdgrn_ *vdgrn,double xy [2],Const double ll
[2]);

Given a properly initialized cs_Vdgrn_ structure via the vdgrn argument, CSvdgrnF will convert the
latitude and longitude provided in the ll array to X and Y coordinates, returning the result in the xy
array. CSvdgrnF normally returns cs_CNVRT_NRML. If ll is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSvdgrnI Inverse conversion
int CSvdgrnI (Const struct cs_Vdgrn_ *vdgrn,double ll [2],Const double xy
[2]);

Given a properly initialized cs_Vdgrn_ structure via the vdgrn argument, CSvdgrnI will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the ll array.
CSvdgrnI normally returns cs_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and ll arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

 Chapter 4 Chatper 4 -- Library Functions 253

CSvdgrnK parallel scale (K)
double CSvdgrnK (Const struct cs_Vdgrn_ *vdgrn,Const double ll [2]);

CSvdgrnK returns the grid scale factor along a parallel at the geodetic location specified by the ll
argument. As analytical formulas for this value have not been located, this value is arrived at
empirically using spherical trigonometry.

CSvdgrnH meridian scale (H)
double CSvdgrnH (Const struct cs_Vdgrn_ *vdgrn,Const double ll [2]);

CSvdgrnH returns the grid scale factor along a meridian at the geodetic location specified by the ll
argument. As analytical formulas for this value have not been located, this value is arrived at
empirically using spherical trigonometry.

CSvdgrnC Convergence angle
double CSvdgrnC (Const struct cs_Vdgrn_ *vdgrn,Const double ll [2]);

CSvdgrnC returns the convergence angle in degrees east of north of the geodetic location specified by
the ll argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphr function.

CSvdgrnQ definition Quality check
int CSvdgrnQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

 int *err_list [],int list_sz);

CSvdgrnQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Van Der Grinten Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSvdgrnQ only examines those components specific to the Van Der Grinten
Projection. CSvdgrnQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CSvdgrnQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSvdgrnL Latitude/longitude check
int CSvdgrnL (Const struct cs_Vdgrn_ *vdgrn,int cnt,Const double pnts
[][3]);

CSvdgrnL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the vdgrn argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSvdgrnsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSvdgrnL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. cs_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSvdgrnX Xy coordinate check
int CSvdgrnX (Const struct cs_Vdgrn_ *vdgrn,int cnt,Const double pnts
[][3]);

CSvdgrnX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system

254 CS-MAP User's Guide User's Guide

provided by the vdgrn argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), a line (cnt == 2), or a closed region (cnt > 3). CSvdgrnsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSvdgrnL returns
cs_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. cs_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSvdgrnS Setup
void CSvdgrnS (struct cs_Csprm_ *csprm);

The CSvdgrnS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations which need only be performed once. CSvdgrnS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the argument provided to CSvdgrnS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdef function;
but can be provided by the application at run time. The following parameters are used:

org_lng The longitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. This is the X coordinate
of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This is the
Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm_ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the
CS_dtloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e_rad The radius of the earth, as a sphere, in meters.

 Chapter 4 Chatper 4 -- Library Functions 255

cs_Vdgrn_ Structure

The results of the one-time calculations are recorded in the vdgrn element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSvdgrnF, CSvdgrnI,
CSvdgrnK, CSvdgrnH, and CSvdgrnC functions require as their first argument.

Geodetic Conversion (Datum) Functions
Functions used in the conversion of geographic coordinates from one datum to another are described in
this section.

Note that for all transformations, functions for both 2D and 3D conversions are provided. Generally,
you should only use the 3D version if you are dealing with a three diemnsional database. That is, a
database which will carry the resulting Z value so when it is time to invert the conversion, you will be
able to supply the Z value to the inverse algorithm.

In the case of a 2D database, you will not be able to supply the Z coordinate when it is time to calculate
the inverse, and thus the reulting horizontal components (X and Y) will not be the same as the oroginal
coordinates.

Three Parameter Transformation

The Three Parameter Transformation implements a datum shift by translating geo-centric coordinates
in three dimensions. The three parameters are the components of the translation vector. They are
expressed in meters, and represent the shift from the local reference system (datum) to the WGS84
reference system (datum).

CS_3pInit 3 Parameter INITialize
struct cs_Parm3_ *CS_3pInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_3pInit is essentially a constructor for the cs_Parm3_ structure in C syntax. CS_3pInit will return a
pointer to a malloc'ed cs_Parm3_ structure which has been initialized for the use of the Three
Parameter transformation technique to convert geodetic coordinates from the datum indicated by the
srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this
is not required.)

The equivalent destructor is the CS_free function.

CS_3pInit returns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum_ structures provided by the
arguments.

CS_3p3dFowrd 3 Parameter 3D FOrWaRD conversion
int CS_3p3dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3_ structure,
CS_3p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.

256 CS-MAP User's Guide User's Guide

The conversion is a full three dimensional calculation.

CS_3p3dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_3p2dFowrd 3 Parameter 2D FOrWaRD conversion
int CS_3p2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3_ structure,
CS_3p2dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a two dimensional calculation, the third element of srcLl is simply copied to the
trgLl array.

CS_3p2dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_3p3dInvrs 3 Parameter 3D INVeRSe transformation
int CS_3p3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3_ structure,
CS_3p3dInvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_3p3dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm3_ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm3_ structure was initialized. The conversion is a three dimensional calculation.

CS_3p3dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_3p2dInvrs 3 Parameter 2D INVeRSe transformation
int CS_3p2dInvrs (double trgLl [3],Const double srcLl [3],

 Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3_ structure,
CS_3p2dInvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_3p2dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm3_ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm3_ structure was initialized. The conversion is a two dimensional calculation, the third
element of the srcLl argument is copied to the third element of the trgLl argument.

CS_3p2dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

 Chapter 4 Chatper 4 -- Library Functions 257

Four Parameter Transformation

The original developers of CS-MAP invented this transformation technique, so you may want to
remove it from your distribution. Since are Three, Six, and Seven Parameter Transformations in
general use, it seemed obvious that there should also exist a Four Parameter Transformation.

The Four Parameter Transformation is arrived at by eliminating the three rotation angles from the
Seven Parameter Transformation. The same result could be achieved by setting the rotation angles of
the Seven Parameter Transformation to zero.

CS_4pInit 4 Parameter INITialize
struct cs_Parm4_ *CS_4pInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_4pInit is essentially a constructor for the cs_Parm4_ structure in C syntax. CS_4pInit will return a
pointer to a malloc'ed cs_Parm4_ structure which has been initialized for the use of the Four
Parameter transformation technique to convert geodetic coordinates from the datum indicated by the
srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this
is not required.)

The equivalent destructor is the CS_free function.

CS_4pInit returns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum_ structures provided by the
arguments.

CS_4p3dFowrd 4 Parameter 3D FOrWaRD conversion
int CS_4p3dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4_ structure,
CS_4p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a full three dimensional calculation.

CS_4p3dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_4p2dFowrd 4 Parameter 2D FOrWaRD conversion
int CS_4p2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4_ structure,
CS_4p2dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a two dimensional calculation, the third element of srcLl is simply copied to the
trgLl array.

CS_4p2dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

258 CS-MAP User's Guide User's Guide

CS_4p3dInvrs 4 Parameter 3D INVeRSe transformation
int CS_4p3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4_ structure,
CS_4p3dInvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_4p3dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm4_ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm4_ structure was initialized. The conversion is a three dimensional calculation.

CS_4p3dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_4p2dInvrs 4 Parameter 2D INVeRSe transformation
int CS_4p2dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4_ structure,
CS_4p2dInvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_4p2dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm4_ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm4_ structure was initialized. The conversion is a two dimensional calculation, the third
element of the srcLl argument is copied to the third element of the trgLl argument.

CS_4p2dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

Six Parameter Transformation

The Six Parameter Transformation is used occassionally. It is, essentially, the Seven Parameter
Transformation with the Scale parameter set to zero. Remember, that the scale parameter is actually
the number of parts per million the true scale factor differs from unity. Thus, a zero scale parameter
actually means a scale factor of unity (1.0).

CS_6pInit 6 Parameter INITialize
struct cs_Parm6_ *CS_6pInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_6pInit is essentially a constructor for the cs_Parm6_ structure in C syntax. CS_6pInit will return a
pointer to a malloc'ed cs_Parm6_ structure which has been initialized for the use of the Six Parameter
transformation technique to convert geodetic coordinates from the datum indicated by the srcDatum
argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this is not
required.)

The equivalent destructor is the CS_free function.

CS_6pInit returns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum_ structures provided by the
arguments.

 Chapter 4 Chatper 4 -- Library Functions 259

CS_6p3dFowrd 6 Parameter 3D FOrWaRD conversion
int CS_6p3dFowrd (double trgLl [3],Const double srcLl [3],Const struct
cs_Parm6_ *parm6)

Given a Six Parameter transformation in the form of an initialized cs_Parm6_ structure,
CS_6p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a full three dimensional calculation.

CS_6p3dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_6p2dFowrd 6 Parameter 2D FOrWaRD conversion
int CS_6p2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm6_ *parm6)

Given a Six Parameter transformation in the form of an initialized cs_Parm6_ structure,
CS_6p2dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a two dimensional calculation, the third element of the srcLl is simply copied to the
trgLl array.

CS_6p2dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_6p3dInvrs 6 Parameter 3D INVeRSe transformation
int CS_6p3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm6_ *parm6)

Given a Six Parameter transformation in the form of an initialized cs_Parm6_ structure, CS_6p3dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgLl argument. However,
unlike CS_6p3dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Parm6_ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Parm6_ structure
was initialized. The conversion is a three dimensional calculation.

CS_6p3dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_6p2dInvrs 6 Parameter 2D INVeRSe transformation
int CS_6p2dInvrs (double trgLl [3],Const double srcLl [3],Const struct
cs_Parm6_ *parm6)

260 CS-MAP User's Guide User's Guide

Given a Six Parameter transformation in the form of an initialized cs_Parm6_ structure, CS_6p2dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgLl argument. However,
unlike CS_6p2dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Parm6_ structure was initialized. The results
are based, of course, on the source datum provided when the provided cs_Parm6_ structure was
initialized. The conversion is a two dimensional calculation, the third element of the srcLl argument is
copied to the third element of the trgLl argument.

CS_6p2dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

Seven Parameter Transformation

This transformation is the rigorous implementation of the widely used Seven Parameter
Transformation. The seven parameters include:

 the three components of the geocentric translation vector expressed in meters, and

 three rotation angles. one for each geocentric axis, expressed in seconds of arc, and

 a scale factor express in the deviiation from unit in parts per million.

Note that a negative scale factor parameter indicates a resulting scale factor less than unity.

Please note that this transformation is called the Bursa/Wolf Transformation by many. However, in the
contect of CS-MAP, the term Bursa/Wolf Transformation has a decidely different meaning.

CS_7pInit 7 Parameter INITialize
struct cs_Parm7_ *CS_7pInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_7pInit is essentially a constructor for the cs_Parm7_ structure in C syntax. CS_7pInit will return a
pointer to a malloc'ed cs_Parm7_ structure which has been initialized for the use of the Seven
Parameter transformation technique to convert geodetic coordinates from the datum indicated by the
srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this
is not required.)

The equivalent destructor is the CS_free function.

CS_7pInit returns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum_ structures provided by the
arguments.

CS_7p3dFowrd 7 Parameter 3D FOrWaRD conversion
int CS_7p3dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7_ structure,
CS_7p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a full three dimensional calculation.

 Chapter 4 Chatper 4 -- Library Functions 261

CS_7p3dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_7p2dFowrd 7 Parameter 2D FOrWaRD conversion
int CS_7p2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7_ structure,
CS_7p2dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a two dimensional calculation, the third element of srcLl is simply copied to the
trgLl array.

CS_7p2dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_7p3dInvrs 7 Parameter 3D INVeRSe transformation
int CS_7p3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7_ structure,
CS_7p3dInvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_7p3dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm7_ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm7_ structure was initialized. The conversion is a three dimensional calculation.

CS_7p3dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_7p2dInvrs 7 Parameter 2D INVeRSe transformation
int CS_7p2dInvrs (double trgLl [3],Const double srcLl [3],

 Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7_ structure,
CS_7p2dInvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_7p2dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm7_ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm7_ structure was initialized. The conversion is a two dimensional calculation, the third
element of the srcLl argument is copied to the third element of the trgLl argument.

CS_7p2dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

262 CS-MAP User's Guide User's Guide

Bursa/Wolf Transformation

In the context of CS-MAP, the term Bursa/Wolf Transformation refers to an approximation of the
Seven Parameter Transformation. This approximation was widely used prior to 1990 and is included
in CS-MAP so that users can duplicate results prosuced by this approximation.

The approximation is based on three assumptions:

 the sine of a small angle is equal to the angle itself when expressed in radians; and

 the product of the sine of two small angles is zero; and

 the cosine of a small angle is unity (i.e. 1.0).

Taking these assumptions to be true, the calculation of the normal Seven Parameter Transformation is
greatly simplified. Thus, its use was highly popular before PC's became to be used widely in
GIS/Mapping/Geodetic field work. This is especially true as the rotation angle usually used in a Seven
Parameter Transformation are indeed very small (on the order of a few seconds of arc).

The end result as far as CS-MAP is concerned, therefore, is that the term Seven Parameter
Transformation refers to the rigourous implementation of the transformation technique, while the
Bursa/Wolf refers to the frequently used approximation described above. New work should use the
Seven Parameter Transformation. the Bursa/Wolf should only be used when working with data
previously processed using that transformation.

CS_bwInit Bursa Wolf INITialize
struct cs_Bursa_ *CS_bwInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_bwInit is essentially a constructor for the cs_Bursa_ structure in C syntax. CS_bwInit will return a
pointer to a malloc'ed cs_Bursa_ structure which has been initialized for the use of the Bursa/Wolf
transformation technique to convert geodetic coordinates from the datum indicated by the srcDatum
argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this is not
required.)

The equivalent destructor is the CS_free function.

CS_bwInit returns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum_ structures provided by the
arguments.

CS_bw3dFowrd Bursa Wolf 3D FOrWaRD conversion
int CS_bw3dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa_ structure, CS_bw3dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a full three dimensional calculation.

CS_bw3dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

 Chapter 4 Chatper 4 -- Library Functions 263

CS_bw2dFowrd Bursa Wolf 2D FOrWaRD conversion
int CS_bw2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa_ structure, CS_bw2dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a two dimensional calculation, the third element of srcLl is simply copied to the trgLl array.

CS_bw2dFowrd returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_bw3dInvrs Bursa Wolf 3D INVeRSe transformation
int CS_bw3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa_ structure, CS_bw3dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgLl argument. However,
unlike CS_bw3dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Bursa_ structure was initialized. The
results are, of course, based on the source datum provided when the provided cs_Bursa_ structure
was initialized. The conversion is a three dimensional calculation.

CS_bw3dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_bw2dInvrs Bursa Wolf 2D INVeRSe transformation
int CS_bw2dInvrs (double trgLl [3],Const double srcLl [3],

 Const struct cs_Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa_ structure, CS_bw2dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgLl argument. However,
unlike CS_bw2dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Bursa_ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Bursa_ structure
was initialized. The conversion is a two dimensional calculation, the third element of the srcLl
argument is copied to the third element of the trgLl argument.

CS_bw2dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

264 CS-MAP User's Guide User's Guide

DMA Multiple Regression

The DMA Multiple Regression Transformation implements the technique published by the DMA
(Defense Mapping Agency, USA) in is defining document DMA Technical Report 8350.2-B (1
December 1987). In this document, the DMA published polynomial based transformations for
converting from many local reference systems to WGS84. These transformations were developed
using Multiple Regression techniques.

In the context of CS-MAP, there exists a .mrt file for each such transformation. The .mrt file essentially
carries the coefficients of the transformation. The code described in the following sub-sections builds
a transformation based on the information contained in the .mrt file. All such files are expected to
reside in the main data directory.

Note that .mrt files are produced by the Dictionary Compiler from the data in an ASCII file named
MREG.ASC. The MREG.ASC file contains a transcription of the data presented in the DMA report and
is, of course, in appropriate form for version control.

CS_dmaMrInit DMA Multiple Regression INITialize
struct cs_dmaMReg_ *CS_dmaMrInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_dmaMrInit is essentially a constructor for the cs_dmaMReg_ structure in C syntax. CS_dmaMrInit
will return a pointer to a malloc'ed cs_dmaMReg_ structure which has been initialized for the use of the
DMA Multiple Regression transformation technique to convert geodetic coordinates from the datum
indicated by the srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually
WGS84, but this is not required.)

The equivalent destructor is the CS_free function.

CS_dmaMrInit returns NULL in the event of failure. Failure is usually caused by the non-existence or
corruption of an appropriately named multiple regression definition file. Multiple regression definition
files have the same name as the datum key name with the .mrt extension applied.

CS_dmaMr3dFowrd DMA Multiple Regression 3D FOrWaRD conversion
int CS_dmaMr3dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_dmaMReg_ *mreg)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg_ structure,
CS_dmaMr3dFowrd calculates the datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. The conversion is a full three dimensional calculation.

CS_dmaMr3dFowrd returns zero to indicate success and +1 to indicate failure. Failure can occur if the
coordinates to be converted are outside of the domain of the multiple regression transformation. Note
that the multiple regression formulas use normalized coordinates for the actual calculation. CS-MAP
assumes that a normalized coordinate greater than 1.4 or less than –1.4 are outside the domain of the
multiple regression definition.

CS_dmaMr2dFowrd DMA Multiple Regression 2D FOrWaRD conversion
int CS_dmaMr2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_dmaMReg_ *mreg)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg_ structure,

 Chapter 4 Chatper 4 -- Library Functions 265

CS_dmaMr2dFowrd calculates the datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. The conversion is a two dimensional calculation, the third element of srcLl is simply copied
to the trgLl array.

CS_dmaMr2dFowrd returns zero to indicate success and +1 to indicate failure. Failure can occur if the
coordinates to be converted are outside of the domain of the multiple regression transformation. Note
that the multiple regression formulas use normalized coordinates for the actual calculation. CS-MAP
assumes that a normalized coordinate greater than 1.4 or less than –1.4 are outside the domain of the
multiple regression definition.

CS_dmaMr3dInvrs DMA Multiple Regression 3D INVeRSe transformation
int CS_dmaMr3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_dmaMReg_ *mreg)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg_ structure,
CS_dmaMr3dInvrs calculates the inverse datum transformation. That is, the coordinates provided by
the srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_dmaMr3dFowrd, this function assumes that the coordinates provided
by the srcLl argument are based on the target datum provided when the provided cs_dmaMReg_
structure was initialized. The results are based, of course, on the source datum provided when the
provided cs_dmaMReg_ structure was initialized. The conversion is a three dimensional calculation.

CS_dmaMr3dInvrs returns zero to indicate success and +1 to indicate failure. Failure is caused by a
failure of the iterative forward calculation to converge, or the supplied coordinate being outside the
domain of the multiple regression definition.

CS_dmaMr2dInvrs DMA Multiple Regression 2D INVeRSe transformation
int CS_dmaMr2dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_dmaMReg_ *mreg)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg_ structure,
CS_dmaMr2dInvrs calculates the inverse datum transformation. That is, the coordinates provided by
the srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_dmaMr2dFowrd, this function assumes that the coordinates provided
by the srcLl argument are based on the target datum provided when the provided cs_dmaMReg_
structure was initialized. The results are based, of course, on the source datum provided when the
provided cs_dmaMReg_ structure was initialized. The conversion is a two dimensional calculation, the
third element of the srcLl argument is copied to the third element of the trgLl argument.

CS_dmaMr2dInvrs returns zero to indicate success and +1 to indicate failure. Failure is caused by a
failure of the iterative forward calculation to converge, or the supplied coordinate being outside the
domain of the multiple regression definition.

266 CS-MAP User's Guide User's Guide

DMA Molodensky Transformation

The DMA Molodensky (I've seen this spelled in a number of ways, this spelling seems to be popular in
the US) Transformation is simply another mathematical technique for calculating the Three Parameter
Transformation. This technique is a bit faster, and the inverse does not require an iterative technique as
the Three Parameter Transformation does.

This transformation is widely used as it was prominently published in DMA TR 8350.2-B which is the
primary document used by software developers when implementing datum shift software.

While the DMA Molodensky and Three Parameter Transformations accomplish the same thing, since
the mathematical techniques used are quite different, the results do not match precisely.

CS_moInit MOlodensky INITialize
struct cs_Molo_ *CS_moInit (Const struct cs_Datum_* srcDatum,

 Const struct cs_Datum_* trgDatum)

CS_moInit is essentially a constructor for the cs_Molo_ structure in C syntax. CS_moInit will return a
pointer to a malloc'ed cs_Molo_ structure which has been initialized for the use of the Molodensky
transformation technique to convert geodetic coordinates from the datum indicated by the srcDatum
argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this is not
required.)

The equivalent destructor is the CS_free function.

CS_moInit returns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure.

CS_mo3dFowrd MOlodensky 3D FOrWaRD conversion
int CS_mo3dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Molo_ *molo)

Given a Molodensky transformation in the form of an initialized cs_Molo_ structure, CS_mo3dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a full three dimensional calculation.

CS_mo3dFowrd returns zero to indicate success. Currently, this function is always successful.

CS_mo2dFowrd MOlodensky 2D FOrWaRD conversion
int CS_mo2dFowrd (double trgLl [3],Const double srcLl [3],
 Const struct cs_Molo_ *molo)

Given a Molodensky transformation in the form of an initialized cs_Molo_ structure, CS_mo2dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a two dimensional calculation, the third element of srcLl is simply copied to the trgLl array.

CS_mo2dFowrd returns zero to indicate success. Currently, this function is always successful.

CS_mo3dInvrs MOlodensky 3D INVeRSe transformation
int CS_mo3dInvrs (double trgLl [3],Const double srcLl [3],
 Const struct cs_Molo_ *molo)

 Chapter 4 Chatper 4 -- Library Functions 267

Given a Molodensky transformation in the form of an initialized cs_Molo_ structure, CS_mo3dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgLl argument. However,
unlike CS_mo3dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Molo_ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Molo_ structure
was initialized. The conversion is a three dimensional calculation.

CS_mo3dInvrs returns zero to indicate success. Currently, this function is always successful.

CS_mo2dInvrs MOlodensky 2D INVeRSe transformation
int CS_mo2dInvrs (double trgLl [3],Const double srcLl [3],

 Const struct cs_Molo_ *molo)

Given a Molodensky transformation in the form of an initialized cs_Molo_ structure, CS_mo2dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgLl argument. However,
unlike CS_mo2dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Molo_ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Molo_ structure
was initialized. The conversion is a two dimensional calculation, the third element of the srcLl
argument is copied to the third element of the trgLl argument.

CS_mo2dInvrs returns zero to indicate success and –1 to indicate failure. Failure can only be caused
by a failure of the iterative inverse calculation to converge.

Geocentric Coordinate Calculation

Geocentric coordinates are the coordinates of a point, often on the surface of the earth, based on a three
dimensional cartesian coordinate system whose origin is the center of the earth. The cartesian
coordinate system is a right handed system where:

 the X / Y plane of the cartesian system is coplanar with the plane of the equator of the earth; and
 the X axis intersects the ellipsoid at the point of zero longitude (Greenwich) and zero latiotude

(equator); and
 the Y axis is orthogonal to the X axis and is in the plane of the equator (i.e. intersects the ellipsoid

in the Indian Ocean); and
 the Z axis protrudes from the ellipsoid at the north pole.

The functions described here are used extensively in datum shift calculations, and are useful for a wide
variety of other purposes. Note that the equatorial radius and eccentricity squared are used to specify
the ellipsoid. Also note that the cartesian coordinates are in (must be in) the same units that are used
to specify the equatorial radius of the ellipsoid.

CS_llhToXyz LongLatHgt TO XYZ geocentric
void CS_llhToXyz (double xyz [3],Const double llh [3],double e_rad,double
e_sq)

CS_llhToXyz converts the geodetic coordinates provided by the llh argument to geocentric form and
returns the result in the array provided by the xyz argument. The e_rad and e_sq arguments must

268 CS-MAP User's Guide User's Guide

indicate the equatorial radius and square of the eccentricity, respectively, for the ellipsoid upon which
the calculation is to be based.

The third element of the llh array is considered to be height above the ellipsoid. The equatorial radius,
e_rad, must be specified in the same linear units as used to specify the ellipsoidal height. The results
returned in the xyz array will be based on the same linear unit. Usually, the linear unit involved is
meters.

CS_xyzToLlh XYZ geocentric TO LongLatHgt
int CS_xyzToLlh (double llh [3],Const double xyz [3],double e_rad,double
e_sq)

CS_xyzToLlh converts the geocentric coordinates provided by the xyz argument to geodetic form and
returns the result in the array provided by the llh argument. The e_rad and e_sq arguments must
indicate the equatorial radius and square of the eccentricity, respectively, for the ellipsoid upon which
the calculation is to be based.

The equatorial radius, e_rad, must be specified using the same unit as the geocentric coordinates
provided by the xyz argument. The third element of the returned geodetic coordinate is height above
the ellipsoid and is in the same units used to specify the equatorial radius of the ellipsoid. The linear
unit involved is usually meters.

CS_xyzToLlh returns a zero to indicate success. A –1 is returned to indicate failure. This calculation
requires an iterative solution to obtain the necessary accuracy. Failure is caused when this iterative
solution does not converge.

Australian Geodetic Datum of 1966

This transformation converts geographic coordinates based on the Australian Geodetic Datum of 1966
to geographic coordinates based on the Geocentric Datum of Australia (1994). The conversion is
based on grid shift files which are in the in the Canadian National Transformation, Version 2, format.
The files which are to be used must be listed in the Geodetic Data Catalog named Agd66ToGda94.gdc.

Note that AGD66 applies to certain Australian states, while AGD84 applies to others. CS-MAP uses
the Geodetic Data Catalog feature to select the appropriate file from the list provided. Therefore, to the
end user AGD66 looks like a single entity.

CSagd66Cls Australian Geodetic Datum of 1966 CLoSe
void CSagd66Cls (void)

Use CSagd66Cls to release all resources allocated by a previous call to CSagd66Init. Obviously,
subsequent calls to the CSagd66ToGda94 or CSgda94ToAgd66 will fail until such time that CSagd66Init
is called again.

CSagd66Init Australian Geodetic Datum of 1966 INITialize
int CSagd66Init (void)

Use this function to initialize the AGD66GDA94 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Agd66Name global variable.
CSagd66Init returns zero on success and –1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSagd66ToGda94Log
Const char *CSagd66ToGda94Log (Const double ll_66 [2]);

 Chapter 4 Chatper 4 -- Library Functions 269

Given a AGD66 based geographic point by the ll_66 argument, CSagd66ToGda94Log returns a pointer
to a static string which contains the name of the grid shift file which would be used to convert the point
to GDA94. A null pointer is returned for any type of error. Errors are usually caused by a failure to
initialize the AGD66 to GDA94 conversion system or if the provided point is not within the coverage
of the AGD66 to GDA94 transformation system.

CS_agd66Name Australian Geodetic Datum of 1966 NAME
void CS_agd66Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Australian Geodetic Datum of 1966 to the name provided by the newName argument.

CSagd66ToGda94 AGD66 TO GDA94 conversion
int CSagd66ToGda94 (double ll_94 [3],Const double ll_66 [3])

CSagd66ToGda94 will convert the geographic coordinate provided by the ll_66 argument to the
equivalent GDA94 argument and return the results in the array indicated by the ll_94 argument.
CSagd66Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSagd66ToGda94 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd66Init prior to calling CSagd66ToGda94. A positive 1 is
returned in the case of a soft failure. A soft failure is caused by a AGD66 coordinate that is outside of
the region covered by the data files listed in the Geodetic Data Catalog file used to initialize the
transformation. A positive 2 is returned in the case of a coverage failure where a fallback datum
definition is used to supply approximate results.

CSgda94ToAgd66 GDA94 TO AGD66 conversion
int CSgda94ToAgd66 (double ll_66 [3],Const double ll_94 [3])

CSgda94ToAgd66 will convert the geographic coordinate provided by the ll_94 argument to the
equivalent AGD66 geographic coordinates and return the results in the array indicated by the ll_66
argument. CSagd66Init must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSgda94ToAgd66 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd66Init prior to calling CSgda94ToAgd66. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a GDA94 coordinate that is outside of
the region covered by the AGD66 GDA94 data files listed in the Geodetic Data Catalog file used to
initialize the AGD66 system. A positive 2 value is returned if the point to be converted was outside the
coverage of the data files available and the fallback datum was used to calculate approximate results.

270 CS-MAP User's Guide User's Guide

Australian Geodetic Datum of 1984

This transformation converts geographic coordinates based on the Australian Geodetic Datum of 1984
to geographic coordinates based on the Geocentric Datum of Australia (1994). The conversion is
based on grid shift files which are in the in the Canadian National Transformation, Version 2, format.
The files which are to be used must be listed in the Geodetic Data Catalog named Agd84ToGda94.gdc.

Note that AGD84 applies to certain Australian states, while AGD66 applies to others. CS-MAP uses
the Geodetic Data Catalog feature to select the appropriate file from the list provided. Therefore, to the
end user AGD84 looks like a single entity.

CSagd84Cls Australian Geodetic Datum of 1984 CLoSe
void CSagd84Cls (void)

Use CSagd84Cls to release all resources allocated by a previous call to CSagd84Init. Obviously,
subsequent calls to the CSagd84ToGda94 or CSgda94ToAgd84 will fail until such time that CSagd84Init
is called again.

CSagd84Init Australian Geodetic Datum of 1984 INITialize
int CSagd84Init (void)

Use this function to initialize the AGD84GDA94 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Agd84Name global variable.
CSagd84Init returns zero on success and –1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSagd84ToGda94Log AGD66 TO GDA94 LOG
Const char *CSagd84ToGda94Log (Const double ll_84 [2]);

Given a AGD84 based geographic point by the ll_84 argument, CSagd84ToGda94Log returns a pointer
to a static string which contains the name of the grid shift file which would be used to convert the point
to GDA94. A null pointer is returned for any type of error. Errors are usually caused by a failure to
initialize the AGD84 to GDA94 conversion system or if the provided point is not within the coverage
of the AGD84 to GDA94 transformation system.

CS_agd84Name Australian Geodetic Datum of 1984 NAME
void CS_agd84Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Australian Geodetic Datum of 1984 to the name provided by the newName argument.

CSagd84ToGda94 AGD84 TO GDA94 conversion
int CSagd84ToGda94 (double ll_94 [3],Const double ll_84 [3])

CSagd84ToGda94 will convert the geographic coordinate provided by the ll_84 argument to the
equivalent GDA94 argument and return the results in the array indicated by the ll_94 argument.
CSagd84Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSagd84ToGda94 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd84Init prior to calling CSagd84ToGda94. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by an AGD84 coordinate that is outside
of the region covered by the AGD84 data files listed in the Geodetic Data Catalog file used to initialize

 Chapter 4 Chatper 4 -- Library Functions 271

the AGD84 system. A positive 2 is returned if the point provided by the ll_84 argument is outside the
coverage of the AGD84 to GDA94 transformation system and the fallback datum was used to produce
approximate results.

CSgda94ToAgd84 GDA94 TO AGD84 conversion
int CSgda94ToAgd84 (double ll_84 [3],Const double ll_94 [3])

CSgda94ToAgd84 will convert the geographic coordinate provided by the ll_94 argument to the
equivalent AGD84 argument and return the results in the array indicated by the ll_84 argument.
CSagd84Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSgda94ToAgd84 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd84Init prior to calling CSgda94ToAgd84. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a GDA94 coordinate that is outside of
the region covered by the AGD84 GDA94 data files listed in the Geodetic Data Catalog file used to
initialize the AGD84 system. A positive 2 is returned if the point provided by the ll_94 argument is
outside the coverage of the AGD84 to GDA94 transformation system and the fallback datum was used
to produce an approximate result.

Average Terrestrial System of 1977 (ATS77)

This transformation converts geographic coordinates based on the Average Terrestrial System of 1977
to geographic coordinates based on the Canadian Spatial Reference System (Nad83/1994). This
transformation is typically used in the maritime provinces of Canada. The conversion is based on grid
shift files which are in the in the Canadian National Transformation, Version 2, format. The files
which are to be used must be listed in the Geodetic Data Catalog named Ats77ToCSRS.gdc.

Note that ATS77 applies only to the maritime provinces of New Brunswick, Nova Scotia, and Prince
Edward Island. CS-MAP uses the Geodetic Data Catalog feature to select the appropriate file from the
list provided. Therefore, to the end user ATS77 looks like a single entity. Take great care in ordering
the files in the Geodetic Data Catalog, as there is serious overlap, and the results derived from the
different files can differ significantly. In fact, it is recommended that if a client is based in one of these
provinces, that they delete (or comment out) the other two files from the Geodetic Data Catalog to
assure that the desired results are obtained.

CSats77Cls Average Terrestial System of 1977 CLoSe
void CSats77Cls (void)

Use CSats77Cls to release all resources allocated by a previous call to CSats77Init. Obviously,
subsequent calls to the CSats77ToCsrs or CScsrsToAts77 will fail until such time that CSats77Init is
called again.

CSats77Init Average Terrestial System of 1977 INITialize
int CSats77Init (void)

Use this function to initialize the ATS77CSRS conversion system. The initialization will occur using the
Geodetic Data Catalog file named by the contents of the cs_Ats77Name global variable. CSats77Init
returns zero on success and –1 on failure. Failure is usually caused by a problem encountered in
processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_ats77Name Average Terrestrial System of 1977 NAME
void CS_ats77Name (Const char *newName)

272 CS-MAP User's Guide User's Guide

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Average Terrestrial System (eastern Canada) of 1977 to the name provided by the newName
argument.

CSats77ToCsrsLog ATS77 TO CSRS LOG function
Const char * EXP_LVL7 CSats77ToCsrsLog (Const double ll_77 [2])

Use this function to obtain a pointer to a string which contains the name of the file (from the Geodetic
Data Catalog) which would be used to convert the point provided by the ll_77 argument. A null pointer
is returned if the ATS77 to CSRS conversion system has not been initialized, or the point provided is
not within the coverage of the ATS77 to CSRS conversion system.

CSats77ToCsrs ATS77 TO CSRS conversion
int CSats77ToCsrs (double ll_csrs [3],Const double ll_77 [3])

CSats77ToCsrs will convert the geographic coordinate provided by the ll_ 77 argument to the equivalent
CSRS (Canadian Spatial Reference System) values and return the results in the array indicated by the
ll_csrs argument. CSats77Init must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSats77ToCsrs will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSats77Init prior to calling CSats77ToCsrs. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by an ATS77 coordinate that is outside of the region
covered by the data files listed in the Geodetic Data Catalog file used to initialize the ATS77 system.

CScsrsToAts77 CSRS TO ATS77 conversion
int CscsrsToAts77 (double ll_77 [3],Const double ll_csrs [3])

CScsrsToAts77 will convert the geographic coordinate provided by the ll_csrs argument to the
equivalent ATS77 values and return the results in the array indicated by the ll_77 argument.
CSats77Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CScsrsToAts77 will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSats77Init prior to calling CScsrsToAts77. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by an ATS77 coordinate that is outside of the region
covered by the ATS77 CSRS data files listed in the Geodetic Data Catalog file used to initialize the
ATS77 system.

Canadian Spatial Reference System

Use this transformation to convert coordinates based on the North American Datum of 1983 (NAD83)
to coordinates based on the Canadian Spatial Reference System. This transformation is based on
datum shift data files in the Canadian National Transformation, Version 2, format which are listed in
the in the Geodetic Data Catalog named Nad83ToCsrs.gdc.

CScsrsCls Canadian Spatial Reference System CLoSe
void CSnadCls (void)

Use CsnadCls to release all resources allocated by a previous call to CScsrsInit. Obviously,
subsequent calls to the CSnad83ToCsrs or CScsrsToNad83 will fail until such time that CScsrsInit is
called again.

 Chapter 4 Chatper 4 -- Library Functions 273

CScsrsInit Canadian Spatial Reference System INITialize
int CScsrsInit (void)

Use this function to initialize the NAD83CSRS conversion system. The initialization will occur using the
Geodetic Data Catalog file named by the contents of the cs_CsrsName global variable. CScsrsInit
returns zero on success and –1 on failure. Failure is usually caused by a problem encountered in
processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_csrsName Canadian Spatial Reference System NAME
void CS_csrsName (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Canadian Spatial Reference System to the name provided by the newName argument.

CSnad83ToCsrsLog NAD83 TO CSRS LOG function
Const char* CSnad83ToCsrsLog (Const double ll_83 [2])

Use this function to obtain a pointer to a string which contains the name of the file (from the Geodetic
Data Catalog) which would be used to convert the point provided by the ll_83 argument. A null
pointer is returned if the NAD83 to CSRS conversion system has not been initialized, or the point
provided is not within the coverage of the NAD83 to CSRS conversion system.

CSnad83ToCsrs NAD83 TO Canadian Spatial Reference System conversion
int CSnad83ToCsrs (double ll_csrs [3],Const double ll_83 [3])

CSnad83ToCsrs will convert the geographic coordinate provided by the ll_83 argument to the
equivalent CSRS values and return the results in the array indicated by the ll_csrs argument.
CScsrsInit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad83ToCsrs will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CScsrsInit prior to calling CSnad83ToCsrs. A positive 1 is returned in the
case of a soft failure. A soft failure us caused by a NAD83 coordinate that is outside of the region
covered by the CSRS data files listed in the Geodetic Data Catalog file used to initialize the CSRS
system.

CScsrsToNad83 Canadian Spatial Reference System TO NAD83 conversion
int CScsrsToNad83 (double ll_83 [3],Const double ll_csrs [3])

CScsrsToNad83 will convert the geographic coordinate provided by the ll_csrs argument to the
equivalent NAD83 values and return the results in the array indicated by the ll_83 argument.
CScsrsInit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CScsrsToHarn will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CScsrsInit prior to calling CScsrsToNad83. A positive 1 is returned in the
case of a soft failure. A soft failure us caused by a CSRS coordinate that is outside of the region
covered by the HARN data files listed in the Geodetic Data Catalog file used to initialize the HARN
system.

274 CS-MAP User's Guide User's Guide

High Precision Gps Network

Use this transformation to convert coordinates based on the North American Datum of 1983 (NAD83)
to coordinates based on the High Accuracy Reference Network (HARN). In the past, this has been
referred to as High Precision GPS Network (HPGN) and NAD83/91. This transformation is based on
datum shift data files in the NADCON LAS/LOS format which are listed in the in the Geodetic Data
Catalog named Nad83ToHarn.gdc.

These functions are defined in the module named CS_hpgn.c.

CSharnCls HARN CLoSe
void CSharnCls (void)

Use CSharnCls to release all resources allocated by a previous call to CSharnInit. Obviously,
subsequent calls to the CSnad83ToHarn or CSharnToNad83 will fail until such time that CSharnInit is
called again.

CSharnInit HARN INITialize
int CSharnInit (void)

Use this function to initialize the NAD83HARN conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_HarnName global variable.
CSharnInit returns zero on success and –1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSnad83ToHarnLog NAD83 TO HARN LOG
Const char* CSnad83ToHarnLog (Const double ll_83 [3])

Use this function to obtain a pointer to a string which contains the name of the file (from the Geodetic
Data Catalog) which would be used to convert the point provided by the ll_83 argument. A null
pointer is returned if the NAD83 to HARN conversion system has not been initialized, or the point
provided is not within the coverage of the NAD83 to HARN conversion system.

CSharnToNad83 HARN TO NAD83 conversion
int CSharnToNad83 (double ll_83 [3],Const double ll_harn [3])

CSharnToNad83 will convert the geographic coordinate provided by the ll_harn argument to the
equivalent NAD83 values and return the results in the array indicated by the ll_83 argument.
CSharnInit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSharnToNad83 will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSharnInit prior to calling CSharnToNad83. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by a HARN coordinate that is outside of the region
covered by the HARN data files listed in the Geodetic Data Catalog file used to initialize the HARN
system. A positive 2 is returned in the case of a coverage failure where a fallback datum definition is
used to supply approximate results.

CSnad83ToHarn NAD83 TO HARN conversion
int CSnad83ToHarn (double ll_harn [3],Const double ll_83 [3])

CSnad83ToHarn will convert the geographic coordinate provided by the ll_83 argument to the
equivalent HARN argument and return the results in the array indicated by the ll_harn argument.

 Chapter 4 Chatper 4 -- Library Functions 275

CSharnInit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad83ToHarn will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSharnInit prior to calling CSnad83ToHarn. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by a NAD83 coordinate that is outside of the region
covered by the HARN data files listed in the Geodetic Data Catalog file used to initialize the HARN
system. A positive 2 is returned in the case of a coverage failure where a fallback datum definition is
used to supply approximate results.

North American Datum of 1983

This transformation converts geographic coordinates based on the North American Datum of 1927 to
geographic coordinates based on the North American Datum of 1983. Two different file formats are
supported:

1 NADCON LAS/LOS format files as generated and distributed by the US National Geodetic Survey
(NGS); and

2 Canadian National Transformation, Version 2, format files as distributed by Geomatics Canada.

The files which are to be used must be listed in the Geodetic Data Catalog named Nad27ToNad83.gdc.

Clearly, the files published by the US NGS apply to US geography (i.e. the 48 conterminous states,
Alaska, Hawaii, etc.), and the file(s) distributed by Geomatics Canada apply to Canadian geography.
Through the use of the Geodetic Data Catalog feature, CS-MAP presents NAD83 to the user as a single
entity.

Note that there is substantial overlap between the data files supplied by these two different sources.
The files will not produce identical results. Therefore it is important that the features of the Geodetic
Data Catalog be used to obtain the results desired.

CSnadCls NADcon CLoSe
void CSnadCls (void)

Use CsnadCls to release all resources allocated by a previous call to CSnadInit. Obviously, subsequent
calls to the CSnad27ToNad83 or CSnad83ToNad27 will fail until such time that CSnadInit is called again.

CSnadInit NADcon INITialize
int CSnadInit (void)

Use this function to initialize the NAD27NAD83 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_NadName global variable. CSnadInit
returns zero on success and –1 on failure. Failure is usually caused by a problem encountered in
processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSnad27ToNad83Log NAD27 TO NAD83 LOG
Const char* CSnad27ToNad83Log (Const double ll_27 [2])

276 CS-MAP User's Guide User's Guide

Given a NAD27 based geographic point by the ll_27 argument, CSnad27ToNad83Log returns a pointer
to a static string which contains the name of the grid shift file which would be used to convert the point
to NAD83. A null pointer is returned for any type of error. Errors are usually caused by a failure to
initialize the NAD27 to NAD83 conversion system or if the provided point is not within the coverage
of the NAD27 to NAD83 transformation system.

CSnad27ToNad83 NAD27 TO NAD83 conversion
int CSnad27ToNad83 (double ll_83 [3],Const double ll_27 [3])

CSnad27ToNad83 will convert the geographic coordinate provided by the ll_27 argument to the
equivalent NAD83 argument and return the results in the array indicated by the ll_83 argument.
CSnadInit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad27ToNad83 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnadInit prior to calling CSnad27ToNad83. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a NAD27 coordinate that is outside of
the region covered by the NADCON data files listed in the Geodetic Data Catalog file used to initialize
the NADCON system. A positive 2 is returned if the point provided by the ll_27 argument is outside
the coverage of the NAD27 to NAD83 transformation system and the fallback datum was used to
produce approximate results.

CSnad83ToNad27 NAD83 TO NAD27 conversion
int CSnad83ToNad27 (double ll_27 [3],Const double ll_83 [3])

CSnad83ToNad27 will convert the geographic coordinate provided by the ll_83 argument to the
equivalent NAD27 argument and return the results in the array indicated by the ll_27 argument.
CSnadInit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad83ToNad27 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnadInit prior to calling CSnad83ToNad27. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a NAD83 coordinate that is outside of
the region covered by the NADCON data files listed in the Geodetic Data Catalog file used to initialize
the NADCON system. A positive 2 is returned if the point provided by the ll_83 argument is outside
the coverage of the NAD27 to NAD83 transformation system and the fallback datum was used to
produce approximate results.

New Zealand Geodetic Datum of 1949

This transformation converts geographic coordinates based on the New Zealand Geodetic Datum of
1949 to geographic coordinates based on the New Zealand Geodetic Datum of 2000. The conversion is
based on grid shift files which are in the in the Canadian National Transformation, Version 2, format.
The files which are to be used must be listed in the Geodetic Data Catalog named Nzgd49ToNzgd2k.gdc.

This set oif functions relies on the Geodetic Data Catalog concept, even though there is a single file,
and it is unlikely that there would ever be more than one file.

CSnzgd49Cls New Zealand Geodetic Datum of 1949 CLoSe
void CSnzgd49Cls (void)

Use CSnzgd49Cls to release all resources allocated by a previous call to CSnzgd49Init. Obviously,

 Chapter 4 Chatper 4 -- Library Functions 277

subsequent calls to the CSnzgd49ToNzgd2K or CSnzgd2KToNzgd49 will fail until such time that
CSnzgd49Init is called again.

CSnzgd49Init New Zealand Geodetic Datum of 1949 INITialize
int CSnzgd49Init (void)

Use this function to initialize the NZGD49NZGD2000 conversion system. The initialization will occur
using the Geodetic Data Catalog file named by the contents of the cs_Nzgd49Name global variable.
CSnzgd49Init returns zero on success and –1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_nzgd49Name New Zealand Geodetic Datum of 1949 NAME
void CS_nzgd49Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the New
Zealand Geodetic Datum of 1949 to the name provided by the newName argument.

CSnzgd2KToNzgd49 NZGD2K TO NZGD49 conversion
int CSnzgd2KToNzgd49 (double ll_49 [3],Const double ll_2k [3])

CSnzgd2KToNzgd49 will convert the geographic coordinate provided by the ll_2k argument to the
equivalent NZGD49 argument and return the results in the array indicated by the ll_49 argument.
CSnzgd49Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnzgd2KToNzgd49 will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnzgd49Init prior to calling CSnzgd2KToNzgd49. A positive 1
is returned in the case of a soft failure. A soft failure us caused by a NZGD2000 coordinate that is
outside of the region covered by the NZGD49 NZGD2000 data files listed in the Geodetic Data
Catalog file used to initialize the NZGD49 system. A positive 2 is returned in the case of a coverage
failure where a fallback datum definition is used to supply approximate results.

CSnzgd49ToNzgd2K NZGD49 TO NZGD2K conversion
int CSnzgd49ToNzgd2K (double ll_2k [3],Const double ll_49 [3])

CSnzgd49ToNzgd2K will convert the geographic coordinate provided by the ll_49 argument to the
equivalent NZGD2000 values and return the results in the array indicated by the ll_2k argument.
CSnzgd49Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnzgd49ToNzgd2K will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnzgd49Init prior to calling CSnzgd49ToNzgd2K. A positive 1
is returned in the case of a soft failure. A soft failure us caused by a NZGD49 coordinate that is
outside of the region covered by the NZGD49 data files listed in the Geodetic Data Catalog file used to
initialize the NZGD49 system. A positive 2 is returned in the case of a coverage failure where a
fallback datum definition is used to supply approximate results.

278 CS-MAP User's Guide User's Guide

World Geodetic System of 1972

This transformation converts geographic coordinates based on World Geodetic System of 1972
(WGS72) to geographic coordinates based on the World Geodetic System of 1984 (WGS84). This
transformation is analytical. That is, some simple formulas are available and no data files (or Geodetic
Data Catalog files) are necessary.

CSwgs72284 WGS72 TO wgs84
int CSwgs72284 (Const double ll_72 [2],double ll_84 [2]);

CSwgs72284 will convert the WGS-72 based latitude and longitude provided in the ll_72 array to their
equivalent WGS-84 values and return the result in the ll_84 array. Ll_72 and ll_84 may be the same
array. In these arrays, the first element is the longitude and the second element is the latitude.
Longitude and latitudes must be given in degrees where negative values indicate west longitude and
south latitude. CSwgs72284 returns FALSE to indicate a successful conversion.

ERRORS

CSwgs72284 returns FALSE to indicate a successful conversion. Future versions of CSwgs72284 may
return TRUE to indicate a failure of some sort.

CSwgs8472 WGS84 to wgs72
int CSwgs8472 (Const double ll_84 [2],double ll_72 [2]);

CSwgs8472 iteratively calls CSwgs72284 in order to convert the WGS-84 geographic coordinates given
by the ll_84 argument to an equivalent pair of WGS-72 coordinates. The results are returned in the
ll_72 array. Ll_84 and ll_72 may be the same array. In both arrays, the first element is the longitude
and the second element is the latitude. Values must be in degrees where negative values are used to
indicate west longitude and south latitude. CSwgs8472 returns FALSE to indicate a successful
conversion.

ERRORS

CSwgs8472 returns TRUE and sets cs_Error appropriately if any of the following conditions are
encountered during the calculations:

cs_WGS_CNVRG The iterative calculation of the WGS-72 values failed to
converge after six iterations.

 Chapter 4 Chatper 4 -- Library Functions 279

North American Datum of 1983

For most practical applications, the North American Datum of 1983 (NAD83) and the World Geodetic
System of 1984 (WGS84) are the same. These are two very precise measurements of the same thing
by two different organizations using similar, but not identical, techniques. Thus, there is significant
debate as whether there are any significant differences between the two.

CS-MAP considers NAD83 and WGS84 to be the same. this is true for the reason given above, and
also because we have not located (as yet) a transformation which can be used to convert between these
two. (The absence of such a published conversion leads us to believe that everyone else also considers
these two datums to be the same.)

However, in order to make it easy for an application programmer to institute a transformation for this
conversion, two stub functions are incorporated into CS-MAP which are called whenever a
transformation would be appropriate.

CSnad8384 NAD38 to wgs84
int CSnad8384 (Const double ll_83 [2],double ll_84 [2]);

Currently, CSnad8384 simply copies the contents of the ll_83 array to the ll_84 array and returns
FALSE to indicate that it did so successfully.

There are differences between NAD83 and WGS 84. However, both are very accurate measurements
of the same thing. Therefore, the differences are slight and are within the tolerance of error associated
with WGS-84. Currently, there are no generally accepted techniques for converting one to the other.
This function is a hook to provide such conversion should a generally recognized technique become
available in the future.

ERRORS

CSnad8384 will FALSE to indicate success. Future versions of CSnad8384 may return a TRUE value to
indicate an error of some sort.

CSwgs8483 WGS84 to nad 83
int CSwgs8483 (Const double ll_84 [2],double ll_83 [2]);

Currently, CSwgs8383 simply copies the contents of the ll_84 array to the ll_83 array and returns
FALSE to indicate that it did so successfully.

There are differences between NAD83 and WGS 84. However, both are very accurate measurements
of the same thing. Therefore, the differences are slight and are within the tolerance of error associated
with WGS-84. Currently, there are no generally accepted techniques for converting one to the other.
This function is a hook to provide such conversion should a generally recognized technique become
available in the future.

ERRORS

CSwgs8483 will FALSE to indicate success. Future versions of CSwgs8483 may return a TRUE value
to indicate an error of some sort.

280 CS-MAP User's Guide User's Guide

Geocentric Datum of Australia, 1994
CSgda94ToWgs84 Gda94 to WGS84
int CSgda94ToWgs84 (Const double ll_wgs84 [3],double ll_gda94 [3]);

Currently, CSgda94ToWgs84 simply copies the contents of the ll_gda94 array to the ll_wgs84 array
and returns FALSE to indicate that it did so successfully.

There are differences between GDA94 and WGS84. However, the differences are slight, and
considering them to be the same produces acceptable results for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSgda94ToWgs84 will FALSE to indicate success. Future versions of CSgda94ToWgs84 may return a
TRUE value to indicate an error of some sort.

CSwgs84ToGda94 WGS84 To GDA94
int CSwgs84ToGda94 (Const double ll_gda94 [3],double ll_wgs84 [3]);

Currently, CSwgs84ToGda94 simply copies the contents of the ll_wgs84 array to the ll_gda94 array
and returns FALSE to indicate that it did so successfully.

There are differences between GDA94 and WGS84. However, the differences are slight, and
considering them to be the same produces results acceptable for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSwgs84ToGda94 will FALSE to indicate success. Future versions of CSwgs84ToGda94 may return a
TRUE value to indicate an error of some sort.

Geodetic Datum of New Zealand, 2000
CSnzgd
int CSnzgd2KToWgs84 (Const double ll_wgs84 [3],Const double ll_nzgd2k [3]);

Currently, CSnzgd2kToWgs84 simply copies the contents of the ll_nzgd2k array to the ll_wgs84 array
and returns FALSE to indicate that it did so successfully.

There are differences between NZGD 2000 and WGS84. However, the differences are slight, and
considering them to be the same produces acceptable results for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

Note, the 'K' in this function name is an uppercase 'K'.

ERRORS

CSnzgd2KToWgs84 will FALSE to indicate success. Future versions of CSnzgd2KToWgs84 may return
a TRUE value to indicate an error of some sort.

 Chapter 4 Chatper 4 -- Library Functions 281

CSwgs84ToNzgd2k WGS84 to NZGD2000
int CSwgs84Tonzgd2K (Const double ll_nzgd2k [3],Const double ll_wgs84 [3]);

Currently, CSwgs84Tonzgd2K simply copies the contents of the ll_wgs84 array to the ll_nzgd2k array
and returns FALSE to indicate that it did so successfully.

There are differences between NZGD 2000 and WGS84. However, the differences are slight, and
considering them to be the same produces results acceptable for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

Note, the 'K' in this function name is an uppercase 'K'.

ERRORS

CSwgs84Tonzgd2K will FALSE to indicate success. Future versions of CSwgs84Tonzgd2K may return a
TRUE value to indicate an error of some sort.

European Terrestrial Reference System of 1989
CSetrf89ToWgs84 ETRF89 To WGS84
int CSetrf89ToWgs84 (Const double ll_wgs84 [3],double ll_etrf89 [3]);

Currently, CSetrf89ToWgs84 simply copies the contents of the ll_etrf89 array to the ll_wgs84 array
and returns FALSE to indicate that it did so successfully.

There are differences between ETRF89 and WGS84. However, the differences are slight, and
considering them to be the same produces acceptable results for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSetrf89ToWgs84 will FALSE to indicate success. Future versions of CSetrf89ToWgs84 may return a
TRUE value to indicate an error of some sort.

CSwgs84ToEtrf89 WGS84 To ETRF89
int CSwgs84ToEtrf89 (Const double ll_etrf89 [3],Const double ll_wgs84 [3]);

Currently, CSwgs84ToEtrf89 simply copies the contents of the ll_wgs84 array to the ll_etrf89 array
and returns FALSE to indicate that it did so successfully.

There are differences between ETRF89 and WGS84. However, the differences are slight, and
considering them to be the same produces results acceptable for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSwgs84ToEtrf89 will FALSE to indicate success. Future versions of CSwgs84ToEtrf89 may return a
TRUE value to indicate an error of some sort.

282 CS-MAP User's Guide User's Guide

European Datum of 1950

This transformation converts geographic coordinates based on the European Datum of 1950 to
geographic coordinates based on the European Terrestrial Reference System of 1989. Currently, a
single file format, the Canadian National Transformation Version 2, is supported. The files which are
to be used must be listed in the Geodetic Data Catalog named Ed50ToEtrf89.gdc. As of this writing,
only one data file is known to exist. That file covers Spain, and is not yet declared official.

Note that is very likely that there will be substantial overlap between the data files supplied by the
various governmental agencies. Since these will be produced by different governments, it is even more
likely that the results produce in the regions of overlap will be significantly different. Therefore it is
important that the features of the Geodetic Data Catalog be used to obtain the results desired.

CSed50Cls Eurpean Datum of 1950 CLoSe
void CSed50Cls (void)

Use CSed50Cls to release all resources allocated by a previous call to CSed50Init. Obviously,
subsequent calls to the CSed50ToEtrf89 or CSetrf89ToEd50 will fail until such time that CSed50Init is
called again.

CSed50Init European Datum of 1950 INITialize
int CSed50Init (void)

Use this function to initialize the ED50 to ETRF89 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Ed50Name global variable.
CSed50Init returns zero on success and –1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

The default Geodetic Dataum Catalog file name is Ed50ToEtrf89.gdc.

CS_ed50Name European Datum of 1950 NAME
void CS_ed50Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
European Datum of 1950 to the name provided by the newName argument.

CSed50ToEtrf89 ED50 To ETRF89 conversion
int CSed50ToEtrf89 (double ll_etrf89 [3],Const double ll_ed50 [3])

CSed50ToEtrf89 will convert the geographic coordinate provided by the ll_ed50 argument to the
appropriate ETRF89 equivalent and return the results in the array indicated by the ll_etrf89 argument.
CSed50Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSed50ToEtrf89 will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSed50Init prior to calling CSed50ToEtrf89. A positive 1 is returned in
the case of a soft failure. A soft failure is caused by a ED50 coordinate that is outside of the region
covered by the data files listed in the Geodetic Data Catalog file used to initialize the transformation. A
positive 2 is returned in the case of a coverage failure where a fallback datum definition is used to
supply approximate results.

CSetrf89ToEd50 ETRF89 To ED50 conversion
int CSetrf89ToEd50 (double ll_ed50 [3],Const double ll_etrf89 [3])

 Chapter 4 Chatper 4 -- Library Functions 283

CSetrf89ToEd50 will convert the geographic coordinate provided by the ll_etrf89 argument to the
equivalent ED50 geographic coordinates and return the results in the array indicated by the ll_ed50
argument. CSed50Init must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSetrf89ToEd50 will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSed50Init prior to calling CSetrf89ToEd50. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by a ETRF89 coordinate that is outside of the region
covered by the ED50 to ETRF89 data files listed in the Geodetic Data Catalog file used to initialize the
ED50 system. A positive 2 value is returned if the point to be converted was outside the coverage of
the data files available and the fallback datum was used to calculate approximate results.

Tokyo Datum

This transformation converts geographic coordinates based on the Tokyo Datum to geographic
coordinates based on the Japanese Geodetic Datum of 2000. Currently, a single file format is
supported, a text format devised by an agency of the Japanese government. It appears that there is a
single large file which covers the entire nation of Japan. Due to the file format, it is easy to produce
smaller regional files. Thus, it may be that you will have several files to work with, and a Geodetic
Data Catalog has been implemented for this purpose. The files which are to be used must be listed in
the Geodetic Data Catalog named TokyoToJgd2k.gdc.

Note that usually the naming convention of this group usually uses the name of the source datum
(Tokyo in this case). Due to a rather strange sequence of events, the functions associated with this
transformation got named for the target datum, Japanese Geodetic Datum of 2000 (JGD2K). While an
inconvenience, it certainly does effect the quality of the numeric results.

Note that the data files are actually normal text files. Since there does not seem to be any guarantees as
to the fixed length nature of the records in these files, the CS-MAP implementation converts the text
file to a binary form on its first use. This enables random access to the data in the file without hogging
up virtual memory space. Thus, the first time this transformation is used, you are liekly to experience a
slight pause as the text to binarty conversion takes place. CS-MAP will always check the dates and
times on the two files, and regenerate the binary version of the file when it appears appropriate.

CSjgd2kCls Japanese Geodetic Datum of 2000 CLoSe
void CSjgd2kCls (void)

Use CSjgd2kCls to release all resources allocated by a previous call to CSjgd2kInit. Obviously,
subsequent calls to the CSjgd2kToTokyo or CStokyoToJgd2k will fail until such time that CSjgd2kInit is
called again.

CSjgd2kInit
int CSjgd2kInit (void)

Use this function to initialize the Tokyo to JGD2K conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Jgd2kName global variable.
CSjgd2kInit returns zero on success and –1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_j
void CS_jgd2kName (Const char *newName)

284 CS-MAP User's Guide User's Guide

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Japanese Geodetic Name of 2000 to the name provided by the newName argument.

CStokyoToJgd2k TOKYO
int CStokyoToJgd2k (double ll_jgd2k [3],Const double ll_tokyo [3])

CStokyoToJgd2k will convert the geographic coordinate provided by the ll_tokyo argument to the
equivalent JGD 2000 geographic coordinate and return the results in the array indicated by the
ll_jgd2k argument. CSjgd2kInit must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CStokyoToJgd2k will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSjgd2kInit prior to calling CStokyoToJgd2k. A positive 1 is
returned in the case of a soft failure. A soft failure is caused by a tokyo coordinate that is outside of the
region covered by the data files listed in the Geodetic Data Catalog file used to initialize the
transformation. A positive 2 is returned in the case of a coverage failure where a fallback datum
definition is used to supply approximate results.

CSjgd2kToTokyo JGD2000 to TOKYO conversion
int CSjgd2kToTokyo (double ll_tokyo [3],Const double ll_jgd2k [3])

CSjgd2kToTokyo will convert the geographic coordinate provided by the ll_jgd2k argument to the
equivalent tokyo geographic coordinates and return the results in the array indicated by the ll_tokyo
argument. CSjgd2kInit must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSjgd2kToTokyo will return zero on success and a –1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSjgd2kInit prior to calling CSjgd2kToTokyo. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a JGD 2000 coordinate that is outside
of the region covered by the data files listed in the Geodetic Data Catalog file used to initialize the
Tokyo system. A positive 2 value is returned if the point to be converted was outside the coverage of
the data files available and the fallback datum was used to calculate approximate results.

 Chapter 4 Chatper 4 -- Library Functions 285

Nouvelle Triangulation de la France (NTF)

This transformation transforms Réseau Géodésique Français of 1993 (RGF93) based coordinates to
Nouvelle Triangulation de la France (NTF) based coordinates. This transformation is unique in four
ways.

First, most transformations of this sort convert from the older datum to the newer datum. In this case,
the conversion is actually the other way. That is, the algorithms and data files are designed to convert
from the newer datum to the older datum. Since we are converting from RGF93 to NTF, the function
naming uses rgf93 as the base name.

Second, most transformations of this type use data files to carry the actual latitude and longitude shifts
between the two datums (often in seconds of arc). In this case, the shifts are maintained in the data file
in the form of geocentric cartesian coordinate translations in meters. That is, upon examining the data
file, and performing some bi-linear interpolations, the result is the equivalent of a Three Parameter
Transformation which is customized for each point in the domain of the transformation (i.e. coverage
of the data file).

Third, the supplied data file is actually a normal text file. Therefore, for performance and reliability
reasons, the CS-MAP implementation will read the entire data file into memory and organize the data
in such a form as to maximize performance and minimize disk thrashing.

Fourth, since there is only one known data file, and the client for whom it was originally implemented
was in a hurry, there is no Geodetic Data Catalog for this transformation. This is also due to the fact
that many of the Geodetic Data Catalog features do not apply due to the rather unique nature of this
transformation technique. So, there exists a single data file, it must be named gr3df97a.txt, and it must
reside in the primary data directory (i.e. the directory set by CS_altdr). This is likely to change in the
future.

Finally, note that the French produced a program which will perform these calculations which can be
used to compare with CS-MAP results. In doing the inverse, the French program simply reversed the
direction of the translation in the Three Parameter Transformation. This produces fully acceptable
results in most cases, but does not produce the exact inverse of the forward calculation. The code in
CS-MAP includes two functions for calculating the inverse. A version which will produce the exact
inverse is commented out. The version which matches the results which are produced by the French
program is active by default in the distribution. You pays your money, and you takes your choice.
This transformation is implemented in a module named CS_rgf93ToNtf.c.

Bugs

In addition to not using a Geodetic Data Catalog, this set of functions uses hardcoded ellipsoid
references to Clarke 1880 (actually, "CLRK-IGN") and GRS 1980. This hard coded references should,
perhaps, be replaced with references in a datum definition somewhere.

CSrgf93Init RGF93 INITialize
int CSrgf93Init (void)

286 CS-MAP User's Guide User's Guide

Use this function to initialize the Réseau Géodésique Français of 1993 (RGF93) to Nouvelle
Triangulation de la France (NTF) conversion system. While likely to change in future releases, in
Release 11 there is no Geodetic Data Catalog associated with this tranformation. There is a single data
file, it must be named and it must reside in the primary data directory.

Since this is a text file, and thus the integrity of fix length records is questionable, this function will
process the text file and produce a binary copy of it. This copying process is skipped if the date/time of
the binary file is newer that the date/time of the text file. This, there will be a slight pause the first time
this function is called.

CSrgf93Init returns zero on success and –1 on failure. Failure is usually caused by either not finding
the data file in the primary data directory or a corrupted data file. (As the data file is a text file,
corruption of the file is quite easily accomplished, even by accident.)

While perhaps not necessary after the first call (and the generation of the binary copy of the file, the
text file must remain in the primary directory for the system to work. (Although, I must admit that,
you can probably replace the text file with an empty file as long as the name and time stamp are
appropriate.)

CSrgf93Cls Réseau Géodésique Français of 1993 CLoSe
void CSrgf93Cls (void)

Use CSrgf93Cls to release all resources allocated by a previous call to CSrgf93Init. Obviously,
subsequent calls to the CSrgf93ToNtf or CSntfToRgf93 will fail until such time that CSrgf93Init is called
again.

CSrgf93ToNtf - RGF93 To NTF conversion
int CSrgf93ToNtf (double ll_ntf [3],Const double ll_rgf93 [3])

CSrgf93ToNtf will convert the geographic coordinate provided by the ll_rgf93 argument to the
appropriate Nouvelle Triangulation de la France (NTF) equivalent and return the results in the array
indicated by the ll_ntf argument. CSrgf93Init must have been successfully called prior to using this
function. This is (currently) a two dimensional function, the third element of each array is currently
ignored.

CSrgf93ToNtf will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSrgf93Init prior to calling CSrgf93ToNtf. A positive 1 is returned in the
case of a soft failure. A soft failure is caused by an Réseau Géodésique Français of 1993 (RGF93)
coordinate that is outside of the region covered by the data file used in the transformation. (In future,
at such time as a Geodetic Data Catalog is implemented, a positive 2 return value will be possible and
will indicate that the fallback datum definition was used to obtain approximate results due to a
coverage failure.)

CSntfToRgf93 NTF to RGF93 conversion
int CSntfToRgf93 (double ll_rgf93 [3],Const double ll_ntf [3])

CSntfToRgf93 will convert the geographic coordinate provided by the ll_ntf argument to the equivalent
Réseau Géodésique Français of 1993 (RGF93) geographic coordinates and return the results in the
array indicated by the ll_rgf93 argument. CSrgf93Init must have been successfully called prior to
using this function. This is (currently) a two dimensional function, the third element of each array is
currently ignored.

 Chapter 4 Chatper 4 -- Library Functions 287

CSntfToRgf93 will return zero on success and a –1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSrgf93Init prior to calling CSntfToRgf93. A positive 1 is returned in the
case of a soft failure. A soft failure us caused by a Nouvelle Triangulation de la France (NTF)
coordinate that is outside of the region covered by the RGF93 to NTF data file used to in the
transformation. (In future, at such time as a Geodetic Data Catalog is implemented, a positive 2 return
value will be possible and will indicate that the fallback datum definition was used to obtain
approximate results due to a coverage failure.)

Microsoft MFC User Dialog Functions
The functions described in this section provide the means by which programmers in the Windows MFC
environment can display dialog boxes to accomplish common tasks with regard to using the CS-MAP
library. Obviously, these functions are not of much value in an environment other than Windows 32.

While the functions themselves are declared with normal 'C' linkage, they must access MFC using
"mangled" C++ linkage. For convenience, the C++ components of these functions are enclosed within
a conditional compile based on the __CPP__ preprocessor constant. Therefore, should you desire to
have these functions compiled into your library, you will need to arrange for the __CPP__
preprocessor constant to be defined.

CS_csDataDir Coordinate System DATA DIRectory dialog
int CS_csDataDir (void);

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with a data directory dialog and enables the user to specify the
directory in which the dictionaries reside, and the file names assigned to the different dictionaries.
Users who routinely develop new and different coordinate systems enjoy being able to maintain a
"development" set of dictionaries separate from the "distribution" set.

Upon successful dismissal, this dialog will transfer the results of the dialog to the CS-MAP system
through the use of the CS_altdr, CS_csfnm, CS_dtfnm, and CS_elfnm functions. The return value
indicates the status of the check boxes included in the dialog. A value of zero indicates that neither
box was checked. The "one" bit is set if the "Save in .INI file" box was checked. The "two" bit is set if
the "Save in registry" box was checked.

BUGS

The function does not provide a means for disabling the check boxes for environments where they do
not apply.

CS_csDualBrowser Coordinate System DUAL BROWSER
int CS_csBrowser (char *csKeyName);

288 CS-MAP User's Guide User's Guide

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which facilitates the selection of source
and target coordinate systems from the 1,000 or more contained in the Coordinate System Dictionary.
The dialog is self-contained and requires little, if any, help from the application programmer.

The csKeyName argument to CS_csBrowser must be a pointer to a character array of not less than 24
characters (use cs_KEYNM_DEF from cs_map.h). The csKeyName argument is used to provide the
source coordinate system key name that will be the initial content of the browser upon display. If the
initial value of the argument is not that of a valid coordinate system key name, CS_csBrowser displays
"LL" as a default.

CS_csBrowser will return IDOK (that's a Windows/MFC manifest constant) if the user dismissed the
dialog box with a valid selection. In this case, the selected key name is returned in the character array
pointed to by the argument. If the user dismisses the dialog box by any other means, IDCANCEL
(another Windows/MFC manifest constant) is returned, and the character array pointed to by the
argument remains unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csBrowser expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CS_csBrowser Coordinate System BROWSER
int CS_csDualBrowser (char *srcKeyName,char *trgKeyName)

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which facilitates the selection of two
coordinate systems from the 1,000 or more contained in the Coordinate System Dictionary. The dialog
enables the use to select two coordinate systems, the first being labeled the "Source Coordinate
Systems" and the second being labeled the "Target Coordinate System." The dialog is self-contained
and requires little, if any, help from the application programmer.

The arguments to CS_csDualBrowser must be pointers to a character array of not less than 24 characters
(use cs_KEYNM_DEF from cs_map.h). CS_csDualBrowser will use the value provided by the
srcKeyName argument as the key name of the coordinate system definition that is to be displayed as
the Source Coordinate System upon initial activation. Similarly, the value provided by the
trgKeyName argument will be that which is displayed as the Target Coordinate System upon initial
activation. If the initial value of srcKeyName or trgKeyName is not that of a valid coordinate
system key name, CS_csDualBrowser displays "US48" and "LL27", respectively, as default values.

CS_csDualBrowser will return IDOK (that's a Windows/MFC manifest constant) if the user dismissed
the dialog box with a valid selection. In this case, the key names as selected by the user are returned
in the character arrays pointed to by the srcKeyName and trgKeyName arguments. If the user
dismisses the dialog box by any other means, IDCANCEL (another Windows/MFC manifest constant)
is returned, and the contents of the character array pointer to by arguments remain unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csDualBrowser expects to find the Help file in the same directory as the coordinate

 Chapter 4 Chatper 4 -- Library Functions 289

system dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help
context integers used by this function are defined in cs_hlp.h.

CS_csEditor Coordinate System EDITOR dialog
void CS_csEditor (char *csKeyName);

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the examination,
modification, creation, and deletion of coordinate system definitions in the Coordinate System
Dictionary. The dialog is self-contained and requires little (or no) interaction on the part of the
application programmer.

The single argument to CS_csEditor must be a pointer to a character array of not less than 24 characters
(use cs_KEYNM_DEF from cs_map.h). CS_csEditor will use the value of this character array as the
key name of the coordinate system definition that is to be displayed upon initial activation. Upon
dismissal, CS_csEditor will return in this array the key name of the coordinate system definition
displayed upon exit. If the initial value of csKeyName is not that of a valid coordinate system key
name, CS_csEditor displays "US48" as a default.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csEditor expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CS_dtEditor DaTum EDITOR dialog
void CS_dtEditor (char *dtKeyName);

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the examination,
modification, creation, and deletion of datum definitions in the Datum Dictionary. The dialog is self-
contained and requires little (or no) interaction on the part of the application programmer.

The single argument to CS_dtEditor must be a pointer to a character array of not less than 24
characters (use cs_KEYNM_DEF from cs_map.h). CS_dtEditor will use the value of this character
array as the key name of the datum definition that is to be displayed upon initial activation. Upon
dismissal, CS_dtEditor will return in this array the key name of the datum definition displayed upon exit.
If the initial value of dtKeyName is not that of a valid datum key name, CS_dtEditor displays "WGS84"
as a default.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_dtEditor expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

290 CS-MAP User's Guide User's Guide

CS_gdcEdit Geodetic Data Catalog EDITor
void CS_gdcEditor (char *gdcName);

Use this function to present to the user a dialog box which enables the examination and modification of
any Geodetic Data Catalog currently known to the system. In this case, known to the system means
any Geodetic Data Catalog file which resides in the general data directory established by a call to
CS_altdr.

The gdcName argument to CS_gdcEditor must be a pointer to a character array of not less than 64
characters (use cs_FNM_MAXLEN from cs_map.h). The gdcName argument is used to provide the
name of the Geodetic Data Catalog (sans extension) that will be the initial content of the editor upon
display. If the initial value of the argument is not that of a valid Geodetic Data Catalog, CS_gdcEditor
displays "Nad27ToNad83" as a default.

Upon dismisal from the dialog box, CS_gdcEditor will cause the character array pointed to by the single
argument to contain the name of the last Geodetic Data Catalog display in the editor. It is advisable to
call CS_recvr immediately before calkling this function, or after a return from this function, to cause
the release of all geodetic objects which may rely on the Geodetic Data Catalogs edited by the user.
This will cause a reconstruction of these objects using the possibly edited values in the Geodetic Data
Catalog files.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csBrowser expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CS_elEditor ELlipsoid EDITOR dialog
void CS_elEditor (char *elKeyName);

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the examination,
modification, creation, and deletion of ellipsoid definitions in the Ellipsoid Dictionary. The dialog is self-
contained and requires little (or no) interaction on the part of the application programmer.

The single argument to CS_elEditor must be a pointer to a character array of not less than 24
characters (use cs_KEYNM_DEF from cs_map.h). CS_elEditor will use the value of this character
array as the key name of the ellipsoid definition that is to be displayed upon initial activation. Upon
dismissal, CS_elEditor will return in this array the key name of the datum definition displayed upon exit.
If the initial value of elKeyName is not that of a valid datum key name, CS_elEditor displays "WGS84"
as a default.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_elEditor expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

 Chapter 4 Chatper 4 -- Library Functions 291

CS_csTest Coordinate System TEST dialog
void CS_csTest (char *srcSystem,char *trgSystem,double srcXYZ [3]);

Use of this function is valid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the conversion of single
keyboard coordinates from any coordinate system to another. The original purpose of this dialog was
to facilitate testing, but has been found to very useful for many other purposes.

The arguments to CS_csTest determine the initial presentation of the dialog. Use the srcSystem
argument to specify the initial source coordinate system key name and the trgSystem argument to
specify the initial target coordinate system key name. Note that upon dismissal of the dialog, the last
user specified values are returned in these arrays. Therefore, these arguments must point to character
arrays that are not less than 24 characters in length. Use the cs_KEYNM_DEF manifest constant from
cs_map.h to define these arrays. CS_csTest uses the srcXYZ argument to initialize the source
coordinate values that are to be converted. Again, upon dismissal of the dialog, the last values entered
by the user for the source system coordinate values are returned in this array; therefore it must be
dimensioned at 3 (or more).

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csTest expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CS_mgTest Military Grid TEST dialog
void CS_mgTest (char *elKeyName);
void CS_mgTestA (char *elKeyName,int* prec,long* latFrmt,long* lngFrmt);

292 CS-MAP User's Guide User's Guide

Both of these functions cause presentation of the MGRS Test/Calculation dialog box to the user.

In the case of CS_mgTest, the ellipsoid selection is initially set to that provided by the elKeyName
argument and all other values in the dialog are defaulted to hard coded values (i.e. zeros).

In the case of CS_mgTestA, initial values for precision, format of the display of latitude values, and the
format of the display of longitude values are proviuded by the prec, latFrmt, and lngFrmt arguments
respectively.

At such time that the user dismisses the dialog box, CS_mgTest and CS_mgTestA will cause the key
name of the last selected ellipsoid to be copied to the character array pointed to by the elKeyName
arguemnt. CS_mgTestA will also cause the prec, latFrmt, and lngFrmt values to be updated to the last
values used in the dialog.

Users specify a format for the longitude and/or latitude display by entering a longitude and/or latitude
in the appropriate fields in the format which they desire to see the results displayed. This may be an
extra step for the user, but by remembering these settings as is possible with the A version of this
function, it does not need to be repeated (if the application remembers these values, of course).

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csDualBrowser expects to find the Help file in the same directory as the coordinate
system dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help
context integers used by this function are defined in cs_hlp.h.

CS_dtSelector DaTum SELECTOR
int CS_dtSelector (char *dtKeyName);

Call this function to present the operator with an MFC based dialog box which can be used to select a
specific datum from the Datum Dictionary. The dtKeyName argument must point to a character array
of not less than 24 characters (use cs_KEYNM_DEF from cs_map.h). The key name contained in the
character array pointed to by the single argument will be presented to the user as the initial selection.
If this value is not that of a datum definition in the dictionary, "WGS84" is displayed as a default.

CS_dtSelector will return IDOK (that's a Windows/MFC manifest constant) if the user dismissed the
dialog box with a valid selection. In this case, the selected key name is returned in the character array
pointed to by the argument. If the user dismisses the dialog box by any other means, IDCANCEL
(another Windows/MFC manifest constant) is returned, and the character array pointed to by the
argument remains unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_dtSelector expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CS_elSelector ELipsoid SELECTOR
int CS_elSelector (char *elKeyName);

 Chapter 4 Chatper 4 -- Library Functions 293

Call this function to present the operator with an MFC based dialog box which can be used to select a
specific ellipsoid from the Ellipsoid Dictionary. The elKeyName argument must point to a character
array of not less than 24 characters (use cs_KEYNM_DEF from cs_map.h). The key name contained in
the character array pointed to by the single argument will be presented to the user as the initial
selection. If this value is not that of a ellipsoid definition in the dictionary, "WGS84" is displayed as a
default.

CS_elSelector will return IDOK (that's a Windows/MFC manifest constant) if the user dismissed the
dialog box with a valid selection. In this case, the selected key name is returned in the character array
pointed to by the argument. If the user dismisses the dialog box by any other means, IDCANCEL
(another Windows/MFC manifest constant) is returned, and the character array pointed to by the
argument remains unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_elSelector expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CSwinhlp WINdows HeLP
int CSwinhlp (void *hWnd,unsigned long context);

Use CSwinhlp to activate the Windows help program displaying the CS-MAP help file, cs-map.hlp. The
hWnd argument is the handle to the window that is requesting the help. The context argument is
used to select the specific article of help in the help file, see cs_hlp.h.

ERRORS

CSwinhlp returns non-zero to indicate success, i.e. at least the WinHelp.exe executable and the cs-
map.hlp file were found and successfully started. CSwinhlp returns zero if a help screen could not be
displayed.

General Support Functions
This section contains descriptions of functions of a general support nature. These are used quite
liberally inside of CS-MAP. Your application may find some of these useful.

CS_adj1pi ADJust angle to 2 PI
double CS_adj1pi (double az);

The az argument is assumed to be an angle in radians. CS_adj1pi returns az after normalizing it to be
greater than or equal to -/2 and less than or equal to /2.

294 CS-MAP User's Guide User's Guide

CS_adj180 ADJust angle to 180 degrees
double CS_adj180 (double az);

The az argument is assumed to be an angle in degrees. CS_adj180 returns az after normalizing it to
be greater than -180 and less than or equal to 180.

CS_adj270 ADJust angle to 270 degrees
double CS_adj270 (double az);

The az argument is assumed to be an angle in degrees. CS_adj270 returns az after normalizing it to
be greater than -270 and less than or equal to +270.

CS_adj2pi ADJust angle to 2 PI
double CS_adj2pi (double az);

The az argument is assumed to be an angle in radians. CS_adj2pi returns az after normalizing it to be
greater than - and less than or equal to .

CS_adj2piI ADJust angle to 2 PI Inclusive
double CS_adj2piI (double az);

The az argument is assumed to be an angle in radians. CS_adj2piI returns az after normalizing it to
be greater than or equal to - and less than or equal to .

CS_adj90 ADJust angle to 90 degrees
double CS_adj90 (double az);

The az argument is assumed to be an angle in degrees. CS_adj90 returns az after normalizing it to be
greater than -90 and less than or equal to 90.

CS_adjll ADJust Lat/Long
void CS_adjll (double ll [2]);

CS_adjll adjusts the longitude in the array provided by the ll argument (i.e. the first element of the
array) to be within the range of greater than -180 degrees and less than or equal to 180 degrees. The
latitude (i.e. the second element of the array) is adjusted to be within the range of greater than -90
degrees and less than or equal to 90 degrees. Of course, the values provided must be in degrees.

Latitude values that indicate a traversal of the pole cause the longitude to be properly adjusted. For
example, a coordinate pair of [90,135] is adjusted to [-90,45].

 Chapter 4 Chatper 4 -- Library Functions 295

CS_bins BINary Search
int CS_bins (int fd,long start,long eof,int rs,Const void *rec,

 int (*comp)(Const void *,Const void*));

CS_bins will perform a binary search on the sorted file of fixed length records indicated by the file
descriptor fd. Rs must specify the size, in bytes, of the record in the file, and rec must point to a
record whose contents indicate the specific record that is to be searched for. The records are
compared by calling the function comp with pointers to the records to be compared. Comp must
return a value which is less than zero, zero, or greater than zero to indicate that the first record
precedes, matches, or follows the second record respectively. (Strcmp is an acceptable compare
function.)

The extent of the file that is searched is limited to the records which start at the file position indicated
by start and end before the file position indicated by eof. This enables files with magic numbers and
the like to be "bins'ed". If the value of start is less than zero, the current position of the file is used as
the start position. If the value of eof is less than or equal to zero, the current end of file is used as the
end of the search extent.

CS_bins returns a TRUE (i.e. +1) value if a record that matches the record provided (rec) was located;
and returns a FALSE (i.e. zero) value if no such record could be located.

Upon a successful return from CS_bins (i.e. a matching record was located), the file will be positioned
such that a read will produce the matched record. If more than one record existed with a matching
key, the read will always produce the first of such records. Upon an unsuccessful return, (i.e. no
matching record was found) the file will be positioned at the point where the record would be if the
desired record had existed.

ERRORS

CS_bins will return a -1 and set cs_Error appropriately if any of the following conditions are detected:

cs_NO_MEM Insufficient memory exists to malloc a
buffer of rs bytes for I/O purposes.

cs_IOERR A physical I/O error was encountered
while performing the search.

cs_INV_FILE A read of rs bytes failed to produce
same even though the start and eof
indicated that it should have.

CS_bswap Byte SWAPer
int CS_bswap (void *rec,Const char *frmt);

CS_bswap swaps bytes in a data record from little endian to big endian byte order, but only if the
current system is a big endian byte order system. The frmt argument specifies the size and data types

296 CS-MAP User's Guide User's Guide

contained in the data record that is pointed to by the rec argument as described below. The swapping
occurs in place in the data area pointed to by rec.

The frmt argument points to an ordinary null terminated character string. In the simple case, each
character in the string defines a data type:

c a one byte character (no swapping)

s a 16 bit integer

l a 32 bit long integer

f a 32 bit IEEE real (i.e. a float)

d a 64 bit IEEE real (i.e. a double)

Case is significant, all characters must be lower case

Any such specification can be preceded by a decimal number to indicate an array of the item type that
terminates the number. For example, "32c4l6ds" describes a record which consists of a 32 character
array, an array of 4 longs, an array of 6 doubles, followed by a single short. Thus, with regard to
swapping, the form of a structure can be easily and efficiently defined for this function.

CS_bswap has been written under the assumption that all data files containing binary data will be
written using the little endian byte order. Thus, if CS_bswap detects that the current system is a little
endian system, it does nothing successfully. If it detects that the current system is a big endian
system, it swaps the bytes of all shorts, longs, floats, and doubles in the record. Obviously, it does
nothing to character arrays.

CS_bswap returns a zero if no swapping was performed due to the fact that it determined that the
current system is a little endian machine. It returns positive one if swapping was performed indicating
that the current system is a big endian machine. It returns a -1 to indicate that the byte ordering of the
current system is not supported.

CS_bswap uses a single 4 byte long to determine the byte ordering of the current system. Further, it
only supports little endian and big endian byte orderings. The rather strange byte orderings that exist
on some machines, such as some older DEC machines, are not supported.

The swap algorithm from little to big endian is exactly the same as big to little. I.e. the same function
does either one. Therefore, there are no arguments to tell CS_bswap what the end result is supposed
to be. It is up to the calling module to know what it's got, and what CS_bswap will return. Release 6.0
of CS-MAP, and later releases, assume that all binary data read from disk is in little endian order. It
further assumes that all data written to disk will be in little endian order.

To disable dynamic byte swapping for whatever reason, simply write a stub for this function that does
nothing, returns zero, and force link this stub before the linker searches the CS-MAP library.

BUGS

This function will not successfully swap bytes for some older machines, such as the PDP-11 or the
VAX.

 Chapter 4 Chatper 4 -- Library Functions 297

CS_cschk Coordinate System CHecK
int CS_cschk (Const struct cs_Csdef_ *cs_def,unsigned short chk_flg,int
err_list [],
 int list_sz);

CS_cschk verifies the validity of the coordinate system definition provided. For each abnormal
condition detected, CS_cschk will add a CS-MAP error code to the integer array provided by the
err_list argument. The list_sz argument must indicate the dimension of the err_list array. If list_sz is
zero and/or err_list is the NULL pointer, CS_cschk will not attempt to return any error codes. As
implied by the calling sequence, CS_cschk attempts to find all problems with a definition in a single call.

The chk_flg argument is a bit map indicating which of several options is to be active. This
complication is necessary to enable this function to be used in the Dictionary Compiler whose
environment is rather strange. The "orable" options are:

cs_CSCHK_DATUM enables the checking of the datum
reference, if any, in the coordinate
system definition.

cs_CSCHK_ELLIPS enables the checking of the ellipsoid
reference, if any, in the coordinate
system definition

cs_CHCHK_REPORT instructs CS_cschk to report each
error to CS_erpt before returning.

In all cases, CS_cschk will return the total number of abnormal conditions located, even if this value is
greater than list_sz. In any case, this flag word, along with support for non-existent err_list, provides
great flexibility for the calling module.

CS_cschk checks all elements of the coordinate system definition that are common to all coordinate
systems. It then verifies the validity of the projection key name by looking it up in the projection table.
Once the appropriate entry in the projection table is located, the specific projection check function is
called to finish the evaluation.

CS_cslcl Coordinate System, LoCaL
struct cs_Csprm_ *CS_cslcl (Const double min_ll [2],
 Const double max_ll [2],
 Const char *units,
 Const struct cs_Datum_ *datum,
 double map_scl);

Given a region on the ellipsoid as specified by the min_ll and max_ll arguments, CS_cslcl creates a
coordinate system based on the Transverse Mercator projection optimized for the defined region. A
pointer to a malloc'ed coordinate system definition structure, initialized for the optimized coordinate
system, is returned. This pointer is suitable for use with the CS_cs2ll, CS_ll2cs, CS_csscl, and CS_cscnv
functions.

The min_ll array defines the southwestern corner of the region; the first element specifies the

298 CS-MAP User's Guide User's Guide

longitude, the second the latitude. Both values are given in degrees where negative values are used to
indicate south latitude and west longitude. Similarly, the max_ll array defines the northeastern corner
of the region.

The units argument must point to a null terminated string that defines the units of the coordinate
system, usually "METER" or "FOOT" (see CsdataU.c).

The datum argument must point to a datum definition structure that carries the definition of the datum
to be used. Such a pointer can be obtained from CS_dtloc.

The map_scl argument can be used to scale the resulting coordinates to a specific map scale, or,
perhaps, to plotter or display units. Specify a value of 1.0 to get unscaled values.

The resulting coordinate system definition should be released using CS_free when no longer needed.

The resulting coordinate system is based on the Transverse Mercator projection and has the following
properties:
1 Central meridian bisects the region.

2 Latitude origin is the minimum latitude given in min_ll.

3 Scale reduction is optimized for the specified region.

4 Datum is as specified.

5 Units are as specified.

6 False northing set to zero. That is, the minimum latitude maps to a Y coordinate of zero.

7 False easting set to minimum longitude; i.e. the minimum longitude maps to an X coordinate value
of zero.

Mapping scale is applied to all coordinates after conversion.

BUGS

Since the Transverse Mercator projection is used, this function is not recommended for high accuracy
mapping where the east/west extent of the region exceeds six degrees of longitude.

CS_erpt Error RePorT
extern int cs_Error,cs_Errno;

void CS_erpt (int err_num);

CS_erpt is called by all functions in the Coordinate System Mapping Package whenever an error
condition is detected. The value of err_num indicates the specific error condition detected and must
be one of the manifest constants defined in cs_map.h.

At the current time, CS_erpt does nothing other than set the value of global variable cs_Error to the
supplied value of err_num and set the global variable of cs_Errno to the current value of the system's
global variable errno.

It is expected that users will want to write their own CS_erpt function which will properly inform the
operator of the nature of the problem encountered.

 Chapter 4 Chatper 4 -- Library Functions 299

Each function in the Coordinate System Mapping Package is programmed to clean up after itself after
return from CS_erpt. That is, upon return from CS_erpt, all memory malloc'ed by the function detecting
the error is free'ed and any temporary file created by the function detecting the error is removed.

CS_fillin coordinate system definition FILL IN
void CS_fillin (struct cs_Csdef_ *csPtr);

CS_fillin is designed to be called by a GUI function that displays coordinate system definitions. This
function provides values for those projection parameters which are fixed, defaulted, or calculated for a
specific projection. CS_fillin examines the provided definition, determines the projection, and then "fills
in" parameters with the appropriate values.

For example, the relatively new UTM System Projection accepts zone number and hemisphere as the
primary parameters. From these parameters, ordinary projection parameters such as origin longitude,
false easting, false northing, etc. are computed from these values. CS_fillin can be used to have these
values computed and set in the cs_Csdef_ structure provided by the csPtr argument.

CS_ii??? Imaginary Arithmetic Functions
The functions described in this section represent CS-MAP's ability to deal with complex numbers, as is
required for certain projections such as the Modified Sterographic and the New Zealand National Grid
System. A complex number consists of an instance of the cs_Cmplx_ structure that has real and
imaginary elements.

CS_iiadd - ImagInary ADD
CS_iiadd (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS_iiadd will add the complex numbers referenced by the aa and bb arguments and return the result in
the structure referenced by the cc argument. The cc argument may point to either the aa or bb array.
The aa and bb arguments may point to the same structure.

CS_iisub - ImagInary SUBtract
CS_iisub (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS_iisub will subtract the complex number referenced by the bb argument from that referenced by the
aa argument and return the result in the structure referenced by the cc argument. The cc argument
may point to either the aa or bb structure. The aa and bb arguments may point to the same structure.

CS_iikmul - ImagInary Konstant MULtiply
CS_iikmul (Const struct cs_Cmplx_ *aa,double kk,struct cs_Cmplx_ *cc);

CS_iikmul will multiply the complex number referenced by the aa argument by the value of the kk
argument, a real value, and return the result in the structure referenced by the cc argument. The cc
argument may point to the same structure as the aa argument.

300 CS-MAP User's Guide User's Guide

CS_iimul - ImagInary MULtiply
CS_iimul (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS_iimul will multiply the complex numbers referenced by the aa and bb arguments and return the
result in the structure referenced by the cc argument. The cc argument may point to either the aa or
bb structure. The aa and bb arguments may point to the same structure.

CS_iidiv - ImagInary DIVide
CS_iidiv (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS_iidiv will divide the complex number referenced by the aa by the complex number referenced by the
bb argument and return the result in the structure referenced by the cc argument. The cc argument
may point to either the aa or bb structure. The aa and bb arguments may point to the same structure.

CS_iisrs - ImagInary SeRieS
CS_iisrs (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ AB[],int nn,

 struct cs_Cmplx_ *cc);

CS_iisrs uses Horner's method to calculate the power series expansion of a complex number, the aa
argument, to the nn power, using the array referenced by the AB argument as the coefficients of the
series expansion. NOTE: the first element, i.e. the zero element, of the array referenced by the AB
argument must contain a complex zero. The array referenced by the AB argument must contain nn+1
elements. The result is returned in the structure referenced by the cc argument. The cc argument
may point to the same structure as the aa argument.

CS_iisrs1 - ImagInary SeRieS, 1st derivative
CS_iisrs1(Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ AB[],int nn,

 struct cs_Cmplx_ *cc);

CS_iisrs1 operates in the same manner as CS_iisrs described elsewhere. However, the return value is
the value of the first derivative of the series.

CS_iisrs0 - ImagInary SeRieS, alternate for new zealand
CS_iisrs0(Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ AB[],int nn,

 struct cs_Cmplx_ *cc);

CS_iisrs0 operates in the same manner as CS_iisrs described elsewhere. However, the Horner method
is not used (as yet) and the return value is that required by the New Zealand National Grid System.
We suspect that Snyder's method of inverting the Modified Sterographic series is superior to that
published for the New Zealand. If this suspicion survives further scrutiny, this function will not be
present in future releases of CS_MAP.

CS_iiabs - ImagInary ABSolute value
double CS_iiabs (Const struct cs_Cmplx_ *aa);

CS_iiabs returns the absolute value of the complex number referenced by the aa argument.

 Chapter 4 Chatper 4 -- Library Functions 301

CS_iicnj - ImagInary CoNJugate
CS_iicnj (Const struct cs_Cmplx_ *aa,struct cs_Cmplx_ *cc);

CS_iicnj computes the complex conjugate of the complex number referenced by the aa argument and
returns the result in the structure referenced by the cc argument. The arguments may reference the
same structure.

CS_init INITialize
int CS_init (int keepers);

CS_init initializes an instance of CS-MAP for independent operation. This function is provided for the
sole purpose of initializing a new thread of execution in a multi-threaded environment. Use of CS_init is
not normally required in multi-tasking environments. CS_init needs to be used only in environments
where separate execution threads share the same data space.

When compiled for use in a multi-threaded environment, all global variables which CS-MAP uses
dynamically are declared with the __declspec (thread) or __thread as is appropriate for the
compiler in use. Thus, each thread will have it's own copy of these variables. CS_init will initialize
these variables to values suitable for use by the new thread, independent of any other currently
executing thread.

The keepers argument to CS_init is an integer bit map that can be constructed from the manifest
constants described below. A value of zero provides for complete initialization of the thread, and is
normally used. The global variables cs_Dir and cs_DirP are always inherited from the parent task
(assuming that they are valid). All other values are initialized to their standard CS-MAP default values
unless the keepers argument specifically instructs CS_init to preserve the value inherited from the
parent thread.

Any, or all, of the following constants may be 'or'ed together to construct a value of the keepers
argument. The typical value for keepers is zero.

302 CS-MAP User's Guide User's Guide

cs_THRD_CSNAME Preserve the parent thread's setting
for the file name of the Coordinate
System Dictionary (cs_Csname).

cs_THRD_DTNAME Preserve the parent thread's setting
for the file name of the Datum
Dictionary (cs_Dtname).

cs_THRD_ELNAME Preserve the parent thread's setting
for the file name of the Ellipsoid
Dictionary (cs_Elname).

cs_THRD_DTDFLT Preserve the parent thread's setting
for the default datum (cs_DtDflt).

cs_THRD_ELDFLT Preserve the parent thread's setting
for the default ellipsoid
(cs_ElDflt).

 cs_THRD_LUDFLT Preserve the parent thread's setting
for the default linear unit
(cs_LuDflt).

cs_THRD_AUDFLT Preserve the parent thread's setting
for the default angular unit
(cs_AuDflt).

BUGS

While CS_init assures that invalid dictionary directories and file names are never inherited from the
parent thread, it does not check the validity of inherited defaults.

CS_ips In Place Sort
int CS_ips (int fd,int rs,long eof,int (*comp)(Const void *,Const void *));

 CS_ips sorts a file of fixed length records into order under the control of the comparison function
provided by comp. The sort is done in place, requiring no additional disk space. The file descriptor of
the open file that is to be sorted is provided by fd. Of course, read and write access is required. The
length of the records in the file, as a number of bytes, is specified by rs. Only that portion of the file
between its current position when CS_ips is invoked and the position specified by eof is actually sorted.
A value of zero or less for eof is taken to mean the current end of the file. CS_ips will return an
indication of the number of record swaps required to sort the file. A zero return value indicates that the
file was in order. A return value greater than zero indicates that the file had to be sorted. A -1 is
returned if the sort failed for some reason. No other significance should be attributed to the return
value.

The comparison function is called with two arguments, pointers to the two records that are to be
compared. The comparison function must return a value that is negative if the first record should
precede the second, zero if the records are equivalent or greater than zero if the first record should

 Chapter 4 Chatper 4 -- Library Functions 303

follow the second. In the case where the sort key is a character array which is the first item in the
records being sorted, strcmp is an acceptable comparison function.

THIS IS NOT A STABLE SORT. That is, the relative order of records with equal keys after sorting is not
guaranteed to be, and will almost always not be, the same as it was prior to the sort.

The position of the file when this function is called establishes the position of the first fixed length
record to be sorted. This enables files with magic numbers, headers, or other such stuff to be sorted.
Failing to properly position the file before calling CS_ips produces some interesting results.

CS_ips uses a malloc'ed sort buffer of 16K bytes. The size of this sort buffer can be controlled by the
application by setting the desired size, in bytes, in the global variable cs_Sortbs. cs_Sortbs is
declared as an integer, therefore the size of the sort buffer cannot be larger than MAXINT.

CS_ips is not the speediest sort in the world. It is designed especially for sorting small files (256K or
less) and for doing so without incurring disk space liability problems (i.e. in place, no extra disk space
required). Performance on large files (i.e. greater than 512K) has been found to be abominable. Of
course, if you can spare a larger buffer, sort performance will improve somewhat.

ERRORS

CS_ips will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions is encountered:

cs_NO_MEM Insufficient memory was available to
support the malloc of the sort buffer.

cs_IOERR A physical I/O error occurred during
the sort.

CS_isHlpAvailable IS HeLP file AVAILABLE
int CS_isHlpAvailable (void);

CS_isHlpAvailable will return +1 (i.e. TRUE) if CS-MAP is aware of the location of a file named cs-
map.hlp. Otherwise, CS_isHlpAvailable returns zero (i.e. FALSE).

CS_lget Left justified GET
char *CS_lget (char *str,Const char *fld,int size,char fill);

CS_lget will produce, in the character array pointed to by str, a null terminated string that represents
the data in a left justified data field pointed to by fld. The size of the field is given by size. The field is
assumed to be filled (on the right) by the character given by fill. That is, trailing fill characters will be
omitted in the null terminated result.

CS_lget returns a pointer to the terminating null character in str.

304 CS-MAP User's Guide User's Guide

CS_lput Left justified field PUT
void CS_lput (char *fld,Const char *str,int size,char fill);

CS_lput creates a left justified field of size bytes at the location given by fld. The field is populated with
data from the null terminated string given by str and padded on the right with fill characters as
necessary. If the length of str exceeds size, the value in the field is the first size characters of str.

CS_nampp NAMe PreProcessor
int CS_nampp (char *key_nm);

By convention, coordinate system key names, datum definition key names, and ellipsoid definition key
names:

not more than 23 characters in length;

 may start with a special character only if that special character is the cs_Unique character (see
CSdata (5CS));

 may not include any special characters other than:

 the hyphen character,

 the underscore character,

 the dollar sign character,

 the period character (decimal point),

 the semi-colon character,

 the colon character,

 the space character,

 the cs_Unique character;

 must contain at least one alphabetic character;

 must not contain two consecutive space characters;

 may start with numeric characters providing the first non-numeric character is alphabetic;

 otherwise must start with either an alphabetic character or the cs_Unique character.

CS_nampp is used to force adherence to these requirements. While key names are case insensitive,
case is preserved in dictionaries for display purposes. CS_nampp will strip leading and trailing white
space from the provided name. CS_nampp will also ignore the characters involved in the default
system.

 Chapter 4 Chatper 4 -- Library Functions 305

Given a pointer to a character array containing a null terminated key name, CS_nampp will strip all
leading and trailing white space and verify that the resulting name meets the conventions outlined
above. If all of these conditions are met, CS_nampp will return a zero. Otherwise, a -1 is returned.

Note that CS_nampp will modify the contents of the array pointed to by the key_nm argument to meet
the standards required of key names.

ERRORS

CS_nampp will return a -1 and set cs_Error appropriately if any of the following conditions are
detected:

cs_INV_NAME The supplied name contained non-printable
characters, was longer than eight characters, or
did not start with an alphabetic character.

cs_DBL_SPACE The supplied name contained two consecutive
spaces; a situation which can be difficult to
observe in many GUI's.

CS_prchk Protection CHecK
int CS_prchk (short protect);

The single argument to the CS_prchk function, protect, is expected to be a protection value obtained
from a dictionary definition. CS_prchk examines the value and determines if, in the current
environment, the value indicates that the dictionary definition it was obtained from would be considered
to be protected by the appropriate dictionary update function. A non-zero return value indicates that
the item is protected.

CS_prjEnum PRoJection ENUMerator
int CS_prjEnum (int index,long *prj_flags,char *prj_keynm,int keynm_sz,
 char *prj_descr,int descr_sz);

CS_prjEnum is used to enumerate all projections in the projection table. CS_prjEnum returns in the
memory buffer pointer to by the prj_keynm argument the key name of the index'th entry in the
projection table. CS_prjEnum will never write more than keynm_sz bytes to the indicated location.
Similarly, CS_prjEnum will write no more than descr_sz bytes of the description of the index'th entry in
the projection table to the buffer referenced by the prj_descr argument. CS_prjEnum will copy the
projection flags word to the location indicated by the prj_flags argument. Any, or all, of the three
pointer arguments may be the NULL pointer, in which case CS_prjEnum does not attempt to return that
specific piece of information.

If index is valid, CS_prjEnum returns the numeric projection code value assigned to the projection. If
index is too large, a zero is returned. Index is a zero based index; the index of the first entry in the
projection table is zero.

306 CS-MAP User's Guide User's Guide

PROJECTION FLAGS

The following constants define specific bits in the 32 bit projection flag word. If the indicated bit is set,
the condition/feature applies to the specific projection. Three bits are reserved for use by application
programmers with source licenses. All other bits are reserved for use by OSGeo contributors. These
constants are defined in cs_map.h.

 Chapter 4 Chatper 4 -- Library Functions 307

cs_PRJFLG_SPHERE Spherical form of this projection is supported.

cs_PRJFLG_ELLIPS Ellipsoidal form of this projection is supported.

cs_PRJFLG_SCALK An analytical k scale function is available.

cs_PRJFLG_SCALH An analytical h scale function is available.

cs_PRJFLG_CNVRG An analytical convergence angle function is available.

cs_PRJFLG_CNFRM The projection is generally considered to be conformal.

cs_PRJFLG_EAREA The projection is generally considered to be equal area.

cs_PRJFLG_EDIST The projection is generally considered to be equidistant.

cs_PRJFLG_AZMTH The projection is generally considered to be azimuthal.

cs_PRJFLG_GEOGR The projection produces geographic coordinates, i.e. non-
cartesian coordinates.

cs_PRJFLG_OBLQ The projection is based on the oblique aspect of the base
projection surface.

cs_PRJFLG_TRNSV The projection is based on the transverse aspect of the base
projection surface.

cs_PRJFLG_PSEUDO The projection is generally considered to be based on a
"pseudo" surface. This qualifies the actual surface in use.
For example, the Eckert projections are considered to be
pseudo cylindrical.

cs_PRJFLG_INTR The projection supports interruptions.

cs_PRJFLG_CYLND The base projection surface is the cylinder.

cs_PRJFLG_CONIC The base projection surface is the cone.

cs_PRJFLG_FLAT The base projection surface is the flat plane (e.g. azimuthal).

cs_PRJFLG_OTHER The base projection surface is other than the three indicated
immediately above.

cs_PRJFLG_SCLRED The projection supports the concept of scale reduction.

cs_PRJFLG_ORGFLS The projection does not use either false origin parameter.

308 CS-MAP User's Guide User's Guide

cs_PRJFLG_ORGLAT The projection does not use an origin latitude parameter.
Origin latitude is deduced from other parameters and need
not be specified directly.

cs_PRJFLG_ORGLNG The projection does not use an origin longitude parameter.
Origin longitude is deduced from other parameters and need
not be specified directly.

cs_PRJFLG_USER1 Reserved for application programmers.

cs_PRJFLG_USER2 Reserved for application programmers.

cs_PRJFLG_USER3 Reserved for application programmers.

ERRORS

CS_prjEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_INV_INDX The index argument was negative.

CS_prjprm PRoJection PaRaMeter usage
int CS_prjprm (struct cs_Prjprm_ *prj_prm,short prj_code,int prm_nbr);

CS_prjprm will return a positive one (+1) if the projection indicated by the prj_code argument uses the
parameter indicated by the prm_nbr argument. Prm_nbr refers to one of the 24 parameters in the
cs_Csdef_ structure that is used to define coordinate systems. Prj_prm is zero based, so values of
this argument should not exceed 23. Prj_code values are the numeric values now assigned to all
projections in the cs_map.h header file (e.g. cs_PRJCOD_ALBER). If the prj_prm argument is not
NULL, CS_prjprm will populate the structure provided with information as to how the indicated projection
uses the indicated parameter.

If the projection referenced by the prj_cod argument does not use the parameter indicated, CS_prjprm
returns a zero. If either the prj_code or the prm_nbr arguments are invalid, CS_prjprm returns a
negative one (-1).

 cs_Prjprm_ Structure

CS_prjprm uses an initialized array of cs_Prjprm_ structures in order to do its work. This structure is
declared in cs_map.h and the array is defined and initialized in CSdataPJ.c. Application programmers
may need/wish to modify the contents of this initialized structure. The elements of this structure are:

 Chapter 4 Chatper 4 -- Library Functions 309

min_val minimum allowable value for the parameter.

max_val maximum allowable value for the parameter.

deflt; a suitable value to initialize this parameter to for a new
definition.

format a CS_ftoa format specification suitable for displaying this
parameter. The log_typ element described below may be more
useful for this purpose.

help_id not used by CS-MAP (as yet). Reserved for use as a context
sensitive help-id for this parameter.

labl_id not used by CS-MAP (as yet). Reserved for use as the string
resource ID of a suitable label for this parameter.

label an 8 bit ASCII label for this parameter in English, standard C
code page.

phys_typ an integer code value indicating the physical type of this
parameter. Since all parameters are doubles (currently), this
value is always set to cs_PRMPTYP_DBL (currently).

log_typ an integer code value indicating the logical type of this
parameters. For example, cs_PRMLTYP_LNG indicates a
longitude parameter.

prj_code cs_Prjprm_ structures returned to users will have the prj_code
argument copied into this element for identification purposes.

parm_nbr cs_Prjprm_ structures returned to users will have the prm_nbr
argument copied into this element for identification purposes.

 sprf_type a non-zero value indicates that the string contained in label or
referenced by labl_id contains sprintf format specifications.
The specific value of this element indicates the nature of the
additional arguments that are to be passed to sprintf. Currently,
only the value 1 is supported and it provides sprintf with an
integer argument equal to (2 * prm_nbr + 1), suitable for
labeling complex coefficient arguments for the Modified
Stereographic.

CS_quadF QUADrant Forward
void CS_quadF (double xy [2],double xx,double yy,double x_off,double

310 CS-MAP User's Guide User's Guide

y_off,short quad);

CS_quadF applies quadrant processing to the coordinates given by the xx and yy arguments, returning
the results in the xy array provided. The x_off and the y_off arguments are the false easting and the
false northing respectively. The quadrant processing requested is indicated by the quad argument.

The quad argument is a bit map of the following instructions:

cs_QUAD_INVX Invert the X axis

cs_QUAD_INVY Invert the Y axis

cs_QUAD_SWAP Sawp the axes.

Note that the quad argument to this function is distinctly different from the quad element of the
cs_Csdef_ structure. Each projection setup function maps the quad element of the cs_Csdef_
structure to the value described immediately above.

CS_quadF will always invert the appropriate axes first, then add the false origin values, and finally, if
requested, swap the axes. A quad value of zero is valid; in which case CS_quadF becomes an
expensive way to add the false origin to the coordinates.

CS_quadI QUADrant Inverse
void CS_quadI (double *xx,double *yy,Const double xy [2],double
x_off,double y_off,
 short quad);

CS_quadI performs the inverse of CS_quadF. In this case, quadrant processing is removed from the
coordinate provided by the xy argument and the results are returned in the located pointed to by the xx
and yy arguments.

CS_renam RENAMe a file
void CS_renam (Const char *old,Const char *new);

CS_renam will change the name of the existing file named old to that indicated by new. On MS-DOS
systems, it simply calls the rename function. On UNIX systems, it uses the link and unlink system calls
to obtain the same result. This function simply provides a degree of operating system independence.

ERRORS

CS_renam will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions is encountered:

 Chapter 4 Chatper 4 -- Library Functions 311

cs_RENAME The rename request failed for the
reason indicated by the value of the
cs_Errno global variable. Under
UNIX, this means that either the link
or the unlink system call failed.

CS_setHelpPath SET HELP PATH
int CS_setHelpPath (const char *helpPath);

Use the CS_setHelpPath function to set the directory that you desire to have CS-MAP search when
seeking the MFC dialog help file. The helpPath argument must point to a null terminated string that
carries the full path to the desired directory.

CS_setHelpPath returns +1 (i.e. TRUE) if a properly named file exists in the indicated directory. Zero
(i.e. FALSE) is returned if such a file does not exist.

CS_stcpy STring CoPY
char *CS_stcpy (char *dest,Const char *source);

CS_stcpy copies the null terminated character string pointed to by source to the character array
pointed to by dest. A pointer to the null terminating character in dest is returned.

CS_stcpy returns a pointer to the null character that terminates the newly copied string (as opposed to
its first argument). Otherwise, it is identical to the strcpy function.

BUGS

Obviously, CS_stcpy knows nothing of the size of the destination character array and cannot prevent
the source string from exceeding its size.

CS_stncp STring, N characters at most, CoPy
char *CS_stncp (char *dest,Const Const char *source,int size);

CS_stncp copies at most size minus one characters from the null terminated character string pointed to
by source to the character array pointed to by dest. The result is guaranteed to be null terminated.
The result, including the terminating null character, will not occupy more than size bytes. A pointer to
the null character that terminates the result in dest is returned.

CS_stncp differs from strncpy in two ways. Most importantly, it guarantees a null terminated result,
copying one less character than strncpy when the source string will not fit in the destination array.
Second, it returns a pointer to the terminating null character in the destination array as opposed to a
pointer to the destination array itself.

ERRORS

312 CS-MAP User's Guide User's Guide

Since CS_stncp guarantees the result to be NULL terminated, it cannot perform successfully if given a
zero (or negative) size argument. In this case, the NULL pointer is returned.

CS_stricmp STRing, case Insensitive, CoMPare
int CS_stricmp (Const char *str1,Const char *str2);

CS_stricmp compares the string pointed to by the str1 argument to the string pointer to by str2. The
comparison ignores case. The returned result is negative if str1 should collate before str2, zero if the
two strings are identical (case excepted), and positive if str1 should collate after str2.

While similar functions are available in most 'C' run time libraries and are a part of the ANSI standard,
the developers of CS-MAP have found variations in how various libraries deal with the special
characters in between the upper and lower case characters. Thus, to have CS-MAP operate
consistently on all platforms, we have our own implementation of this function.

CS_strincmp STRing, case Insensitive, N chars max, CoMPare
int CS_strincmp (Const char *str1,Const char *str2,int nCount);

CS_strincmp compares the string pointed to by the str1 argument to the string pointer to by str2. No
more than nCount characters are compared. The comparison ignores case. The returned result is
negative if str1 should collate before str2, zero if the two strings are identical (case excepted), and
positive if str1 should collate after str2.

While similar functions are available in most 'C' run time libraries, the developers of CS-MAP have
found variations in how various libraries deal with the special characters in between the upper and
lower case characters. Thus, to have CS-MAP operate consistently on all platforms, we have our own
implementation of this function.

CS_stristr find STRing, case Insensitive, in a STRing
Const char *CS_stristr (Const char *str1,Const char *str2);

CS_stristr searches the string pointed to by the str1 argument for an occurrence of the string pointed to
by the str2 argument. CS_stristr ignores case while looking for a match. If an occurrence of str2 is
found in str1, CS_stristr returns a pointer to the first such occurrence in str1. Otherwise, CS_stristr
returns the NULL pointer.

While similar functions are available in most 'C' run time libraries, the developers of CS-MAP have
found variations in how various libraries deal with the special characters in between the upper and
lower case characters. Thus, to have CS-MAP operate consistently on all platforms, we have our own
implementation of this function.

CS_swpal SWaP ALl binary data files
int CS_swpal (void (*prog)(Const char *file_name));

CS_swpal will cause all CS-MAP binary data files in the current data directory (i.e. cs_Dir) to be byte
swapped. If the prog argument is not NULL, it is called with the name of the file to be swapped just
prior to initiating the swap (see CS_swpfl). If the swap of the entire directory was successful, CS_swpal

 Chapter 4 Chatper 4 -- Library Functions 313

returns a zero. Otherwise, the CS-MAP error code of the condition that caused termination of the swap
operation is returned.

CS_swpal swaps all data files into a complete set of temporary files. Only when all such conversions
are successfully completed will it then replace the original files with the swapped temporaries. In the
event of an error, the temporaries are simply removed and the originals remain unchanged.

CS_swpal uses the CS_bswap function to perform byte swaps. It does not expect to be called if
CS_bswap will not swap bytes. The result of calling CS_swpal when CS_bswap is not swapping is
undefined. The result is usually a big long no-op, but this is not guaranteed.

CS_swpal was written specifically for testing purposes. It could, however, be used as part of a
manufacturing process to swap all data files for distribution. CS_swpal will swap bytes in NADCON (i.e.
.LAS and .LOS files) as well as Canadian National Transformation (version 1) data files.

BUGS

CS_swpal will not properly swap bytes in encrypted dictionary files, nor the Australian version of the
NTv2 files.

CS_swpfl SWaP a single FiLe
char *CS_swpfl (Const char *file_name);

CS_swfll will swap the bytes in the file named by the file_name argument. The file is required to reside
in the CS-MAP data directory indicated by cs_Dir and the result is written to a temporary file (see
CS_tmpfn) in the same directory. A pointer to a static memory array containing the name of this
temporary file, and only the name, is returned. In the event of an error, the NULL pointer is returned.

CS_swpfl was written primarily for testing purposes. It uses CS_bswap to effect the swapping of the
data elements in the file. It should not be called when CS_bswap is not swapping anything. (Why
would you want to anyway?). The result of calling CS_swpfl when CS_bswap is not swapping anything
is usually a big no-op, but this is not guaranteed.

BUGS

CS_swpfl will not properly swap bytes in encrypted dictionary files or Australian version NTv2 files.

CS_tpars Table PARSe
Const char *CS_tpars (char **pntr,Const char *table,int tab_size);

CS_tpars is designed to parse tokens from the text source, *pntr, of specific values; the values being
given in the table array. Tab_size specifies the size of the elements in the table array.

Successful parses return a pointer to the matching table element and *pntr is updated to point at the
character immediately following the matched token. Unsuccessful parses return the NULL pointer
value and the value of *pntr is unaltered.

The first byte of each element of table must contain the size of the token that is described in the table
element. The actual key value must begin in the second byte of the table element. The remainder of

314 CS-MAP User's Guide User's Guide

the table entry can be used to satisfy application requirements. A table element with a zero for the
key size must be present to terminate the table. Such parsing tables are useful in converting specific
token values to code values while parsing and validating at the same time. For example:
struct prs_tab_

{

 unsigned char key_len; /* Assumes byte alignment */

 char key [8];

 short code_value;

} prs_tab [] =

{

 {5,"NORTH",0},

 {5,"SOUTH",2},

 {4,"EAST",1},

 {4,"WEST",3}

};

char text [128];

char *cp;

struct prs_tab_ *tab_ptr;

.

.

cp = text;

tab_ptr = (struct prs_tab_ *)CS_tpars (&cp,(struct prs_tab_ *)prs_tab,sizeof (struct
prs_tab_));

if (tab_ptr == NULL)

{

 printf ("Invalid direction.\n");

}

else if (tab_ptr->code_value == 1)

{

 /* Here if EAST was specified. */

}

.

.

It is important to note that it is usually best to have table ordered by the size of the key, the largest
values first. This will cause the longest possible match to be returned which is usually what is desired.

BUGS

CS_tpars will always return the first match encountered. If the table is not ordered properly (by key
size, largest first) and keys with duplicate initial characters exist (e.g. "WEST" and "WESTERN"), the
result may not be what is desired.

CS_trim character array TRIM
int CS_trim (char array);

CS_trim trims leading and trailing white space from the null terminated character string in the array

 Chapter 4 Chatper 4 -- Library Functions 315

pointed to by the array argument. The length of the resulting null terminated string is returned. White
space, for this function, is considered to be blank, tab, and new-line characters.

CS_zones extract ZONES from definition
int CS_zones (Const struct cs_Csdef_ *csdef,struct cs_Zone_ zones [8]);

CS_zones will extract zone definitions from the 24 projection parameters in the coordinate system
definition provided by the csdef argument, and place these extracted definitions in the cs_Zone_
structure array pointed to by the zones argument. The zones argument must point to an array of not
less than 8 cs_Zone_ structures. CS_zones returns the number of valid zones extracted.

A single zone is defined by three doubles in the prj_prm section of the cs_Csdef_ structure. Each
group of three doubles is used to represent a zone, up to eight zones. Prj_prm1 thru prj_prm3 are
used to defined the first zone; prj_prm4 thru prj_prm6 are used to defined the second zone, and so
on. CS_zone needs to extract four elements of information for each zone: the longitude of the western
extent of the zone, the central meridian of the zone, the longitude of the eastern extent of the zone,
and whether the zone is for the northern or southern hemisphere. However, in order to support eight
zones, we only have three doubles in which to encode this information. Therefore, the coding scheme
described below is used for each group of three doubles and applies to each zone.

A zone is defined by a group of three doubles. CS_zones will ignore any group of three doubles in
which the first and the third are both zero. In all other cases, the first of the three doubles is taken to be
the longitude of the western extent of the zone. The second of the three doubles is taken to be the
central meridian of the zone. The third of the three doubles is taken to be the longitude of the eastern
extent of the zone. To indicate the hemisphere (north or south) to which the zone definition applies,
the magnitude of the first double is increased by a certain amount (the sign remains unaffected).

Magnitude increases are interpreted as follows:

0.0 Zone includes both hemispheres.

1000.0 Zone applies to the northern
hemisphere only.

2000.0 Zone applies to the southern
hemisphere only.

3000.0 Zone applies to both hemispheres
(redundant, but maintained for
consistency).

For example, for a zone where the western extent is 100 degrees west longitude (-100.0), and which is
to apply only to the southern hemisphere, the value of the first of the three doubles would be -2100.0.

CS_znlocF ZoNe LOCator Forward
Const struct cs_Zone_ *CS_znlocF (Const struct cs_Zones_ zones [8],int
zone_cnt,

 double lng,double lat);

Given a pointer to an array of zone_cnt cs_Zone_ structures, and a coordinate pair, CS_znlocF and

316 CS-MAP User's Guide User's Guide

CS_znlocI will return a pointer to the specific cs_Zone_ element in the array to which the given
location belongs. The NULL pointer is returned if the provided location does not reside in any zone. In
the case of CS_znlocF, the location is provided by the lng and lat arguments where lng gives the
longitude in degrees east of Greenwich (i.e. negative values for west longitude) and lat provides the
latitude in degrees north of the equator.

These functions are called by the forward and inverse conversion functions of projections that support
interrupted zones. By CS-MAP convention, zones other than the easternmost zone include the zone's
westernmost boundary but not its easternmost boundary. The easternmost zone includes both its
western and eastern boundaries. In all cases, the equator is considered part of the northern
hemisphere.

CS_znlocI ZoNe LOCator Inverse
Const struct cs_Zone_ *CS_znlocI (Const struct cs_Zones_ zones [8],int
zone_cnt,
 double xx,double yy);

Given a pointer to an array of zone_cnt cs_Zone_ structures, and a coordinate pair, CS_znlocI and
CS_znlocF will return a pointer to the specific cs_Zone_ element in the array to which the given
location belongs. The NULL pointer is returned if the provided location does not reside in any zone. In
the case of CS_znlocI, the location is provided by the xx and yy arguments that are the cartesian X and
Y coordinates of the coordinate system.

These functions are called by the forward and inverse conversion functions of projections that support
interrupted zones. By CS-MAP convention, zones other than the easternmost zone include the zone's
westernmost boundary but not its easternmost boundary. The easternmost zone includes both its
western and eastern boundaries. In all cases, the equator is considered part of the northern
hemisphere.

CSbcclu Basic Cached Coordinate system Look Up
struct cs_Csprm_ *CSbcclu (Const char *cs_name);

Csbcclu searches the coordinate system cache for a coordinate system with a name that matches the
cs_name argument. If such an entry is found, the associated cs_Csprm_ structure pointer is
returned. If a coordinate system with the name provided is not found, CSbcclu uses CS_csloc to obtain
such a pointer and adds the name and associated pointer to the cache, deleting the least recently
access entry if necessary.

In any case, Csbcclu returns a pointer to an initialized cs_Csprm_ structure that defines the named
coordinate system.

This function was originally written in support of an interface designed for application programmers
using the Basic language; hence the name.

ERRORS

Csbcclu will return the NULL pointer and set cs_Error appropriately if any of the following conditions
are encountered while obtaining the definition of the named coordinate system:

 Chapter 4 Chatper 4 -- Library Functions 317

cs_UNKWN_PROJ The projection specified in the
coordinate system definition is
unknown to the system.

Csbcclu uses CS_csloc which uses the following functions which detect a majority of the exceptional
conditions which may occur:

CS_csdef Locates and fetches the coordinate
system definition from the
Coordinate System Dictionary.

CS_dtloc Locates and fetches the datum
definition from the Datum
Dictionary.

CS_eldef Locates and fetches the ellipsoid
definition from the Ellipsoid
Dictionary.

CSbdclu Basic Datum Conversion Look Up
struct cs_Dtcprm_ *CSbdclu (Const struct cs_Csprm_ *src_cs,

 Const struct cs_Csprm_ *dst_cs,

 int dat_err,

 int blk_err);

Csbdclu searches the datum conversion cache for a datum conversion parameter block generated by
the same coordinate systems as those provided by the src_cs and the dst_cs arguments. If such an
entry is found, the associated cs_Dtcprm_ structure pointer is returned. If a datum conversion based
on the two coordinate systems provided is not found, CSbdclu uses CS_dtcsu to obtain such a pointer
and adds the names and associated pointer to the cache, deleting the least recently access entry if
necessary.

In any case, Csbdclu returns a pointer to an initialized cs_Dtcprm_ structure that defines the required
datum conversion.

The dat_err argument is the value that is to be passed to CS_dtcsu in the event that function needs to
be called in order to obtain a datum conversion parameter structure. The following values for dat_err
are recognized:

318 CS-MAP User's Guide User's Guide

cs_DTCFLG_DAT_I Ignore unsupported datum conversion
request errors and, in the event of
such an error, silently activate the null
conversion.

cs_DTCFLG_DAT_W In the event of an unsupported datum
conversion request error, report the
condition as a warning to CS_erpt
(cs_DTC_DAT_W) and activate the
null conversion. In this case, the user
is notified, but data processing
continues.

cs_DTCFLG_DAT_F In the event of any error, report the
condition as a fatal error to CS_erpt
(cs_DTC_DAT_F) and return the
NULL pointer.

The value of the blk_err argument is stored with the datum conversion parameter block for access by
the impending call to CS_dtcvt. The blk_err argument is used to indicate the desired disposition of
certain errors that are encountered during the conversion of individual coordinate values. The error
disposition control afforded by blk_err applies only to errors indicating that the required data for the
geographic region containing the coordinate to be converted is not available. System errors, such as
physical I/O or insufficient memory for example, are always treated as fatal errors.

The following values for blk_err are recognized:

 Chapter 4 Chatper 4 -- Library Functions 319

cs_DTCFLG_BLK_I Ignore datum conversion errors
caused by data availability problems
and silently use the null conversion
for the specific coordinate which
could not be converted and cause
CS_dtcvt to return a zero value.

cs_DTCFLG_BLK_W In the event a datum conversion fails
due to data availability, report a
warning through CS_erpt
(cs_DTC_BLK_W), convert the
coordinate using the null conversion,
and cause a CS_dtcvt to return a
positive non-zero value for the
specific coordinate that could not be
converted. The warning message is
issued for each coordinate that could
not be converted.

cs_DTCFLG_BLK_1 In the event a datum conversion fails
due to data availability, report the
error condition once, using the datum
conversion parameter block as the
memory device for recording the
location of the block which caused
the error.

cs_DTCFLG_BLK_F Report a fatal condition through
CS_erpt (cs_DTC_BLK_F), convert
the coordinate using the null
conversion, and cause CS_dtcvt to
return a negative non-zero value to
indicate that the expected conversion
did not take place.

This function was originally written in support of an interface designed for application programmers
using the Basic language; hence the name.

ERRORS

Csbdclu will return the NULL pointer and set cs_Error appropriately if a call to CS_dtcsu is necessary
and that call fails. See CS_dtcsu for a description of the possible error conditions.

CSbt???? BeTa (authalic latitude) calculation
Functions described in this section implement the calculations associated with authalic (equal area)
latitude.

320 CS-MAP User's Guide User's Guide

CSbtFcal BeTa Forward CALculation
double CSbtFcal (Const struct cs_BtcofF_ *bt_ptr,double lat);

Given the geographic latitude, lat, in radians, CSbtIcal returns the corresponding authalic latitude (in
radians, negative for south latitude), which Snyder refers to as beta. The bt_ptr argument points to a
structure of power series coefficients, as developed by CSbtFsu, which can be determined solely from
the ellipsoid in use. Therefore, CSbtFsu performs all calculations that can be performed once, while
CSbtFcal performs all calculations that must be performed for each coordinate to be converted. See
Snyder, John P., Map Projections - A Working Manual, U.S. Geological Survey Professional Paper
1395, pages 16-19.

CSbtFsu BeTa Forward SetUp
void CSbtFsu (struct cs_BtcofF_ *bt_ptr,double e_sq);

CSbtFsu develops the coefficients of the power series required to compute the authalic latitude (which
Snyder refers to as beta) from the geographic latitude. The resulting coefficients are stored in the
structure pointed to bt_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSbtFcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

CSbtIcal BeTa Inverse CALculation
double CSbtIcal (Const struct cs_BtcofI_ *bt_ptr,double beta);

Given the authalic latitude, beta, in radians, CSbtIcal returns the corresponding geographic latitude, in
radians. The bt_ptr argument points to a structure of power series coefficients, as developed by
CSbtIsu, which can be determined solely from the ellipsoid in use. Therefore, CSbtIsu performs all
calculations that can be performed once, while CSbtIcal performs all calculations that must be
performed for each coordinate to be converted. See Snyder, John P., Map Projections - A Working
Manual, U.S. Geological Survey Professional Paper 1395, pages 15, 19, and 45.

CSbtIsu BeTa Inverse SetUp
void CSbtIsu (struct cs_BtcofI_ *bt_ptr,double e_sq);

CSbtIsu develops the coefficients of the power series required to compute the geographic latitude from
the authalic latitude (which Snyder refers to as beta). The resulting coefficients are stored in the
structure pointed to by bt_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSbtIcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

CSccsphrD angular distance (CC) on SPHeRe in Degrees
double CSccsphrD (Const double ll0 [2],Const double ll1 [2]);

 Chapter 4 Chatper 4 -- Library Functions 321

CSccsphrD returns the angular distance, in degrees, between the two geographic locations given by ll0
and ll1. For this function, ll0 and ll1 are in degrees.

A spherical earth is assumed. The technique used should produce accurate results from very close to
zero to very close to .

CSccsphrR angular distance (CC) on SPHeRe in Radians
double CSccsphrR (Const double ll0 [2],Const double ll1 [2]);

CSccsphrR returns the angular distance, in radians, between the two geographic locations given by ll0
and ll1. For this function, ll0 and ll1 are in radians.

A spherical earth is assumed. The technique used should produce accurate results from very close to
zero to very close to .

CScsKeyNames Coordinate System Key Names
char *CScsKeyNames (void);

 CScsKeyNames returns a pointer to a list that contains the key names of all coordinate systems in the
Coordinate System Dictionary. The list consists of null terminated strings and the entire list is
terminated by two consecutive null characters. The coordinate system key names are in the same
order as they appear in the Coordinate System Dictionary.

The resulting pointer is cached by CScsKeyNames in a global variable named cs_CsKeyNames. Thus,
once generated, CScsKeyNames returns the same pointer. Thus, it is important applications do not free
the returned pointer unless they also set the cs_CsKeyNames global variable to the NULL pointer.
CS_recvr frees the list and is the normal means for freeing this list. The cached list is used by the
CS_csEnum and CS_csIsValid functions.

ERRORS

CScsKeyNames will return the NULL pointer and set cs_Error appropriately if any of the following
conditions are encountered:

322 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary
could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred in
accessing the Coordinate System
Dictionary.

cs_CS_BAD_MAGIC The file assumed to be a Coordinate
System Dictionary by virtue of its
name was not a Coordinate System
Dictionary; it had an invalid magic
number.

cs_NO_MEM Insufficient memory was available for
the creation of the key name list.

CSchi???? CHI (conformal latitude) calculation
Functions described in this section implement the calculations associated with isometric (conformal)
latitude.

CSchiFcal CHI Forward CALculation
double CSchiFcal (Const struct cs_ChicofF_ *chi_ptr,double lat);

Given the geographic latitude, lat, in radians, CSchiIcal returns the corresponding conformal latitude (in
radians, negative for south latitude), which Snyder refers to as chi. The chi_ptr argument points to a
structure of power series coefficients, as developed by CSchiFsu, which can be determined solely from
the ellipsoid in use. Therefore, CSchiFsu performs all calculations that can be performed once, while
CSchiFcal performs all calculations that must be performed for each coordinate to be converted. See
Snyder, John P., Map Projections - A Working Manual, U.S. Geological Survey Professional Paper
1395, pages 15, 19, and 45.

CSchiFsu CHI Forward SetUp
void CSchiFsu (struct cs_ChicofF_ *chi_ptr,double e_sq);

 CSchiFsu develops the coefficients of the power series required to compute the conformal latitude
(which Snyder refers to as chi) from the geographic latitude. The resulting coefficients are stored in the
structure pointed to chi_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSchiFcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

 Chapter 4 Chatper 4 -- Library Functions 323

CSchiIcal CHI Inverse CALculation
double CSchiIcal (Const struct cs_ChicofI_ *chi_ptr,double chi);

Given the conformal latitude, chi, CSchiIcal returns the corresponding geographic latitude. The
chi_ptr argument points to a structure of power series coefficients, as developed by CSchiIsu, which
can be determined solely from the ellipsoid in use. Therefore, CSchiIsu performs all calculations that
can be performed once, while CSchiIcal performs all calculations that must be performed for each
coordinate to be converted. See Snyder, John P., Map Projections - A Working Manual, U.S.
Geological Survey Professional Paper 1395, pages 15, 19, and 45.

CSchiIsu CHI Inverse SetUp
void CSchiIsu (struct cs_ChicofI_ *chi_ptr,double e_sq);

 CSchiIsu develops the coefficients of the power series required to compute the geodetic latitude from
the conformal latitude (which Snyder refers to as chi). The resulting coefficients are stored in the
structure pointed to chi_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSchiIcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

Csdfltpro DeFaULT PROcessor
int CSdfltpro (int type,char *name,int size);

Csdfltpro is the internal function used to perform default processing. The type argument must be set
to one to the manifest constants that define one of the four possible "defaultable" elements of a
coordinate system or datum definition. Name points to the name that may be a "defaultable"
reference, and size indicates the size of the character array pointed to by the name argument.

If name is enclosed with the default character sequences defined in cs_map.h and the specific default
feature indicated by type is active, Csdfltpro replaces the value in name with the default, surrounding it
with the replacement character sequences also defined in cs_map.h.

If a replacement is made, Csdlftpro returns TRUE, otherwise it returns FALSE.

As distributes, an element is considered "defaultable" if it is enclosed with square brackets. Once
replaced with a default value, it is enclosed in parenthesis as an indication that a default substitution
was made.

The manifest constants that are valid values for the type argument are:

324 CS-MAP User's Guide User's Guide

Cs_DFLTSW_DT Datum name replacement.

Cs_DFLTSW_EL Ellipsoid name replacement.

Cs_DFLTSW_LU Linear unit replacement.

Cs_DFLTSW_AU Angular unit replacement.

CSdtKeyNames DaTum Key Names
char *CSdtKeyNames (void);

 CSdtKeyNames returns a pointer to a list that contains the key names of all datums in the Datum
Dictionary. The list consists of null terminated strings and the entire list is terminated by two
consecutive null characters. The datum key names are in the same order as they appear in the Datum
Dictionary.

The resulting pointer is cached by CSdtKeyNames in a global variable named cs_DtKeyNames. Thus,
once generated, CSdtKeyNames returns the same pointer. Thus, it is important applications do not free
the returned pointer unless they also set the cs_DtKeyNames global variable to the NULL pointer.
CS_recvr frees the list and is the normal means for freeing this list. The cached list is used by the
CS_dtEnum and CS_dtIsValid functions.

ERRORS

CSdtKeyNames will return the NULL pointer and set cs_Error appropriately if any of the following
conditions are encountered:

Cs_DTDICT The Datum Dictionary could not be
found or otherwise opened. (See
CS_altdr)

Cs_IOERR A physical I/O error occurred in
accessing the Datum Dictionary.

Cs_DT_BAD_MAGIC The file assumed to be a Datum
Dictionary by virtue of its name was
not a Datum Dictionary; it had an
invalid magic number.

Cs_NO_MEM Insufficient memory was available for
the creation of the key name list.

 Chapter 4 Chatper 4 -- Library Functions 325

CSelKeyNames ELlipsoid Key Names
char *CSelKeyNames (void);

 CSelKeyNames returns a pointer to a list that contains the key names of all ellipsoids in the Ellipsoid
Dictionary. The list consists of null terminated strings and the entire list is terminated by two
consecutive null characters. The ellipsoid key names are in the same order as they appear in the
Ellipsoid Dictionary.

The resulting pointer is cached by CSelKeyNames in a global variable named cs_ElKeyNames. Thus,
once generated, CSelKeyNames returns the same pointer. Thus, it is important applications do not free
the returned pointer unless they also set the cs_ElKeyNames global variable to the NULL pointer.
CS_recvr frees the list and is the normal means for freeing this list. The cached list is used by the
CS_elEnum and CS_elIsValid functions.

ERRORS

CSelKeyNames will return the NULL pointer and set cs_Error appropriately if any of the following
conditions are encountered:

Cs_ELDICT The Ellipsoid Dictionary could not be
found or otherwise opened. (See
CS_altdr)

Cs_IOERR A physical I/O error occurred in
accessing the Ellipsoid Dictionary.

Cs_EL_BAD_MAGIC The file assumed to be a Ellipsoid
Dictionary by virtue of its name was
not a Ellipsoid Dictionary; it had an
invalid magic number.

Cs_NO_MEM Insufficient memory was available for
the creation of the key name list.

CSllnrml Latitude/Longitude NoRMaL
void CSllnrml (Const double oll [2],Const double ll [2],double ll1
[2],double ll2 [2]);

Given the endpoints of an arc on the ellipsoid in terms of latiude and longitude, CSllnrml returns the
latitude and longitude of an arc on the ellipsoid that is normal to the original arc and has a length of one
second of arc.

The original arc is specific by the oll and ll arguments. The returned arc is normal to the supplied arc
at the location specified by the ll argument. The endpoints of the returned arc are returned in the
arrays pointed to by the ll1 and the ll2 arguments.

326 CS-MAP User's Guide User's Guide

All latitudes and longitudes are in degrees where negative values are used for west longitude and
south latitude. In all cases, the longitude is the first element in each array and the latitude is the
second element.

This function has been developed expressly for the empirical calculation of K grid scale factors for
azimuthal projections. The returned latitude/longitude positions are converted to grid coordinates and
the grid distance is compared to the actual geodetic distance on the ellipsoid as computed by
CS_llazdd. Therefore, customary usage is to provide the origin of the coordinate system as the oll
argument, and the point at which the grid scale factor is to be computed as the ll argument.

CSllnrml uses spherical trigonometry, i.e. assumes the earth is a sphere.

ERRORS

CSllnrml makes no checks for possible errors. Given reasonable values for the latitudes and
longitudes, and values for oll and ll that are not antipodal (i.e. opposite ends of a line passing through
the center of the earth) no errors should occur.

CSmm???? Meridional distance functions
Functions described in this section implement the calculations associated with calculating the
meridional distance from the equator to a geographic latitude.

CSmmFcal M Forward CALculation
double CSmmFcal (Const struct cs_MmcofF_ *mm_ptr,double lat,double sin_lat,
 double cos_lat);

Given the geographic latitude, lat, in radians, and its sine (sin_lat) and its cosine (cos_lat), CSmmFcal
returns the meridional distance from the equator to the geographic latitude on the ellipsoid. (Snyder
calls this M). The return value is in the same units of the scaled equatorial radius argument that was
supplied to the CSmmFsu function when populating the structure pointed to by the mm_ptr argument
(see below).

The mm_ptr argument points to a structure of power series coefficients as developed by the CSmmFsu
function, which can be calculated solely from the ellipsoid in use. Therefore, the coefficients pointed to
by mm_ptr can be calculated once, once the ellipsoid definition is known.

BUGS

The calling sequence requires three forms of the geodetic latitude as these values are usually available
to calling functions. Thus, while redundant, this calling sequence assists in maintaining high
performance levels.

CSmmFsu M Forward SetUp
void CSmmFsu (struct cs_MmcofF_ *mm_ptr,double ka,double e_sq);

CSmmFsu develops the coefficients of the power series required to compute the meridional distance
from the equator to a specific geographic latitude. The resulting coefficients are stored in the structure
pointed to mm_ptr. The ka argument is the equatorial radius of the ellipsoid in the units of which the
calculated meridional distance is to be returned. The e_sq argument is the square of the eccentricity

 Chapter 4 Chatper 4 -- Library Functions 327

of the ellipsoid.

Since the basic parameters of the ellipsoid are the only inputs, these calculations can be performed
once, once the ellipsoid definition being used is known. The calculations required for separate
latitudes are performed by CSmmFcal.

CSmmIcal M Inverse CALculation
double CSmmIcal (Const struct cs_MmcofI_ *mm_ptr,double mm);

Given the meridional distance mm, CSmmIcal returns the corresponding geographic latitude in radians
where south latitude is negative. The mm_ptr argument points to a structure of power series
coefficients, as developed by the CSmmIsu, which can be determined solely from the ellipsoid in use.
Therefore, CSmmIsu performs all calculations that can be performed once, while CSmmIcal performs
all calculations that must be performed for each coordinate to be converted. The units of the supplied
value of mm must be the same as that provided to the CSmmIsu function, via the ka argument, which
produced the contents of the structure pointed to by mm_ptr.

CSmmIsu M Inverse SetUp
void CSmmIsu (struct cs_MmcofI_ *mm_ptr,double ka,double e_sq);

CSmmIsu develops the coefficients of the power series required to compute the geographic latitude
from the meridional distance (which Snyder calls M). The resulting coefficients are stored in the
structure pointed to mm_ptr. The ka argument is the equatorial radius of the ellipsoid in the same
units as the meridional distances CSmmIcal will be expected to process. The e_sq argument is the
eccentricity of the ellipsoid squared.

Since the basic parameters of the ellipsoid are the only inputs, these calculations can be performed
once, once the ellipsoid definition being used is known. The calculations required for separate
latitudes are performed by CSmmIcal.

Dictionary Access Functions
Functions that can be used to read, write, and otherwise manipulate the dictionary files are described in
this section. Dictionary files are ordinarily distributed in encrypted form. This enables a rather simple,
but somewhat effective means of protecting the valuable information which often resides in the
dictionaries.

The dictionary compilers can produce unencrypted dictionaries for testing purposes.

CS_cscmp Coordinate System CoMPare
int CS_cscmp (Const struct cs_Csdef_ *pp,Const struct cs_Csdef_ *qq);

CS_cscmp compares the two coordinate system definition structures provided to it by pp and qq and
returns an integer that represents the collating sequence relationship between the two coordinate
system definitions. The collating sequence is based on the key name of the coordinate system
definition. This function is used rather than strcmp as this function can compare encrypted entries as

328 CS-MAP User's Guide User's Guide

well as unencrypted entries.

This function is used in conjunction with CS_ips and CS_bins to access Coordinate System definitions in
the Coordinate System Dictionary.

CS_csDictCls Coordinate System DICTionary file CLoSe
void CS_csDictCls (csFILE* stream);

Applications must use this function to close a stream opened with the CS_csopn function. Using this
function assures that any memory of the open stream used for deferred close is erased.

CS_csfnm Coordinate System dictionary File NaMe
int CS_csfnm (Const char *new_name);

CS_csfnm changes the file name that CS-MAP uses when opening the Coordinate System Dictionary
to that specified by new_name. This does not change the directory. Use CS_altdr to change the
directory.

CS_csgrp Coordinate System dictionary GRouP
int CS_csgrp (Const char *grp_key,struct cs_Csgrplst_ **grp_lstp);

void CS_csgrpf (struct cs_Csgrplst_ *grp_lst);

Given the name of a coordinate system dictionary group via the grp_key argument, CS_csgrp returns a
count of the number of coordinate systems in the specified group. At the location provided by the
grp_lstp argument, CS_csgrp also returns a pointer to a linked list of malloc'ed cs_Csgrplst_
structures, one per coordinate system in the group. This feature is provided to ease the selection of a
single coordinate system from the 1,000 or more that are provided with the CS_MAP distribution.

Given a pointer to a linked list of cs_Csgrplst_ structures, CS_csgrpf will free all memory resources
allocated by the linked list.

CS_csgrp returns a zero if no coordinate system definitions we located for the named group, or -1 if the
group key name provided is invalid. In both cases, the group list pointer provided by the a argument is
set to NULL.

The list of currently supported groups, and suitable textual descriptions thereof, are provided in a table
initialized in the CSdata.c module.

CS_csopn Coordinate System dictionary OPeN
csFILE *CS_csopn (Const char *mode);

 CS_csopn will open the coordinate system dictionary for access as indicated by the mode argument
(_STRM_BINRD or _STRM_BINWR as defined in cs_map.h for example). The file stream of the
open file is returned. Upon successful return, the open file is positioned immediately after the magic
number that will have already been verified as being correct.

 Chapter 4 Chatper 4 -- Library Functions 329

ERRORS

CS_csopn will return NULL and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_CSDICT The Coordinate System Dictionary file could not be opened. (See CS_altdr)

cs_CS_BAD_MAGIC The file that, by virtue of its name and location, was supposed to be a
Coordinate System Dictionary wasn't a Coordinate System Dictionary; its magic
number was invalid.

CS_csrd Coordinate System dictionary ReaD
int CS_csrd (csFILE *strm,struct cs_Csdef_ *cs_def,int *crypt);

CS_csrd reads one record from the open Coordinate System Dictionary file indicated by the file stream
strm returning the results in the memory buffer pointed to by cs_def. The returned entry is always in
unencrypted form. Crypt is set to TRUE if the entry was encrypted in the file; otherwise crypt is set to
FALSE.

CS_csrd calls CS_bswap after reading and decrypting to effect a byte swap, if necessary, to the byte
order of the native machine.

CS_csrd will return a value of +1 if a record was successfully read, zero if the end of file was
encountered.

ERRORS

CS_csrd will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS_csrd could not read an entire cs_Csdef_ structure before
encountering the end of file.

CS_csrup Coordinate System Release UPdate
int CS_csrup (Const char *distrb,Const char *bkupnm);

 CS_csrup is designed for use in application installation programs and is used to update a user's
Coordinate System Dictionary file. The update is accomplished by updating the user's Coordinate
System Dictionary to the current release level, and merging the distribution file with the upgraded
user's file. Merging is performed based on coordinate system key name where the distribution version
is used wherever duplicate names are encountered.

330 CS-MAP User's Guide User's Guide

The distrb argument should be the name of the distribution file. If no directory information is present
(i.e. no directory separators), the file is expected to reside in the directory indicated by the cs_Dir
global variable. If directory information is present, the string provided is considered to be a complete
path to the distribution file. If distrb is the NULL pointer or points to the null string, CS_csrup simply
upgrades the user's existing Coordinate System Dictionary to the current release.

In all cases, CS_csrup expects to locate the user's current Coordinate System Dictionary using the
standard technique of combining the contents of the cs_Dir and cs_Csname global variables. If no
such file exists, CS_csrup creates it and copies the contents of the distribution file to the newly created
file.

If the bkupnm argument is not the NULL pointer and does not point to the null string, CS_csrup
considers it to be a file name and attempts to rename the user's existing Coordinate System Dictionary
to this name before replacing the Coordinate System Dictionary with the newly updated and merged
results.

CS_csrup fully supports automatic byte swapping.

CS_csrup writes the new Coordinate System Dictionary to a temporary file, and deletes the existing
Coordinate System Dictionary only after all processing has completed successfully. CS_csrup returns
zero upon success.

ERRORS

CS_csrup will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

 Chapter 4 Chatper 4 -- Library Functions 331

cs_IOERR A physical I/O error was detected during the read operation or
CS_csrup could not read an entire cs_Csdef_ structure before
encountering the end of file.

 cs_FL_OPEN The open of the distribution file failed.

cs_INV_FILE Either file was not a valid Coordinate System Dictionary as it did
not contain records of the proper size.

cs_CSDEF_MAGIC One of the files involved did not have the expected magic
number in the first 4 bytes of the file.

cs_CS_NOT_FND CS_csrup could not find either the distribution file, or the user's
previous Coordinate System Dictionary file, and therefore could
not do anything.

cs_NWCS_WRIT A write error occurred while writing to the new Coordinate
System Dictionary. Usually indicates the disk is full.

cs_NOMEM Heap memory was insufficient to accommodate the allocation of
a cs_Csdef_ structure.

cs_ISER CS_csrup encountered a condition that could only be caused by a
coding error in the module itself.

CS_cswr Coordinate System dictionary WRite
int CS_cswr (csFILE *strm,Const struct cs_Csdef_ *cs_def,int crypt);

CS_cswr writes the coordinate system definition pointed to by the cs_def argument at the current
position of the open Coordinate System Dictionary file indicated by the file stream strm. The definition
provided by the cs_def argument is always expected to be unencrypted. If the crypt argument is non-
zero, the definition is encrypted before being written.

CS_cswr calls CS_bswap before encrypting and writing to effect a byte swap, if necessary, to little
endian byte order.

CS_cswr will return a value of FALSE if the record was successfully written, TRUE if an error condition
was detected.

ERRORS

CS_cswr will return TRUE and set cs_Error appropriately if any of the following conditions are
encountered during the update:

332 CS-MAP User's Guide User's Guide

cs_IOERR A physical I/O error was detected during the write operation.

cs_DISK_FULL A disk full indication was received as a result of the write
attempt.

CS_usrCsDef
int CS_usrCsDefPtr (struct cs_Csdef_ *csDef,Const char *keyName);

This name, CS_usrCsDefPtr, does not refer to a function. Rather, it refers to a global variable which
is defined as a pointer to a function which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
specialized coordinate system definitions in a dynamic manner.

If the global variable CS_usrCsDefPtr (defined in CSdata.c) is not null, the indicated function is
called whenever the CS-MAP library is asked to access a specific coordinate system definition. This
function, then, can be used to dynamically supply a coordinate system definition which does not exist
in the dictionary. Applications can use this to implement their own definition source (i.e. an external
database) or dynamically generate such a definition based on the name provided.

CS-MAP passes the keyName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired definition must be placed in
(copied to) the specific structure pointed to by the csDef argument.

The hook function returns an integer value:

 -1 is returned to indicate that normal dictionary access function is to return an error condition (i.e.
the null pointer). In this case, the hook function must have already reported the specific nature of
the error condition using CS_erpt.

 +1 is returned to indicate that normal CS-MAP dictionary access is to be performed.
 0 is returned to indicate that the hook function has supplied a definition that is to be used. In this

case, CS-MAP will allocate new memory from the heap, copy the hook function supplied
definition to the allocated memory, and return a pointer to the allocated memory to the calling
function.

CS_dtDictCls DaTum DICTionary file CLoSe
void CS_dtDictCls (csFILE* stream);

Applications must use this function to close a stream opened with the CS_dtopn function. Using this
function assures that any memory of the open stream used for deferred close is erased.

 Chapter 4 Chatper 4 -- Library Functions 333

CS_elDictCls ELlipsoid DICTionary file CLoSe
void CS_elDictCls (csFILE* stream);

Applications must use this function to close a stream opened with the CS_elopn function. Using this
function assures that any memory of the open stream used for deferred close is erased.

CS_dtcmp DaTum definition CoMPare
int CS_dtcmp (Const struct cs_Dtdef_ *pp,Const struct cs_Dtdef_*qq);

CS_dtcmp compares the two datum definition structures provided to it by pp and qq and returns an
integer which represents the collating sequence relationship between the two datum definitions. The
collating sequence is based on the key name of the datum definition. This function is used rather than
strcmp as it can compare encrypted entries as well as unencrypted entries.

This function is used in conjunction with CS_ips and CS_bins to access datum definitions in the Datum
Dictionary.

CS_dtfnm DaTum dictionary File NaMe
int CS_dtfnm (Const char *new_name);

CS_dtfnm changes the name used by CS-MAP when opening the Datums Dictionary to that specified
by new_name. The directory that is searched remains the same. Use CS_altdr to change the
directory.

CS_dtopn DaTum dictionary OPeN
csFILE *CS_dtopn (Const char *mode);

CS_dtopn will open the Datum Dictionary for access as indicated by the mode argument
(_STRM_BINRD or _STRM_BINWR as defined in cs_map.h for example). The file stream of the
open file is returned. Upon successful return, the open file is positioned immediately after the magic
number that will have already been verified as being correct.

ERRORS

CS_dtopn will return NULL and set cs_Error appropriately if any of the following conditions are
encountered during the update:

334 CS-MAP User's Guide User's Guide

cs_DTDICT The Datum Dictionary file could not be opened. (See
CS_altdr).

cs_DT_BAD_MAGIC The file that, by virtue of its name and location, was supposed
to be a Datum Dictionary wasn't a Datum Dictionary; its magic
number was invalid.

CS_dtrd DaTum dictionary ReaD
int CS_dtrd (csFILE *strm,struct cs_Dtdef_ *dt_def,int *crypt);

CS_dtrd reads one record from the open Datum Dictionary file indicated by the file stream strm
returning the results in the memory buffer pointed to by dt_def. The returned entry is always in
unencrypted form. Crypt is set to TRUE if the entry was encrypted in the file; otherwise, crypt is set to
FALSE.

CS_dtrd calls CS_bswap to effect a byte swap, if necessary, to the byte ordering of the native machine.

CS_dtrd will return a value of +1 if a record was successfully read, zero if the end of file was
encountered.

ERRORS

CS_dtrd will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS_dtrd could not read an entire cs_Dtdef_ structure before
encountering the end of file.

CS_dtrup DaTum dictionary Release UPdate
int CS_dtrup (Const char *distrb,Const char *bkupnm);

 CS_dtrup is designed for use in application installation programs and is used to update a user's Datum
Dictionary file. The update is accomplished by updating the user's Datum Dictionary to the current
release level, and merging the distribution file with the upgraded user's file. Merging is performed
based on datum key name where the distribution version is used wherever duplicate names are
encountered.

The distrb argument should be the name of the distribution file. If no directory information is present
(i.e. no directory separators), the file is expected to reside in the directory indicated by the cs_Dir
global variable. If directory information is present, the string provided is considered to be a complete
path to the distribution file. If distrb is the NULL pointer or points to the null string, CS_dtrup simply
upgrades the user's existing Datum Dictionary to the current release.

 Chapter 4 Chatper 4 -- Library Functions 335

In all cases, CS_dtrup expects to locate the user's current Datum Dictionary using the standard
technique of combining the contents of the cs_Dir and cs_Dtname global variables. If no such file
exists, CS_dtrup creates it and copies the contents of the distribution file to the newly created file.

If the bkupnm argument is not the NULL pointer and does not point to the null string, CS_dtrup
considers it to be a file name and attempts to rename the user's existing Datum Dictionary to this name
before replacing the Datum Dictionary with the newly updated and merged results.

CS_dtrup fully supports automatic byte swapping.

CS_dtrup writes the new Datum Dictionary to a temporary file, and deletes the existing Datum
Dictionary only after all processing has completed successfully. CS_dtrup returns zero upon success.

ERRORS

CS_dtrup will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS_dtrup could not read an entire cs_Dtdef_ structure before
encountering the end of file.

cs_FL_OPEN The open of the distribution file failed.

cs_INV_FILE Either file was not a valid Datum Dictionary as it did not
contain records of the proper size.

cs_DTDEF_MAGIC One of the files involved did not have the expected magic
number in the first 4 bytes of the file.

cs_DT_NOT_FND CS_dtrup could not find either the distribution file, or the user's
previous Datum Dictionary file, and therefore could not do
anything.

cs_NWDT_WRIT A write error occurred while writing to the new Datum
Dictionary. Usually indicates the disk is full.

cs_NOMEM Heap memory was insufficient to accommodate the allocation
of a cs_Dtdef_ structure.

cs_ISER CS_dtrup encountered a condition that could only be caused by
a coding error in the module itself.

CS_dtwr DaTum dictionary WRite
int CS_dtwr (csFILE *strm,Const struct cs_Dtdef_ *dt_def,int crypt);

336 CS-MAP User's Guide User's Guide

CS_dtwr writes the datum definition pointed to by the dt_def argument to the current position of the
Datum Dictionary file indicated by the file stream strm. The datum definition provided is always
expected to be in unencrypted form. If crypt is non-zero, the definition is encrypted before being
written to the Datum Dictionary.

CS_dtwr calls CS_bswap prior to encrypting and writing to effect a byte swap, if necessary, to little
endian byte order ala Intel/DOS.

CS_dtwr will return a value of zero if the definition was successfully written, -1 if an error condition was
detected.

ERRORS

CS_dtwr will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the write operation.

CS_usrDtDefPtr - Datum Definition Hook Function
int CS_usrDtDefPtr (struct cs_Dtdef_ *dtDef,Const char *keyName);

This name, CS_usrDtDefPtr, does not refer to a function. Rather, it refers to a global variable which
is defined as a pointer to a function which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
specialized datum definitions in a dynamic manner.

If the global variable CS_usrDtDefPtr (defined in CSdata.c) is not null, the indicated function is
called whenever the CS-MAP library is asked to access a specific datum definition. This function,
then, can be used to dynamically supply a datum definition which does not exist in the dictionary.
Applications can use this to implement their own definition source (i.e. an external database) or
dynamically generate such a definition based on the name provided.

CS-MAP passes the keyName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired definition must be placed in
(copied to) the specific structure pointed to by the dtDef argument.

The hook function returns an integer value:

 -1 is returned to indicate that normal dictionary access function is to return an error condition (i.e.
the null pointer). In this case, the hook function must have already reported the specific nature of
the error condition using CS_erpt.

 +1 is returned to indicate that normal CS-MAP dictionary access is to be performed.
 0 is returned to indicate that the hook function has supplied a definition that is to be used. In this

case, CS-MAP will allocate new memory from the heap, copy the hook function supplied
definition to the allocated memory, and return a pointer to the allocated memory to the calling
function.

 Chapter 4 Chatper 4 -- Library Functions 337

CS_elcmp ELlipsoid definition CoMPare
int CS_elcmp (Const struct cs_Eldef_ *pp,Const struct cs_Eldef_*qq);

CS_elcmp compares the two ellipsoid definition structures provided to it by pp and qq and returns an
integer that represents the collating sequence relationship between the two ellipsoid definitions. The
collating sequence is based on the key name of the ellipsoid definition. This function is used rather
than strcmp as it can compare encrypted entries as well as unencrypted entries.

This function is used in conjunction with CS_ips and CS_bins to access ellipsoid definitions in the
Ellipsoid Dictionary.

CS_elfnm ELlipsoid dictionary File NaMe
int CS_elfnm (Const char *new_name);

CS_elfnm changes the name used by CS-MAP when opening the Ellipsoid Dictionary to that specified
by new_name. The directory that is searched remains the same. Use CS_altdr to change the
directory.

CS_elopn ELlipsoid dictionary OPeN
csFILE *CS_elopn (Const char *mode);

CS_elopn will open the Ellipsoid Dictionary for access as indicated by the mode argument
(_STRM_BINRD or _STRM_BINWR as defined in cs_map.h for example). The file stream of the
open file is returned. Upon successful return, the open file is positioned immediately after the magic
number that will have already been verified as being correct.

ERRORS

CS_elopn will return NULL and set cs_Error appropriately if any of the following conditions are
encountered while opening the file:

cs_ELDICT The Ellipsoid Dictionary file could not be opened. (See
CS_altdr).

cs_EL_BAD_MAGIC The file that, by virtue of its name and location, was supposed
to be an Ellipsoid Dictionary wasn't an Ellipsoid Dictionary;
its magic number was invalid.

CS_elrd ELlipsoid dictionary ReaD
int CS_elrd (csFILE *strm,struct cs_Eldef_ *el_def,int *crypt);

CS_elrd reads one record from the open Ellipsoid Dictionary file indicated by the file stream strm
returning the results in the memory buffer pointed to by el_def. The returned entry is always in

338 CS-MAP User's Guide User's Guide

unencrypted form. Crypt is set to TRUE if the entry was encrypted in the file; otherwise, crypt is set to
FALSE.

CS_elrd calls CS_bswap after reading and decrypting to effect, if necessary, a byte swap to the byte
ordering of the native machine.

CS_elrd will return a value of +1 if a record was successfully read, zero if the end of file was
encountered.

ERRORS

CS_elrd will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS_elrd could not read an entire cs_Eldef_ structure before
encountering the end of file.

CS_elrup ELipsoid dictionary Release UPdate
int CS_elrup (Const char *distrb,Const char *bkupnm);

 CS_elrup is designed for use in application installation programs and is used to update a user's
Ellipsoid Dictionary file. The update is accomplished by updating the user's Ellipsoid Dictionary to the
current release level, and merging the distribution file with the upgraded user's file. Merging is
performed based on ellipsoid key name where the distribution version is used wherever duplicate
names are encountered.

The distrb argument should be the name of the distribution file. If no directory information is present
(i.e. no directory separators), the file is expected to reside in the directory indicated by the cs_Dir
global variable. If directory information is present, the string provided is considered to be a complete
path to the distribution file. If distrb is the NULL pointer or points to the null string, CS_elrup simply
upgrades the user's existing Ellipsoid Dictionary to the current release.

In all cases, CS_elrup expects to locate the user's current Ellipsoid Dictionary using the standard
technique of combining the contents of the cs_Dir and cs_Elname global variables. If no such file
exists, CS_elrup creates it and copies the contents of the distribution file to the newly created file.

If the bkupnm argument is not the NULL pointer and does not point to the null string, CS_elrup
considers it to be a file name and attempts to rename the user's existing Ellipsoid Dictionary to this
name before replacing the Ellipsoid Dictionary with the newly updated and merged results.

CS_elrup fully supports automatic byte swapping.

CS_elrup writes the new Ellipsoid Dictionary to a temporary file, and deletes the existing Ellipsoid
Dictionary only after all processing has completed successfully. CS_elrup returns zero upon success.

ERRORS

CS_elrup will return a -1 and set cs_Error appropriately if any of the following conditions are

 Chapter 4 Chatper 4 -- Library Functions 339

encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS_elrup could not read an entire cs_Eldef_ structure before
encountering the end of file.

cs_FL_OPEN The open of the distribution file failed.

cs_INV_FILE Either file was not a valid Ellipsoid Dictionary as it did not
contain records of the proper size.

cs_ELDEF_MAGIC One of the files involved did not have the expected magic
number in the first 4 bytes of the file.

cs_EL_NOT_FND CS_elrup could not find either the distribution file, or the user's
previous Ellipsoid Dictionary file, and therefore could not do
anything.

cs_NWEL_WRIT A write error occurred while writing to the new Ellipsoid
Dictionary. Usually indicates the disk is full.

cs_NOMEM Heap memory was insufficient to accommodate the allocation
of a cs_Eldef_ structure.

cs_ISER CS_elrup encountered a condition that could only be caused by a
coding error in the module itself.

CS_elwr ELlipsoid dictionary WRite
int CS_elwr (csFILE *strm,Const struct cs_Eldef_ *el_def,int crypt);

CS_elwr writes the ellipsoid definition pointed to by the el_def argument to the current position of the
Ellipsoid Dictionary file indicated by the file stream strm. The ellipsoid definition provided is always
expected to be in unencrypted form. If crypt is non-zero, the definition is encrypted before being
written to the Ellipsoid Dictionary.

CS_elwr calls CS_bswap before writing the data. This effects a byte swap, if necessary, to write the
ellipsoid definition in little endian (i.e. Intel/DOS) byte order.

CS_elwr will return a value of FALSE if the definition was successfully written, TRUE if an error
condition was detected.

ERRORS

CS_elwr will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

340 CS-MAP User's Guide User's Guide

cs_IOERR A physical I/O error was detected during the write operation.

cs_DISK_FULL A disk full condition was detected during the write operation.

CS_usrElDefPtr - Ellipsoid Definition Hook Function
int CS_usrElDefPtr (struct cs_Eldef_ *elDef,Const char *keyName);

This name, CS_usrElDefPtr, does not refer to a function. Rather, it refers to a global variable which
is defined as a pointer to a function which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
specialized ellipsoid definitions in a dynamic manner.

If the global variable CS_usrElDefPtr (defined in CSdata.c) is not null, the indicated function is
called whenever the CS-MAP library is asked to access a specific ellipsoid definition. This function,
then, can be used to dynamically supply a ellipsoid definition which does not exist in the dictionary.
Applications can use this to implement their own definition source (i.e. an external database) or
dynamically generate such a definition based on the name provided.

CS-MAP passes the keyName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired definition must be placed in
(copied to) the specific structure pointed to by the elDef argument.

The hook function returns an integer value:

 -1 is returned to indicate that normal dictionary access function is to return an error condition (i.e.
the null pointer). In this case, the hook function must have already reported the specific nature of
the error condition using CS_erpt.

 +1 is returned to indicate that normal CS-MAP dictionary access is to be performed.
 0 is returned to indicate that the hook function has supplied a definition that is to be used. In this

case, CS-MAP will allocate new memory from the heap, copy the hook function supplied
definition to the allocated memory, and return a pointer to the allocated memory to the calling
function.

Well Known Text Implementation
While the syntax used by Well Known Text (WKT) represents a reliable standard, the manner in which
is anything but standard. There are six flavors of WKT that the developers of CS-MAP have
identified; undoubtedly there are more. CS-MAP currently includes reliable data for the six flavors it
knows about; however significant data sets for only three flavors have been found; thus serious testing
has been limited to those three flavors:

1 ESRI

2 Oracle

 Chapter 4 Chatper 4 -- Library Functions 341

3 GeoTools

Thus, WKT remains a work in progress and probably will so remain for years to come.

Please note that the major issue with WKT is that most all WKT definitions do not include reliable data
concerning the datum in use. Yes, the datum is named, but that is all we have to go on. Thus,
successful translation of a WKT definition relies heavily on being able to map the datum name (and
indirectly the ellipsoid name) to a known definition. Known definition in this case means a definition
currently existing in the CS-MAP Datum DIctionary.

Successful conversion of WKT definitions relies heavily on:

1 identifying the flavor of the WKT definition being processed.

2 mapping the datum name used by a specific flavor to a CS-MAP datum definition.

3 mapping the projection name used in the WKT definition to a CS-MAP projection.

4 mapping the various parameter names used in the WKT definition to CS-MAP projection
parameters.

This there is a lot of room for failure and errors of all sorts. As of this release (11.15) most all WKT
definitions for which a corresponding EPSG definition exists, and both the projection and datum
transformation technique are supported by CS-MAP, are handled properly. Fortunately, this includes
most all of the widely used coordinate systems, datums, and ellipsoids.

The subsections which follow describe the functions implemented within CS-MAP to process WKT
definitions.

Objects/Functions Implemented in C++
The functions and object described in this section are implemented in C++. That is, they implement a
C++ object in the form of a class, or they use C++ features such as std::istream or std::string.
Obviously, these can only be compiled by a compiler capable of compiling C++ in addition to standard
'C'. Fortunately, that includes most all compilers today.

The C++ code in all of these modules is encapsulated within a conditional compile controlled by the
__CPP__ preprocessor constant. Developers will need to arrange to have this constant defined while
compiling the code modules containing the implementation of these objects and functions.

342 CS-MAP User's Guide User's Guide

TrcWktElement Object

CS-MAP implements the WKT structure as a C++ object named TrcWktElement. Such an element is
used to represent the various WKT entities, and is designed such that it can contain sub-elements of
itself. A TrcWktElement object representing a Datum, for example, will contain an instance of a
TrcWktElement which represents a Spheroid. In this way, the parsing and maintenance of a wide
variety of WKT strings can be defined by a single object.

Note that TrcWktElement is a C++ object (i.e. a class). The implementation of this object is
encapsulated with a conditional compile controlled by the __CPP__ preprocessor constant. Thus, to
implement the WKT feature one must be using a compiler capable of compiling C++ code, and arrange
to have the __CPP__ preprocessor constant defined before compiling.

The name of this object deviates substantially from the CS-MAP standard naming conventions. This is
the case as it was originally coded for use in a new product which uses an enhanced naming
convention.

TrcWktElement - Parameters
The following parameters are used by the member functions of the TrcWktElement object:

Name Type Description
type ErcWktEleType The WKT type of the element.

value char* The value of the element. Not the name, but the
value, usually numeric.

name char* The name associated with several elements.

flavor ErcWktFlavor The flavor of the WKT string to be parsed.

csMapParamCode short A CS-MAP parameter code, ala cs_PRMCOD_????

parent TrcWktElement* Pointer to the parent WKT element of the current
WKT element.

bufr char* Character array in which WKT values are returned as
a null terminated character array.

fieldNbr size_t The zero based index of a value to be extracted from
the WKT string. For those elements which require a
name, the name is not considered a value.

childElement TrcWktElement* Pointer to a new WKT element object that is to be
added as a child to the current WKT element.

toBeRemoved TrcWktElement* Pointer to a specific child element which is to be
removed from its parent element.

 Chapter 4 Chatper 4 -- Library Functions 343

eleStart size_t Index into the WKT string being parsed of the first
character of the extracted WKT element (in string
form).

eleTerm size_t Index into the WKT string being parsed of the last
character of the extracted WKT element (in string
form).

bufrSize size_t The size of a character array in which results are to be
returned.

wellKnownText char* A Well Known Text definition in a null terminated
character array form. Generally, the character string
may have other text preceding and following the
actual WKT definition.

TrcWktElement -- Construction / Destruction / Assignment

Constructors

TrcWktElement (void);

Constructs an empty object; an object with wktTypNOne, null name, and no values.

TrcWktElement (ErcWktEleType type,const char *value);

Constructs and object of the indicated type with a single value.

TrcWktElement (ErcWktEleType type,const char *name,const char *value);

Constructs an object of the given type, with the provided name, and a single value.

TrcWktElement (ErcWktEleType type,const std::string& value);

Constructs an object of the indicated type with a single value.

TrcWktElement (ErcWktEleType type,const std::string& name,const std::string&
value);

Constructs an object of the indicated type, with the provided name and a single value.

TrcWktElement (const char *wellKnownText);

Constructs an object by parsing the provided WKT string. The result has a type indicated by the
preamble to the WKT string provided, and the value is set to the contents of the bracketed string which
follows the preamble. If the type is one of those which require a name, the name is extracted, and
removed, from the value.

TrcWktElement (const TrcWktElement& source);

344 CS-MAP User's Guide User's Guide

Copy constructor; nothing exceptional of note here.

Destructor
~TrcWktElement (void);

No surprises here.

Assignment
TrcWktElement& operator= (const TrcWktElement& source);

No surprises here.

 Chapter 4 Chatper 4 -- Library Functions 345

TrcWktElement Member Functions
ErcWktEleType GetElementType (void) const;

 Returns the WKT type of the element.

ErcWktEleType GetParentType (void) const;

 Returns the WKT type of the parent element.

std::string GetElementName (void) const;

 Returns the name of the element. For example, the spheroid name of a SPHEROID type
element as a string.

const char* GetElementNameC (void) const;

 Returns the name of the element as a character pointer.

std::string GetCompleteValue (void) const;

 Returns the complete value of the element as a string. The is, the entire contents of the
unparsed bracketed value of the element.

bool HasInitialName (void) const;

 Returns true if the type of this element is one that requires an initial name.

void SetParent (const TrcWktElement* parent);

 Sets the parent of the element to that provided. Used by the parent object when parsing out the
child elements. Probably should be protected, but it isn't.

void SetParentType (ErcWktEleType type);

 Sets the type of the parent of the element to that provided. Used by the parent object
when parsing out the child elements. Probably should be protected, but it isn't.

const TrcWktElement *ChildLocate (ErcWktEleType type) const;

 Returns a pointer to the first child element of the type provided. Returns null pointer if no
child of the type requested was found.

const TrcWktElement *ChildLocate (ErcWktEleType type,size_t& index) const;

 Returns a pointer to the first child element of the type requested. Search starts at the element
indicated by index. Index is set to the where a subsequent search should start. Returns null pointer if
no such type was found.

const TrcWktElement *ChildSearch (ErcWktEleType type) const;

346 CS-MAP User's Guide User's Guide

 Searches for a child element of the requested type. Immediate child elements are searched
first. If no element is located, each child is then searched for a child element of the requested type.
The search is recursive, to the lowest level. Null pointer is returned if no child is found.

const TrcWktElement *ParameterLocate (ErcWktFlavor flavor,short csMapParamCode) const;

 Searches all child elements of the PARAMETER type for a parameter with the indicated
parameter type. Flavor indicates the set of parameter names to be used in the search.

void GetFieldChar (char *bufr,size_t bufrSize,size_t fieldNbr) const;

 Returns the value, as a character pointer. of the value indicated by fieldNbr. Returns null
pointer if such a value does not exist.

std::string GetFieldStr (size_t fieldNbr) const;

 Returns the value, as a std::string. of the value indicated by fieldNbr. Returns null pointer if
such a value does not exist.

double GetFieldDouble (size_t fieldNbr) const;

 Returns the indicated value as a double. Returns zero if fieldNbr is invalid. Conversion to
double accomplished via atof.

long GetFieldLong (size_t fieldNbr) const;

 Returns the indicated value as a long. Returns zero if fieldNbr is invalid. Conversion to
double accomplished via atol.

ErcWktAxisId GetAxisId (void) const;

 Returns an axis id value as indicated by the name of the element. Returns rcWktAxisIdNone if
value is invalid or type of element is not AXIS.

ErcWktAxisValue GetAxisValue (void) const;

 Returns an axis value as indicated by the value of the element. Returns rcWktAxisNone if
value is invalid or type of element is not AXIS.

ErcWktFlavor DetermineFlavor (void) const;

 Attempts to determine the flavor of a fully parsed element. Returns wktFlvrUnknown if not
successful.

void AddChild (const TrcWktElement& childElement);

 Adds a child WKT element to the current element.

void RemoveChild (const TrcWktElement* toBeRemoved);

 Removes a child element from the current element.

void ReconstructValue (void);

 Chapter 4 Chatper 4 -- Library Functions 347

 Reconstructs the value of the current element from the name, values, and child elements of the
current element. Used when converting CS-MAP definitions to WKT.

std::string ProduceWkt (void) const;

 Returns a WKT representation of the current element.

void ParseChildren (void);

 Parses the current value of the element, producing and adding child elements as necessary.
Process is recursive.

WKT Object Support
The functions described in this section implement CS-MAP's ability to convert definitions from/to
WKT representation. While all of these functions are declared with standard 'C' linkage, many interact
with the C++ TrcWktElement object. Therefore, a C++ compiler is required to compile these functions
and the code implementing most of these function is encapsulated in a conditional compile segment
controlled by the __CPP__ preprocessor constant.

CS_isWkt IS Well Known Text
int CS_isWkt (const char *wellKnownText);

CS_isWkt will return a non zero value if it considers it very likely that the string provided by the
wellKnownText argument is a WKT definition. This determination is mad by counting matching
square bracket characters. If the left and right bracket counts are equal and non-zero, the string is
assumed to be a WKT string. A zero is returned if the string fails this simple test.

CS_wktToCs Well Known Text To Coordinate System
int CS_wktToCs (struct cs_Csdef_ *csDef,struct cs_Dtdef_ *dtDef,
 struct cs_Eldef_ *elDef,
 ErcWktFlavor flavor,
 const char *wellKnownText)

CS_wktToCs converts the Well Known Text (WKT) provided by the wellKnownText argument to the
form used internally by CS-MAP. Use the flavor argument to indicate which flavor (there are several)
of WKT is being processed. The results are returned in the structures pointed to by the csDef, dtDef,
and elDef arguments. The dtDef and elDef arguments may be null.

348 CS-MAP User's Guide User's Guide

CS_wktToCs will always copy the full name of the PROJCS element to the desc_nm member of the
cs_Csdef_ structure (and the name member of the cs_Dtdef_ and cs_Eldef_ structures). It will
attempt to establish a keyname of 23 characters or less for each of these structures. If an
AUTHORITY element is present in the PROJCS (and DATUM and SPHEROID sub-elements) being
processed, the EPSG code will be used to manufacture a keyname of the form "Epsg:nnnn" where the
actual code value replaces the n's. If, for whatever reason, the manufacturing of a keyname of 23
characters or less fails, CS_wktToCs will return a positive, non-zero, value.

It is the intent of the design that this function, and it close relatives, be dependent solely on the WKT
information provided by the wellKnownText argument. Additional functions (see CS_wktToCsEx) are
provided which attempt to enhance the information produced by this function given access to mapping
tables and the CS-MAP dictionaries.

A zero return status, which is rare, indicates complete success in parsing an conversion of the three
required elements. A non-zero positive status is returned in the case of partial success. The value
returned is a bit map of the following conditions:

Preprocessor Constant Value Description
cs_EL2WKT_NMTRUNC 1 Ellipsoid key name truncated

cs_DT2WKT_NMTRUNC 2 Datum key name truncated

cs_CS2WKT_NMTRUNC 4 Coordinate system key name truncated

cs_DT2WKT_DTDEF 8 Datum definition extracted from CS-MAP
dictionary by name.

cs_DT2WKT_NODEF 16 No datum definition is present in dtDef.

CS_wktToCs will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the conversion:

cs_WKT_WRNGTYP The type of WKT element provided to the function was was not that of
PROJCS. (Use CS_wktToDt to process GEOGTRAN objects.)

cs_WKT_NOUNIT A linear unit specification for the PROJCS definition was not found.

cs_WKT_INVUNIT The linear unit extracted for the PROJCS was not one recognized by
CS_MAP.

cs_WKT_NOGEOCS CS_wktToCs could not locate a GEOGCS element within the PROJCS
element. A GEOGCS is required in order to determine datum/ellipsoid.

cs_WKT_NOGUNIT The angular unit of the internal GEOGCS could not be located.

cs_WKT_INVGUNIT The angular unit extracted from the internal GEOGCS definition was
not one recognized by CS-MAP.

cs_WKT_NOPROJ CS_wktToCs could not locate a PROJECTION specification in the
PROJCS definition.

 Chapter 4 Chatper 4 -- Library Functions 349

cs_WKT_INVPROJ The PROJECTION specification located in the PROJCS definition
specified a projection that is not supported by CS-MAP (or otherwise
unrecognized).

cs_WKT_NODATUM A DATUM specification within the internal GEOGCS element is
required, and CS_wktToCs could not locate same.

cs_WKT_NOELLIP A SPHEROID specification within the DATUM specification is required,
and CS_wktToCs could not locate same.

Whenever a negative value is returned, You may use CS_errmsg to obtain a textual description of the
problem.

CS_wktToCsEx Well Known Text To Coordinate System EXtended
int CS_wktToCsEx (struct cs_Csdef_ *csDef,struct cs_Dtdef_ *dtDef,

 struct cs_Eldef_ *elDef,

 ErcWktFlavor flavor,

 const char *wellKnownText)

CS_wktToCsEx converts the Well Known Text (WKT) provided by the wellKnownText argument to the
form used internally by CS-MAP. Use the flavor argument to indicate which flavor (there are several)
of WKT is being processed. The results are returned in the structures pointed to by the csDef, dtDef,
and elDef arguments. If the flavor argument is set to wktFlvrNone, CS_wktToCsEx will attempt to
determine the flavor automatically. An negative status value is returned if this flavor determination
fails. The dtDef and elDef arguments may be null.

CS_wktToCsEx attempts to improve the results of CS_wktToCs by using definition name mapping tables
to resolve issues encountered during the WKT parsing process. Using the flavor specification, it
attempts to map the names of the coordinate system, the datum, and the ellipsoid contained in the WKT
to known CS-MAP definitions. In so doing, many of the issues regarding processing of WKT (such as
missing datum information) are often resolved.

CS_wktToCsEx returns zero on success, indicating that key nams for all three elements have been
successfullly mapped to CS_MAP names and valid definitions exist in the CS-MAP dictionary for all
three names. In the event of partial success, non-zero positive status is returned which is a bit map of
the following conditions:

Preprocessor Constant Value Description
cs_EL2WKT_NMTRUNC 1 Ellipsoid key name truncated

cs_DT2WKT_NMTRUNC 2 Datum key name truncated

cs_CS2WKT_NMTRUNC 4 Coordinate system key name truncated

cs_DT2WKT_DTDEF 8 Datum definition extracted from CS-MAP
dictionary by name.

cs_DT2WKT_NODEF 16 No datum definition is present in dtDef.

350 CS-MAP User's Guide User's Guide

In the evnt of failure, CS_wktToCs will return a -1 and set cs_Error appropriately if any of the
following conditions are encountered during the conversion:

cs_WKT_BADFORM The provided WKT was not parsable. That is it did
not adhere to WKT syntax as understood by CS-MAP.

cs_WKT_FLAVOR The flavor argument value wktFlvrNone and CS_wktToCsEx
could not determine the flavor of the WKT entry
provided.

cs_WKT_DTMAP No datum transformation information was provided in
the WKT entry provided and CS_wktToCsEx was unable to
determine an appropriate CS-MAP datum definition to
use.

cs_WKT_WRNGTYP The type of WKT element provided to the function was was not that of
PROJCS or GEOGCS. (Use CS_wktToDt to process GEOGTRAN
objects.)

cs_WKT_NOUNIT A linear unit specification for the PROJCS definition was not found.

cs_WKT_INVUNIT The linear unit extracted for the PROJCS was not one recognized by
CS_MAP.

cs_WKT_NOGEOCS CS_wktToCs could not locate a GEOGCS element within the PROJCS
element. A GEOGCS is required in order to determine datum/ellipsoid.

cs_WKT_NOGUNIT The angular unit of the internal GEOGCS could not be located.

cs_WKT_INVGUNIT The angular unit extracted from the internal GEOGCS definition was
not one recognized by CS-MAP.

cs_WKT_NOPROJ CS_wktToCs could not locate a PROJECTION specification in the
PROJCS definition.

cs_WKT_INVPROJ The PROJECTION specification located in the PROJCS definition
specified a projection that is not supported by CS-MAP (or otherwise
unrecognized).

cs_WKT_NODATUM A DATUM specification within the internal GEOGCS element is
required, and CS_wktToCs could not locate same.

cs_WKT_NOELLIP A SPHEROID specification within the DATUM specification is required,
and CS_wktToCs could not locate same.

Whenever a negative value is returned, You may use CS_errmsg to obtain a textual description of the
problem.

CS_wktToDt Well Known Text To DaTum
int CS_wktToDt (struct cs_Dtdef_ *dtDef,struct cs_Eldef_ *elDef,

 ErcWktFlavor flavor,

 Chapter 4 Chatper 4 -- Library Functions 351

 const char *wellKnownText);

CS_wktToDt will parse the Well Known Text provided by the wellKnownText argument and populate
the pre-existing structures provided by the dtDef and elDef arguments; neither of which may be the
null pointer. If the flavor argument is set to wktFlvrNone, CS_wktToDt will attempt to determine the
flavor for you. Otherwise, it will use the supplied flavor to interpret transformation method and
parameter names (which are, of course, non-standard).

CS_wktToDt converts a WKT GEOTRANS object to CS-MAP format in the form of a cs_Dtdef_ and a
cs_Eldef_ structure. If you have the newer format where the Datum element in the PROJCS element
has the TOWGS84 element embedded in it, simply use CS_wktToCs and convert the whole mess in one
shot. Use this function only when dealing with the older GEOTRAN WKT type string.

CS_wktToDt returns a positive value upon successful conversion. A non-zero positive result is a bit
map of the following conditions:

Preprocessor Constant Value Description

cs_EL2WKT_NMTRUNC 1 Ellipsoid key name truncated

CS_wktToDt will return a negative value and set cs_Error accordingly should any of the following
conditions be encountered:

cs_WKT_FLAVOR The flavor of the provided Well Known Text string could not
be determined.

cs_WKT_GEOGCNT A valid GEOGTRAN WKT definition requires exactly two
GEOGCS specifications; the source and target systems.
CS_wktTodT encountered less than, or more than, two
such defintiions.

cs_WKT_WRNGTRG CS-MAP requires that the target datum specification be
WGS84. IN the WKT string provided, a target other than
WGS84 was encountered.

cs_WKT_NOSRCDT The source GEOGCS definition did not contain a datum
specification, or it was not parseable.

cs_WKT_NOMETH A transformation METHOD specificationcould not be
located in the provided WKT string.

cs_WKT_MTHERR While a METHOD specification did exist, the actual method
specified was not one of the method names understood, or
supported, by CS-MAP.

352 CS-MAP User's Guide User's Guide

cs_WKT_WRNGTYP The type of WKT element provided to the function was was
not that of PROJCS. (Use CS_wktToDt to process
GEOGTRAN objects.)

cs_WKT_NOELLIP A SPHEROID specification within the DATUM specification
is required, and CS_wktToCs could not locate same.

Whenever a negative return value is returned, you can use CS_errmsg to obtain a textual description of
the cause.

CScs2Wkt
int CScs2Wkt (char *csWktBufr,size_t bufrSize,struct cs_Csdef_ *cs_def)

Use CScs2Wkt to produce a complete PROJCS or GEOGCS object in the Well Known Text (WKT)
format. CScs2Wkt will access the Datum and Ellipsoid Dictionaries as necessary to retrieve the
information necessary to complete this request. The result is returned in the buffer pointed to by the
csWktBufr argument, but no more than bufrSize byte will be written there. The cs_def argument
provides the definition which is to be converted.

If the projection upon which the provided definition is based is the Unity projection, a GEOGCS object
is produced. Otherwise a PROJCS object is produced. CScs2Wkt returns a negative value in the event
of an error. Attempting to convert a coordinate system definition based on a projection which is not
supported by the WKT format is the most common cause of an error.

CS_wktToDict Well Known Text To DICTionary
int EXP_LVL1 CS_wktToDict (const char *csKeyName,const char *dtKeyName,

 const char *elKeyName,

 const char *wellKnownText,

 int flavor);

 Chapter 4 Chatper 4 -- Library Functions 353

CS_wktToDict will parse the Well Known Text string provided by the wellKnownText argument and,
if successful, add the resulting components to the CS-MAP dictionaries. Use the flavor argument to
indicate the flavor of the Well Known Text that is to be parsed; CS_wktToDict will not determine the
flavor for you.

Upon addition, the new entries in the dictionary will be assigned key names as provided by the
csKeyName, dtKeyName, and elKeyName arguments respectively. Should any of the key name
arguments be the null pointer, or point to the null string, that specific dictionary update will not be
attempted. Note that these dictionary modifications are updates, and will replace existing definitions
with the same name.

A dictionary update will fail, and cause subsequent dictionary updates to be skipped, if CS_wktToDict
attempts to replace a protected definition.

CS_wktToDict will return a -1 upon failure for any reason. Use CS_errmsg to obtain a textual
description of the cause of the failure. Note that CS_wktToDict uses CS_wktToCs to parse the provided
Well Known Text string, and CS_elupd, CS_dtupd, and CS_csupd (in that order) to update the
dictionaries. See these functions for a complete list of possible failure conditions.

Name/Number mapping Functions
The several functions in this section are used by the WKT processing facility to map definition names
and ID codes between CS-MAP, EPSG, and the various flavors of WKT. These are straight 'C'
functions, are not linked to the C++ implementation of the WKT object. Therefore, they can of general
value to all applications. New mapping functions are added quite regularly, so checking the cs_map.h
header file for new prototypes on each release is advised.

CS_epsg2msi EPSG code to MSI key name
int CS_epsg2msi (long epsgNbr,char* msiKeyName,int size);

CS_epsg2msi returns in the character array provided by the msiKeyName argument the CS-MAP
coordinate system key name which corresponds to the EPSG code value provided by the epsgNbr
argument. CS_epsg2msi returns a zero for success, a -1 if the epsgNbr argument was not a valid
EPSG coordinate system code value as far as CS-MAP is concerned.

This function is very similar to CSepsg2msiCS, but is much easier for the Visual Basic programmer to
use.

354 CS-MAP User's Guide User's Guide

CS_esriName2mai ESRI Name TO CS-MAP name
Const char* CS_esriName2Msi (Const char* esriName,unsigned short* flags);

Returns a pointer to the CS-MAP coordinate system key name which corresponds to the ESRI name
provided by the esriName argument. Returns null pointer if the ESRI definition name is unknown to
CS-MAP or an equivalent CS-MAP name does not exist. The flags argument is required, set to zero,
and is otherwise unused at the current time.

CS_msi2epsg MSI key name TO EPSG code value
long CS_msi2epsg (Const char *msiKeyName);

CS_msi2epsg return the EPSG code value associated with a CS_MAP coordinate system key name.
The msiKeyName argument specifies the CS-MAP key name for which the EPSG code value is to be
returned.

This is function is very similar to CSmsi2epsgCS, but it is easier for the Visual Basic programmer to
use.

CS_msiName2Esri CS-MAP NAME TO ESRI name
Const char* EXP_LVL1 CS_msiName2Esri (Const char* msiName)

Returns a pointer to the ESRI coordinate system key name which corresponds to the CS-MAP name
provided by the msiName argument. Returns null pointer if the ESRI definition name is unknown to
CS-MAP.

CSepsg2msiCS EPSG code to MSI key name, Coordinate Systems
Const char* CSepsg2msiCS (long epsgNbr,short* flags);

 Chapter 4 Chatper 4 -- Library Functions 355

CSepsg2msiCS returns a pointer to a constant string which is the CS-MAP key name which corresponds
to the EPSG code number provided by the epsgNbr argument. A null pointer is returned if a
corresponding Mentor key name does not exists for the given EPSG code value.

In those cases where CSepsg2msiCS returns a non-null pointer, it will also return bit map in the variable
pointed to by the flags argument. The least significant bits in this bit map value have the following
significance:

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of this
coordinate system.

1 EPSG has deprecated this definition. It should no longer be
used for output.

CSepsg2msiDT EPSG code to MSI key name, DaTums
Const char* CSepsg2msiDT (long epsgNbr,short* flags);

CSepsg2msiDT returns a pointer to a constant string which is the CS-MAP key name which
corresponds to the EPSG code number provided by the epsgNbr argument. A null pointer is returned
if a corresponding CS-MAP key name does not exists for the given EPSG code value.

In those cases where CSepsg2msiDT returns a non-null pointer, it will also return bit map in the
variable pointed to by the flags argument. The least significant bits in this bit map value have the
following significance:

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of this
coordinate system.

1 EPSG has deprecated this definition. It should not be used for
output.

CSepsg2msiDT EPSG code to MSI key name, ELlipsoids
Const char* CSepsg2msiEL (long epsgNbr,short* flags);

356 CS-MAP User's Guide User's Guide

CSepsg2msiEL returns a pointer to a constant string which is the CS-MAP key name which corresponds
to the EPSG code number provided by the epsgNbr argument. A null pointer is returned if a
corresponding Mentor key name does not exists for the given EPSG code value.

In those cases where CSepsg2msiEL returns a non-null pointer, it will also return bit map in the variable
pointed to by the flags argument. The least significant bits in this bit map value have the following
significance:

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of
this ellipsoid.

1 EPSG has deprecated this definition. It should not be used
for output.

CSepsgByIdxCS EPSG codes BY InDeX, Coordinate Systems
long CSepsgByIdxCS (int index);

Use CSepsgByIdxCS to iterate through CS-MAP's knowledge of EPSG coordinate system code values.
CSepsgByIdxCS returns the EPSG code in the index location (first = 0) of CS-MAP's internal EPSG
code table. If the value of index is too large, a zero value is returned.

Thus, one may iterate through the entire EPSG code table by simply starting with an index value of
zero, and incrementing it by one until CSepsgByIdxCS returns a zero value. The returned EPSG code
values can be used with CSepsg2msiCS to obtain the corresponding coordinate system key name.

CSepsgByIdxDT EPSG codes BY InDeX, DaTums
long CSepsgByIdxDT (int index);

Use CSepsgByIdxDT to iterate through CS-MAP's knowledge of EPSG datum code values.
CSepsgByIdxDT returns the EPSG code in the index location (first = 0) of CS-MAP's internal EPSG
code table. If the value of index is too large, a zero value is returned.

Thus, one may iterate through the entire EPSG code table by simply starting with an index value of
zero, and incrementing it by one until CSepsgByIdxDT returns a zero value. The returned EPSG code
values can be used with CSepsg2msiDT to obtain the corresponding coordinate system key name.

 Chapter 4 Chatper 4 -- Library Functions 357

CSepsgByIdxCS EPSG codes BY InDeX, ELlipsoids
long CSepsgByIdxEL (int index);

Use CSepsgByIdxEL to iterate through CS-MAP's knowledge of EPSG ellipsoid code values.
CSepsgByIdxEL returns the EPSG code in the index location (first = 0) of CS-MAP's internal EPSG
code table. If the value of index is too large, a zero value is returned.

Thus, one may iterate through the entire EPSG code table by simply starting with an index value of
zero, and incrementing it by one until CSepsgByIdxEL returns a zero value. The returned EPSG code
values can be used with CSepsg2msiEL to obtain the corresponding coordinate system key name.

CSmsi2epsgCS MSI to EPSG, Coordinate Systems
long CSmsi2epsgCS (Const char *msiKeyName,short* flags);

CSmsi2epsgCS returns the actual EPSG code value associated with the CS-MAP key name provided by
the msiKeyName argument. A zero is returned if the provided name is invalid, or an EPSG equivalent
does not exist. CSmsi2epsgCS returns, in the variable pointed to by the flags argument, to a bit map
value which indicates the status of the definition referred to. The value has no meaning if the return
value of the function is zero.

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of
this coordinate system.

1 EPSG has deprecated this definition. It should no longer be
used for output.

CSmsi2epsgDT MSI to EPSG, DaTums
long CSmsi2epsgCS (Const char *msiKeyName,short* flags);

358 CS-MAP User's Guide User's Guide

CSmsi2epsgDT returns the actual EPSG code value associated with the CS-MAP key name provided by
the msiKeyName argument. A zero is returned if the provided name is invalid, or an EPSG equivalent
does not exist. CSmsi2epsgDT returns, in the variable pointed to by the flags argument, to a bit map
value which indicates the status of the definition referred to. The value has no meaning if the return
value of the function is zero.

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of
this datum.

1 EPSG has deprecated this definition, it should not be used
for output.

CSmsi2epsgEL MSI to EPSG, ELlipsoids
long CSmsi2epsgEL (Const char *msiKeyName,short* flags);

CSmsi2epsgEL returns the actual EPSG code value associated with the CS-MAP key name provided by
the msiKeyName argument. A zero is returned if the provided name is invalid, or an EPSG equivalent
does not exist. CSmsi2epsgEL returns, in the variable pointed to by the flags argument, to a bit map
value which indicates the status of the definition referred to. The value has no meaning if the return
value of the function is zero.

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition
of this ellipsoid.

1 EPSG has deprecated this definition, it should not be used
for output.

Legacy Functions
Functions which are obsolete and/or replaced by newer implementations are described in this section.

CS842grf wgs 84 TO local Geodetic ReFerence system
int CS842grf (Const double ll_84,double ll_lcl,struct cs_Grfprm_ *grf);

Given a properly initialized local geodetic reference system parameter block via the grf argument,

 Chapter 4 Chatper 4 -- Library Functions 359

CS842grf will convert the geographic coordinate, i.e. latitude and longitude, provided in ll_84 to the
equivalent coordinates in the local geodetic reference system and return the results in ll_lcl. ll_84 and
ll_lcl may point to the same array. In both arrays, the first element is the longitude and second
element is the latitude. Latitudes and longitudes must in degrees relative to Greenwich where negative
values indicate south latitude and west longitude.

CS842grf returns FALSE if the conversion was correctly performed, else TRUE is returned.

ERRORS

CS842grf will return TRUE and set cs_Error appropriately if any of the following conditions are
encountered during the conversion:

Cs_WGG_CNVR
G

The iterative calculation of the local geodetic coordinate failed to converge after 6
iterations.

CS_bwcalc Bursa/Wolfe CALCulation
int CS_bwcalc (Const double lcl_ll [3],double ll_84 [3],

 Const struct cs_GrfBurs_ *bursa);

CS_bwcalc uses the information provided in the cs_GrfBurs_ structure provided by the bursa argument
to convert the latitude and longitude in the lcl_ll array to WGS84 based latitude and longitude. The
results are returned in the array provided by the ll_84 argument.

All elements of the ll_lcl and ll_84 arrays must be in degrees. Longitude is carried in the first element
of each array; lataitude in the second element; and the third element is currently unused. In all cases,
negative values are used for west longitude and south latitude.

CS_bwcalc returns zero to indicate successful calculation, and non-zero otherwise. Currently,
CS_bwcalc is always successful.

CS_getcs GET Coordinate System definition
int CS_getcs (Const char *key_nm,struct cs_Csdef_ *bufr);

CS_getcs will return in the memory location indicated by the bufr argument the definition of the
coordinate system whose key name is given by the key_nm argument. CS_getcs normally returns
zero.

ERRORS

CS_getcs will return a -1 and set cs_Error if any of the following conditions are detected:

360 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary file could not be found or
otherwise opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Coordinate
System Dictionary file.

cs_CS_BAD_MAGIC The file accessed under the assumption that it was a
Coordinate System Dictionary wasn't a Coordinate System
Dictionary after all; it had an invalid magic number on the
front end.

cs_CS_NOT_FND A coordinate system definition with the name given by
key_nm was not found in the Coordinate System Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for a cs_Csdef_ structure.

CS_getdt GET DaTum definition
int CS_getdt (Const char *key_nm,struct cs_Dtdef_ *bufr);

CS_getdt will return in the memory location indicated by the bufr argument the definition of the datum
whose name is given by the key_nm argument. CS_getdt normally returns zero.

ERRORS

CS_getdt will return a -1 and set cs_Error if any of the following conditions are detected:

cs_DTDICT The Datum Dictionary file could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Datum
Dictionary file.

cs_DT_BAD_MAGIC The file accessed under the assumption that it was a Datum
Dictionary wasn't a Datum Dictionary after all; it had an invalid
magic number on the front end.

cs_DT_NOT_FND A datum definition with the name given by key_nm was not
found in the Datum Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space for
a cs_Dtdef_ structure.

 Chapter 4 Chatper 4 -- Library Functions 361

CS_getel GET ELlipsoid definition
int CS_getel (Const char *key_nm,struct cs_Eldef_ *bufr);

CS_getel will return in the memory location indicated by the bufr argument the definition of the ellipsoid
whose name is given by the key_nm argument. CS_getel normally returns zero.

ERRORS

CS_getel will return a -1 and set cs_Error if any of the following conditions are detected:

cs_ELDICT The Ellipsoid Dictionary file could not be found or otherwise
opened. (See CS_altdr)

 cs_IOERR A physical I/O error occurred during access to the Ellipsoid
Dictionary file.

cs_EL_BAD_MAGIC The file accessed under the assumption that it was an Ellipsoid
Dictionary wasn't a Ellipsoid Dictionary after all; it had an
invalid magic number on the front end.

cs_EL_NOT_FND An ellipsoid definition with the name given by key_nm was not
found in the Ellipsoid Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space for
a cs_Eldef_ structure.

CSgrf284 local Geodetic ReFerence system TO wgs 84
int CSgrf284 (Const double ll_lcl [2],double ll_84 [2],struct cs_Grfprm_
*grf);

Given a properly initialized Geodetic Reference System parameter block via the grf argument,
CSgrf284 will convert the local geodetic reference system coordinates in the lcl_ll array to their
equivalent WGS 84 values and return the result in the ll_84 array. Both pointers may point to the
same array. In both arrays, the first element is the longitude and the second element is the latitude.
Latitudes and longitudes are given in degrees where negative values indicate south latitude and west
longitude.

CSgrf284 will use CS_mrcalc to calculate the new values if the provided cs_Grfprm_ structure has a
valid multiple regression formula initialized within it. If a multiple regression formula is not available, or
if the multiple regression calculation fails for any reason, CSgrf284 uses CS_mocalc or CS_bwcalc as is
appropriate to arrive at the desired result.

ERRORS

CSgrf284 will return zero to indicate that the conversion proceeded to a normal result; TRUE to indicate

362 CS-MAP User's Guide User's Guide

that an error occurred. In the event of an error the global variable cs_Error will be set to
cs_MREG_RANGE in any case where a valid multiple regression formula did indeed exist, but the
location given by ll_lcl was outside of the domain of the multiple regression formula.

CSgrfinit local Geodetic ReFerence system INITialize
int CSgrfinit (Const struct cs_Csprm_ *csprm,grf,struct cs_Grfprm_ *grf);

Using the datum information contained in the datum element of the cs_Csprm_ structure provided by
the csprm argument, CSgrfinit will initialize the cs_Grfprm_ structure provided by the grf argument
for datum conversions. The initialized cs_Grfprm_ structure contains all the information necessary to
convert geographic coordinates (i.e. latitude/longitude) between the datum described (i.e. the local
geodetic reference system) and WGS 84.

Depending on the information contained in the datum element, either the Molodensky form or the
Bursa/Wolfe form of the conversion is always initialized as a backup to the possible initialization of a
multiple regression formula. If a valid and appropriately named multiple regression formula definition
file is located in the directory indicated by the cs_Dir global variable (see CSdata.c), the multiple
regression conversion is also initialized.

ERRORS

CSgrfinit always returns FALSE to indicate that no error condition has been detected. It is possible that
future versions of CSgrfinit will return TRUE to indicate the existence of an error condition.

CS_mocalc MOlodensky CALCulator
void CS_mocalc (Const double ll_lcl [2],double ll_84 [2],
 Const struct cs_GrfMolo_ *molo);

Given a properly initialized cs_GrfMolo_ structure via the molo argument, CS_mocalc converts the
local geodetic reference system latitude and longitude pair provided by ll_lcl to WGS84 base latitudes
and longitudes and returns the result in the array pointed to by the ll_84 argument. CSgrfinit is usually
used to obtain an initialized cs_GrfMolo_ structure.

The formulas used are the unabridged Molodensky formulas where the elevation is assumed to be
zero.

ERRORS

At the current time, CS_mocalc always returns 0 to indicate that the calculation was performed
successfully.

CS_mrcalc Multiple Regression CALCulator
int CS_mrcalc (Const double ll_lcl [2],double ll_84 [2],
 Const struct cs_GrfMreg_ *mr_ptr);

Given a properly initialized cs_GrfMreg_ structure via the mr_ptr argument, CS_mrcalc converts the
local geodetic reference system latitude and longitude pair provided by ll_lcl to WGS84 base latitudes
and longitudes and returns the result in the array pointed to by the ll_84 argument. CSgrfinit is usually
used to obtain an initialized cs_GrfMreg_ structure.

 Chapter 4 Chatper 4 -- Library Functions 363

ERRORS

 CS_mrcalc will copy the contents of ll_lcl to ll_84 and return 1 if the location provided by ll_lcl is
outside of the domain of the Multiple Regression formula provided. Otherwise, a zero is returned.

CS_p7calc 7 Parameter CALCulation
int CS_bwcalc (Const double lcl_ll [3],double ll_84 [3],
 Const struct cs_Grf7Prm_ *parm7);

CS_p7calc uses the information provided in the cs_GrfBurs_ structure provided by the parm7
argument to convert the latitude and longitude in the lcl_ll array to WGS84 based latitude and
longitude. The results are returned in the array provided by the ll_84 argument.

All elements of the ll_lcl and ll_84 arrays must be in degrees. Longitude is carried in the first element
of each array; latitude in the second element; and the third element is currently unused. In all cases,
negative values are used for west longitude and south latitude.

CS_p7calc returns zero to indicate successful calculation, and non-zero otherwise. Currently,
CS_p7calc is always successful.

CS_putcs PUT Coordinate System to dictionary
int CS_putcs (Const struct cs_Csdef_ *csDef,int crypt);

 CS_putcs writes the coordinate system definition pointed to by the csDef argument to the coordinate
system dictionary. If the crypt argument is non-zero, the definition is encrypted before writing.
CS_putcs returns a zero on success, a negative value in the event of an error.

ERRORS

CS_putcs uses CS_csupd for a majority of its functionality; the return value is primarily what CS_csupd
returns.

CS_putdt PUT DaTum to dictionary
int CS_putdt (Const struct cs_Dtdef_ *dtDef,int crypt);

 CS_putdt writes the datum definition pointed to by the dtDef argument to the datum dictionary. If the
crypt argument is non-zero, the definition is encrypted before writing. CS_putdt returns a zero on
success, a negative value in the event of an error.

ERRORS

CS_putdt uses CS_dtupd for a majority of its functionality; the return value is primarily what CS_dtupd
returns.

364 CS-MAP User's Guide User's Guide

CS_putel PUT ELlipsoid to dictionary
int CS_putel (Const struct cs_Eldef_ *elDef,int crypt);

 CS_putel writes the ellipsoid definition pointed to by the elDef argument to the ellipsoid dictionary. If
the crypt argument is non-zero, the definition is encrypted before writing. CS_putel returns a zero on
success, a negative value in the event of an error.

ERRORS

CS_putel uses CS_elupd for a majority of its functionality; the return value is primarily what CS_elupd
returns.

CS_un2d Units, Name TO Double
double CS_un2d (Const char *uname);

This function is now obsolete, being replaced by CS_unitlu. It is being maintained to provide
compatibility with previous releases only.

CS_un2d will return a double that represents the multiplier required to convert a value in the unit
system indicated by uname to units of meters. Uname must be a null terminated string defining one
of the supported units as defined in CSdataU.c. CS_un2d returns zero in the event the provided unit
name is not known.

For example, to convert a value in feet to meters, one could code:
double CS_un2d ();
{
 meters = feet * CS_un2d ("FOOT");
}

Or to convert meters to feet:
double CS_un2d ();
{
 feet = meters / CS_un2d ("FOOT");
}

CS_un2d knows about the first and second abbreviations provided for in the cs_Unittab_ structure.
Therefore, the following are equivalent to the above:

double CS_un2d ();
{
 meters = feet * CS_un2d ("FT");
}
double CS_un2d ();
{
 feet = meters / CS_un2d ("FT");
}

ERRORS

CS_un2d will return zero and set cs_Error to cs_INV_UNIT if the unit name pointed to by uname is
not defined in cs_Unittab.

CS842grf wgs 84 TO local Geodetic ReFerence system
int CS842grf (Const double ll_84,double ll_lcl,struct cs_Grfprm_ *grf);

 Chapter 4 Chatper 4 -- Library Functions 365

Given a properly initialized local geodetic reference system parameter block via the grf argument,
CS842grf will convert the geographic coordinate, i.e. latitude and longitude, provided in ll_84 to the
equivalent coordinates in the local geodetic reference system and return the results in ll_lcl. ll_84 and
ll_lcl may point to the same array. In both arrays, the first element is the longitude and second
element is the latitude. Latitudes and longitudes must in degrees relative to Greenwich where negative
values indicate south latitude and west longitude.

CS842grf returns FALSE if the conversion was correctly performed, else TRUE is returned.

ERRORS

CS842grf will return TRUE and set cs_Error appropriately if any of the following conditions are
encountered during the conversion:

cs_WGG_CNVRG The iterative calculation of the local geodetic coordinate
failed to converge after 6 iterations.

CSgrf284 local Geodetic ReFerence system TO wgs 84
int CSgrf284 (Const double ll_lcl [2],double ll_84 [2],struct cs_Grfprm_
*grf);

Given a properly initialized Geodetic Reference System parameter block via the grf argument,
CSgrf284 will convert the local geodetic reference system coordinates in the lcl_ll array to their
equivalent WGS 84 values and return the result in the ll_84 array. Both pointers may point to the
same array. In both arrays, the first element is the longitude and the second element is the latitude.
Latitudes and longitudes are given in degrees where negative values indicate south latitude and west
longitude.

CSgrf284 will use CS_mrcalc to calculate the new values if the provided cs_Grfprm_ structure has a
valid multiple regression formula initialized within it. If a multiple regression formula is not available, or
if the multiple regression calculation fails for any reason, CSgrf284 uses CS_mocalc or CS_bwcalc as is
appropriate to arrive at the desired result.

ERRORS

CSgrf284 will return zero to indicate that the conversion proceeded to a normal result; TRUE to indicate
that an error occurred. In the event of an error the global variable cs_Error will be set to
cs_MREG_RANGE in any case where a valid multiple regression formula did indeed exist, but the
location given by ll_lcl was outside of the domain of the multiple regression formula.

CSgrfinit local Geodetic ReFerence system INITialize
int CSgrfinit (Const struct cs_Csprm_ *csprm,grf,struct cs_Grfprm_ *grf);

Using the datum information contained in the datum element of the cs_Csprm_ structure provided by
the csprm argument, CSgrfinit will initialize the cs_Grfprm_ structure provided by the grf argument
for datum conversions. The initialized cs_Grfprm_ structure contains all the information necessary to

366 CS-MAP User's Guide User's Guide

convert geographic coordinates (i.e. latitude/longitude) between the datum described (i.e. the local
geodetic reference system) and WGS 84.

Depending on the information contained in the datum element, either the Molodensky form or the
Bursa/Wolfe form of the conversion is always initialized as a backup to the possible initialization of a
multiple regression formula. If a valid and appropriately named multiple regression formula definition
file is located in the directory indicated by the cs_Dir global variable (see CSdata.c), the multiple
regression conversion is also initialized.

ERRORS

CSgrfinit always returns FALSE to indicate that no error condition has been detected. It is possible that
future versions of CSgrfinit will return TRUE to indicate the existence of an error condition.

CSgeoidCls GEOID, CLoSe
void CSgeoidCls (void);

CSgeoidCls decrements the global variable csGeoidOpenCnt and, if the result is zero or less, closes
all open GEOID database files and free's the memory allocated to the GEOID file control block cache
and the GEOID grid cell cache.

CSgeoidInit increments the global variable csGeoidOpenCnt each time it is called. CSgeoidCls
decrements this count each time it is called. Resources are released only when csGeoidOpenCnt
reaches zero. Thus, resources are not released prematurely in processes where more than one geoid
height process is active at any given time.

Currently, CSgeoidCls does not free the memory allocated to the GEOID database directory. The
GEOID database directory does not require much memory (32 bytes per database) and is rather
expensive, computationally, to initialize. Therefore, this system resource is left alone by this function.
CSgeoidInit will not attempt to reinitialize the directory if the value of csGeoidDirP is not NULL. Non-
source licensees who find this objectionable can free the GEOID database directory directly (i.e.
CS_free (csGeoidDirP);). Be sure to set the value of csGeoidDirP to NULL and the value of
csGeoidDirM and csGeoidDirU to zero.

CSgeoiddbo GEOID, DataBase Open
extern int cs_Error;

Const struct csGeoidFcb_ *CSgeoiddbo (Const double ll_84 [2]);

The database for GEOID height calculations consists of several different files, each covering a specific
geographic area. CSgeoiddbo returns a pointer to a csGeoidFcb_ structure that provides access to
the appropriate GEIOD database file for the geographic region containing the coordinate indicated by
the ll_84 argument. Ll_84 must contain the longitude in the first element, and the latitude in the
second element. Both must be in degrees where negative values are used to indicate west and south.
This geographic coordinate is expected to be a WGS 84 geographic coordinate.

CSgeoiddbo searches the GEOID file control block cache to see if the required database file is already
open. If so, a pointer to it is returned after this block is made the most recently accessed (i.e. moved to
the top of the linked list). Otherwise, the appropriate GEOID file is opened and a pointer to the
resulting file control block is returned.

If a GEOID database file that covers the geographic region containing ll_84 cannot be found on the

 Chapter 4 Chatper 4 -- Library Functions 367

system, cs_Error is set to zero and the NULL pointer is returned. If the database open failed for
another reason, the NULL pointer will be returned but cs_Error will be set to indicate the nature of
the failure.

CSgeoiddbo is called by CSgeoidptr when CSgeoidptr needs to access a database to fetch a new grid
cell. It is not typically called by an application program directly. Should an application program need to
access this function directly, CSgeoidInit must be called prior to the first call to this function.

ERRORS

For failures due to causes other than the availability of appropriate data, CSgeoiddbo will return the
NULL pointer and set cs_Error as follows:

Cs_GEOID_NO_SETUP CSgeoidInit was not called prior to calling this function, or
the affect of calling CSgeoidInit was canceled by a call to
CSgeoidCls.

Cs_INV_FILE A required GEOID database file is corrupted beyond use.

Cs_GEOID_FILE A required GEOID database file that does exist could not be
opened.

CSgeoiddir GEOID, database DIRectory
Const struct csGeoidDir_ *CSgeoiddir (Const double ll_84 [2]);

CSgeoiddir returns a pointer to the csGeoidDir_ structure in the GEOID database file directory that
contains the grid cell required to convert the coordinate given by the ll_84 argument. The first element
of ll_84 must be the longitude of the coordinate to be converted; the second element must contain the
latitude. Both elements must be in degrees. Negative values are used to indicate west longitude and
south latitude. The geographic coordinate supplied by the ll_84 argument is expected to be a WGS 84
geographic coordinate.

In the event a database covering the specific location provided by the ll_84 argument cannot be
located, CSgeoiddir will set cs_Error to zero and return the NULL pointer.

CSgeoiddbo, upon determining that a GEOID database file system needs to be opened, calls
CSgeoiddir to determine the base name of the database required to convert a specific coordinate. The
GEOID database directory pointed to by csGeoidDirP contains a list of the base names of all GEOID
database files present on the system, and the geographic region covered by each.

Application programs do not normally call this function directly. Should an application need to do so,
CSgeoidInit must be called prior to the first call to this function.

ERRORS

CSgeoiddir will return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

368 CS-MAP User's Guide User's Guide

Cs_GEOID_NO_SETUP CSgeoidInit was not called prior to calling this
function, or the affect of calling CSgeoidInit was
canceled by a call to CSgeoidCls.

CSgeoidHgt GEOID HeiGhT
int CSgeoidHgt (Const double ll_84 [2],double *height);

 Given a WGS 84 based geographic coordinate via the ll_84 argument, CSgeoidHgt will return in the
double pointed to by the height argument the geoid height, in meters, at the indicated point. Some
prefer the term geoid separation to geoid height. Your application needs to call the CSgeoidInit
function once before calling CSgeoidHgt.

CSgeoidHgt will return a zero if it was successful, a -1 if a system error of some sort occurred, or a +1
to indicate that data for the specific location requested was not available. In any case, when
CSgeoidHgt returns a non-zero value, the height variable will be set to zero.

CSgeoidHgt relies on data files being present in the data directory. Currently, these data files must be
in the format used by the GEOID96 program published by the National Geodetic Service. In order to
extend the range of this function beyond that of US geography, additional file formats will be supported
in the future.

ERRORS

CSgeoidHgt will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered during the conversion:

Cs_GEOID_NO_SETUP CSgeoidInit was not called prior to calling this function, or
the affect of calling CSgeoidInit was canceled by a call to
CSgeoidCls.

Cs_INV_FILE A required GEOID96 database file is corrupted beyond use.

Cs_GEOID_FILE A required GEOID96 database file that does exist could not
be opened.

Cs_NO_MEM An operating system request for additional memory failed.

CSgeoidinit GEOID, INITialize
int CSgeoidInit (void);

CSgeoidInit causes the application program to be initialized for the computation of geoid heights.

CSgeoidInit, must be called prior to calling any other function in the group of functions related to geoid
height computation.

 Chapter 4 Chatper 4 -- Library Functions 369

CSgeoidinit will return a zero value to indicate that the geoid height computation system has been
properly initialized. A positive non-zero status is returned if the initialization failed due to a lack of data
files. A negative non-zero status is returned if the initialization failed due to a system error such as a
physical I/O error or insufficient memory.

CSgeoidInit allocates and initializes the GEOID database directory (csGeoidDirP), the GEOID file
control block cache (csGeoidFcb) and the GEOID grid cell cache (csGeoidGrdP). The effects of
CSgeoidInit upon system resources can be undone by calling CSgeoidCls.

CSgeoidInit may be called repeatedly without adverse affects. However, be aware that CSgeoidInit
increments the global variable csGeoidOpenCnt once each time it is called. CSgeoidCls decrements
this count and releases system resource only when the count reaches zero.

ERRORS

CSgeoidInit will return a negative non-zero value and set cs_Error to the indicated value should any
of the following conditions be encountered:

Cs_NO_MEM Insufficient memory is available to allocate the GEOID database
directory, the GEOID file control block cache, or the GEOID
grid cell cache.

CSgeoidptr GEOID, return grid cell PoinTeR
extern int cs_Error

Const struct csGeoidGrd_ *CSgeoidptr (Const double ll_84 [2]);

CSgeoidptr will return a pointer to a csGeoidGrd_ grid cell structure appropriate for use in computing
the geoid height at the location specified by the ll_27 argument. The NULL pointer is returned if a grid
cell for the coordinate could not be returned. If the cause of the failure was simple non-availability of
the data, cs_Error is set to zero. Otherwise, cs_Error will contain the appropriate error code
indicating the nature of the failure.

CSgeoidptr returns a pointer to an entry in the grid cell cache pointed to by csGeoidGrd after
recording the returned entry the most recently accessed by making it the first in the linked list.
Obviously, if the required grid cell does not already exist in the cache, it must be fetched from disk. In
so doing, CSgeoidptr always uses the last entry in the linked list that will always be the least recently
accessed grid cell. Therefore, repeated requests for the grid cell covering coordinates in the same
local geographic region will be satisfied with a minimum of disk I/O.

To a certain extent, increasing the number of entries in the grid cell cache will improve performance on
conversion projects that are large both geographically and in the number of points to be converted.
However, since the cache is searched linearly, a point of diminishing returns can be reached. The
number of grid cell cache entries is specified by the value contained in the csGeoidGrdCnt global
variable. This variable must be set to the desired value prior to the first call to CSgeoidInit.

CSgeoidptr is normally called by CSgeoidHgt to obtain the appropriate grid cell for each geoid height
computation. Applications do not normally call this function directly. Should an application need to

370 CS-MAP User's Guide User's Guide

access this function directly, CSgeoidInit must be called prior to the first call to this function.

ERRORS

CSgeoidptr will return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

Cs_GEOID_NO_SETUP CSgeoidInit was not called prior to calling this function, or
the affect of calling CSgeoidInit was canceled by a call to
CSgeoidCls.

Cs_INV_FILE A required GEOID database file is corrupted beyond use.

Cs_GEOID_FILE A required GEOID database file that does exist could not
be opened.

CShpg283 High Precision Gps network, 91 TO 83 conversion
int CShpg283 (Const double ll_91[2],double ll_83 [2],int blk_err);

Given latitude and longitude values (based on the High Precision GPS network) in the ll_91 array,
CShpg283 will return in the ll_83 array the North American Datum of 1983 equivalent values. Ll_91
and ll_83 may point to the same array. Latitude and longitude values must be given in degrees where
negative values are used to indicate south and west respectively. Longitude values are carried in the
first element in each array; latitude is carried in the second.

CShpg283 will return a zero if the requested conversion was successfully performed. Otherwise, the
ll_91 array is copied to the ll_83 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to that used by the National Geodetic Survey's
NADCON program. Therefore, the numerical results are identical to those of NADCON. NADCON is
the only known method of converting to/from High Precision GPS Network coordinates.

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtcvt which in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dtcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CShpginit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS_dtcvt causes the value
specified at the time of datum conversion set up to be passed to CShpg283. The valid values for this
argument are:

 Chapter 4 Chatper 4 -- Library Functions 371

cs_DTCFLG_BLK_I Errors caused by data availability are silently ignored and a
zero status value is returned.

cs_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS_erpt as a warning and a positive non-zero status value
returned.

cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CShpgbnf
and a positive non-zero status value returned. CShpgbnf
will suppress repeated error messages concerning the same
one degree by one degree block and suppress all such error
messages after 10 have been reported to CS_erpt. (Note,
CShpgbnf is also obsolete.)

cs_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS_erpt as a fatal error condition and a negative non-zero
status value returned.

The null conversion is always performed before any other processing is attempted. The null
conversion consists of simply copying ll_91 to ll_83.

ERRORS

CShpg283 will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered during the conversion:

cs_DTC_NO_SETUP CShpginit was not called prior to calling this function, or the
affect of calling CShpginit was canceled by a call to CShpgcls.

cs_HPGN_ICNT Nine iterations of the algorithm (ala NADCON) failed to
produce a result within acceptable tolerance.

cs_INV_FILE A required NADCON database file is corrupted beyond use.

cs_DTC_FILE A required NADCON database file that does exist could not
be opened.

cs_HPGN_CONS Two properly named files that are supposed to represent a
single HPGN database contain inconsistent information.

BUGS

The specifications for this function required a duplication of NADCON's functionality. Therefore, the
precision produced by this function is purposely limited to that provided by NADCON; i.e. precision is
limited to 9 decimal places.

372 CS-MAP User's Guide User's Guide

CShpg291 High Precision Gps network, (from 83) TO 91 conversion
int CShpg291 (Const double ll_83 [2],double ll_91 [2],intblk_err);

Given latitude and longitude values (based on the North American Datum of 1983) in the ll_83 array,
CShpg291 will return in the ll_91 array the High Precision GPS Network equivalent values. Ll_83 and
ll_91 may point to the same array. Latitude and longitude values must be given in degrees where
negative values are used to indicate south and west respectively. Longitude values are carried in the
first element in each array; latitude is carried in the second.

CShpg291 will return a zero if the requested conversion was successfully performed. Otherwise, the
ll_83 array is copied to the ll_91 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to the National Geodetic Survey's NADCON
program. Therefore, the numerical results are identical to NADCON (round off errors excepted).

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtcvt which in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dtcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CShpginit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS_dtcvt causes the value
specified at the time of datum conversion set up to be passed to CShpg291. The valid values for this
argument are:

cs_DTCFLG_BLK_I Errors caused by data availability are silently ignored and a
zero status value is to be returned.

cs_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS_erpt as a warning and a positive non-zero status value
returned.

cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CShpgbnf
and a positive non-zero status value returned. CShpgbnf
will suppress repeated error messages concerning the same
one degree by one degree block and suppress all such error
messages after 10 have been reported to CS_erpt.

cs_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS_erpt as a fatal error condition and a negative non-zero
status value returned.

ERRORS

CShpg291 will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered:

 Chapter 4 Chatper 4 -- Library Functions 373

cs_DTC_NO_SETUP CShpginit was not called prior to calling this function, or
the affect of calling CShpginit was canceled by a call to
CShpgcls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_HPGN_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent
information.

CShgndbo High Precision Gps network, DataBase Open
extern int cs_Error;

Const struct csNadfcb_ *CShgndbo (Const double ll_83 [2]);

The database for NADCON datum conversions consists of several different file systems, each covering
a specific geographic area and consisting of two separate files. CShgndbo returns a pointer to a
csNadfcb_ structure which provides access to the appropriate HPGN database file system for the
geographic region containing the coordinate indicated by the ll_83 argument. Note that this location is
expected to be based on the North American Datum of 1983. Ll_83 must contain longitude in the first
element, and latitude in the second element. Both must be in degrees where negative values are used
to indicate west and south.

CShgndbo searches the HPGN file control block cache to see if the required database file system is
already open. If so, a pointer to it is returned after this block is made the most recently accessed (i.e.
moved to the top of the linked list). Otherwise, the appropriate HPGN file system is opened and a
pointer to the resulting file control block is returned.

If a HPGN database file system that covers the geographic region containing ll_83 cannot be found on
the system, cs_Error is set to zero and the NULL pointer is returned. If the database open failed for
another reason, the NULL pointer will be returned but cs_Error will be set to indicate the nature of
the failure.

CShgndbo is called by CShgnptr when CShgnptr needs to access a database to fetch a new grid cell. It
is not typically called by an application program directly. Should an application program need to
access this function directly, CShgninit must be called prior to the first call to this function.

ERRORS

For failures due to causes other than the availability of appropriate data, CShgndbo will return the
NULL pointer and set cs_Error as follows:

374 CS-MAP User's Guide User's Guide

cs_DTC_NO_SETUP CShgninit was not called prior to calling this function, or
the affect of calling CShgninit was canceled by a call to
CShgncls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent
information.

CShpgdir High Precision Gps network database DIRectory
Const struct csNaddir_ *CShpgdir (Const double ll_83 [2]);

CShpgdir returns a pointer to the csNaddir_ structure in the HPGN database file directory that
contains the grid cell required to convert the coordinate given by the ll_83 argument. The content of
the ll_83 array is expected to be a longitude latitude pair based on the North American Datum of 1983.
The first element of ll_83 must be the longitude of the coordinate to be converted; the second element
must contain the latitude. Both elements must be in degrees. Negative values are used to indicate
west longitude and south latitude.

In the event a database covering the specific location provided by the ll_83 argument cannot be
located, CShpgdir will set cs_Error to zero and return the NULL pointer.

CShpgdbo, upon determining that a HPGN database file system needs to be opened, calls CShpgdir to
determine the base name of the database required to convert a specific coordinate. The HPGN
database directory pointed to by csHpgdirP contains a list of the base names of all HPGN database
file systems present on the system, and the geographic region covered by each.

Application programs do not normally call this function directly. Should an application need to do so,
CShpginit must be called prior to the first call to this function.

ERRORS

CShpgdir will return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

cs_DTC_NO_SETUP CShpginit was not called prior to calling this function, or the
affect of calling CShpginit was canceled by a call to CShpgcls.

 Chapter 4 Chatper 4 -- Library Functions 375

CShpginit High Precision Gps network, INITialize
int CShpginit (void);

CShpginit causes the application program to be initialized for the conversion of coordinates based on
the North American Datum of 1983 (NAD83) to coordinates based on the High Precision GPS Network
(HPGN), also known as High Accuracy Reference Network (HARN), NAD83/91, and NAD83/92.

CShpginit is not usually called directly by application code. CShpginit is usually called by CS_dtcsu
when a datum conversion involving HPGN to NAD83 or NAD83 to HPGN is requested. Applications
which access CShpg283, CShpg291, CShpgptr, CShpgdbo, or CShpgdir directly will need to call this
function prior to the first call to any of these functions.

CShpginit will return a zero value to indicate that the NAD83 to HPGN (or vice versa) conversion has
been properly initialized. A positive non-zero status is returned if the initialization failed due to a lack of
data files. A negative non-zero status is returned if the initialization failed due to a system error such
as a physical I/O error or insufficient memory.

CShpginit allocates and initializes the NADCON database directory (csHpgdirP), the HPGN file
control block cache (csHpgfcbP), and the HPGN grid cell cache (csHpggrdP). The effects of
CShpginit upon system resources can be undone by calling CShpgcls.

CShpginit may be called repeatedly without adverse affects. However, be aware that CShpginit
increments the global variable csHpgcnt once each time it is called. CShpgcls decrements this count
and releases system resource only when the count reaches zero.

ERRORS

CShpginit will return a negative non-zero value and set cs_Error to the indicated value should any of
the following conditions be encountered:

cs_NO_MEM Insufficient memory is available to allocate the HPGN database
directory, the HPGN file control block cache, or the HPGN grid
cell cache.

CShpgptr High Precision Gps network, return grid cell PoinTeR
extern int cs_Error

Const struct csNadgrd_ *CShpgptr (Const double ll_83 [2]);

CShpgptr will return a pointer to a csNadgrd_ grid cell structure appropriate for use in converting the
coordinate given by the ll_83 argument. The NULL pointer is returned if a grid cell for the coordinate
could not be returned. If the cause of the failure was simple non-availability of the data, cs_Error is
set to zero. Otherwise, cs_Error will contain the appropriate error code indicating the nature of the
failure.

CShpgptr returns a pointer to an entry in the grid cell cache pointed to by csHpggrdP after recording
the returned entry as the most recently accessed by making it the first in the linked list. Obviously, if

376 CS-MAP User's Guide User's Guide

the required grid cell does not already exist in the cache, it must be fetched from disk. In so doing,
CShpgptr always uses the last entry in the linked list that will always be the least recently accessed grid
cell. Therefore, repeated requests for the grid cell covering coordinates in the same local geographic
region will be satisfied with a minimum of disk I/O.

To a certain extent, increasing the number of entries in the grid cell cache will improve performance on
conversion projects that are large both geographically and in the number of points to be converted.
However, since the cache is searched linearly, a point of diminishing returns can be reached. The
number of grid cell cache entries is specified by the value contained in the csHpgccnt (see
Csdcdata.c) global variable. This variable must be set to the desired value prior to the first call to
CS_dtcsu.

CShpgptr is normally called by CShpg283 to obtain the appropriate grid cell for each coordinate to be
converted. Applications do not normally call this function directly. Should an application need to
access this function directly, CShpginit must be called prior to the first call to this function.

ERRORS

CShpgptr will return the NULL pointer and set cs_Error to the indicated value should any of the
following conditions be encountered:

cs_DTC_NO_SETUP CShpginit was not called prior to calling this function, or
the affect of calling CShpginit was canceled by a call to
CShpgcls.

cs_INV_FILE A required HPGN database file is corrupted beyond use.

cs_DTC_FILE A required HPGN database file that does exist could not be
opened.

cs_HPGN_CONS Two properly named files that are supposed to represent a
single HPGN database contain inconsistent information.

CSnad227 North American Datum, 83 TO 27 conversion
int CSnad227 (Const double ll_83 [2],double ll_27 [2],int blk_err);

Given latitude and longitude values (based on the North American Datum of 1983) in the ll_83 array,
CSnad227 will return in the ll_27 array the 1927 datum equivalent values. Ll_83 and ll_27 may point to
the same array. Latitude and longitude values must be given in degrees where negative values are
used to indicate south and west respectively. Longitude values are carried in the first element in each
array; latitude is carried in the second.

CSnad227 will return a zero if the requested conversion was successfully performed. Otherwise, the
ll_83 array is copied to the ll_27 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to that used by the National Geodetic Survey's
NADCON program. Therefore, the numerical results are identical to those of NADCON. NADCON is
rapidly being accepted as the standard for NAD27 to NAD83 conversion (and vice versa).

 Chapter 4 Chatper 4 -- Library Functions 377

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtcvt which in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dtcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CSnadinit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS_dtcvt causes the value
specified at the time of datum conversion set up to be passed to CSnad227. The valid values for this
argument are:

cs_DTCFLG_BLK_I Errors caused by data availability are silently ignored and a
zero status value is returned.

 cs_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS_erpt as a warning and a positive non-zero status value
returned.

cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CSdtcbnf
and a positive non-zero status value returned. CSdtcbnf will
suppress repeated error messages concerning the same one
degree by one degree block and suppress all such error
messages after 10 have been reported to CS_erpt.

cs_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS_erpt as a fatal error condition and a negative non-zero
status value returned.

The null conversion is always performed before any other processing is attempted. The null
conversion consists of simply copying ll_83 to ll_27.

ERRORS

CSnad227 will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered during the conversion:

378 CS-MAP User's Guide User's Guide

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or the
affect of calling CSnadinit was canceled by a call to CSnadcls.

cs_NADCON_ICNT Nine iterations of the algorithm (ala NADCON) failed to
produce a result within acceptable tolerance.

cs_INV_FILE A required NADCON database file is corrupted beyond use.

cs_DTC_FILE A required NADCON database file that does exist could not
be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent information.

BUGS

The specifications for this function required a duplication of NADCON's functionality. Therefore, the
precision produced by this function is purposely limited to that provided by NADCON; i.e. precision is
limited to 9 decimal places.

CSnad283 North American Datum, (from 27) TO 83 conversion
int CSnad283 (Const double ll_27 [2],double ll_83 [2],int blk_err);

Given latitude and longitude values (based on the North American Datum of 1927) in the ll_27 array,
CSnad283 will return in the ll_83 array the 1983 datum equivalent values. Ll_27 and ll_83 may point to
the same array. Latitude and longitude values must be given in degrees where negative values are
used to indicate south and west respectively. Longitude values are carried in the first element in each
array; latitudes are carried in the second.

CSnad283 will return a zero if the requested conversion was successfully performed. Otherwise, the
ll_27 array is copied to the ll_83 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to the National Geodetic Survey's NADCON
program. Therefore, the numerical results are identical to NADCON (round off errors excepted).
NADCON is rapidly being accepted as the standard for NAD27 to NAD83 conversions.

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtcvt which in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dtcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CSnadinit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS_dtcvt causes the value
specified at the time of datum conversion set up to be passed to CSnad283. The valid values for this
argument are:

 Chapter 4 Chatper 4 -- Library Functions 379

cs_DTCFLG_BLK_I Errors caused by data availability are silently ignored and
a zero status value is to be returned.

cs_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS_erpt as a warning and a positive non-zero status value
returned.

 cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CSdtcbnf
and a positive non-zero status value returned. CSdtcbnf
will suppress repeated error messages concerning the
same one degree by one degree block and suppress all
such error messages after 10 have been reported to
CS_erpt.

cs_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS_erpt as a fatal error condition and a negative non-zero
status value returned.

ERRORS

CSnad283 will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered:

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or the
affect of calling CSnadinit was canceled by a call to CSnadcls.

cs_INV_FILE A required NADCON database file is corrupted beyond use.

cs_DTC_FILE A required NADCON database file that does exist could not
be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent information.

CSnad83284 NAD-83 TO wgs 84
int CSnad83284 (Const double ll_83 [2],double ll_84 [2]);

Currently, CSnad83284 simply copies the latitude and longitude in the ll_83 array to the ll_84 array and
returns FALSE to indicate that it did so successfully.

There are differences between NAD83 and WGS 84. However, both are very accurate measurements
of the same thing. Therefore, the differences are slight and are within the tolerance of error associated
with WGS-84. Currently, there are no generally accepted techniques for converting one to the other.
This function is a hook to provide such a conversion should a generally recognized technique become
available in the future.

380 CS-MAP User's Guide User's Guide

ERRORS

CSnad83284 returns FALSE to indicate success. Future versions may return TRUE to indicate an error
condition of some sort.

CSnadcls North American Datum, CLoSe
void CSnadcls (void);

CSnadcls decrements the global variable csNadcnt and, if the result is zero or less, closes all open
NADCON database files and free's the memory allocated to the NADCON file control block cache and
the NADCON grid cell cache.

CSnadinit increments the global variable csNadcnt each time it is called. CSnadcls decrements this
count each time it is called. Resources are released only when csNadcnt reaches zero. Thus,
resources are not released prematurely in processes where more than one datum conversion process
is active at any given time.

Currently, CSnadcls does not free the memory allocated to the NADCON database directory. The
NADCON database directory does not require much memory (32 bytes per database) and is rather
expensive, computationally, to initialize. Therefore, this system resource is left alone by this function.
CSnadinit will not attempt to reinitialize the directory if the value of csNaddirP is not NULL. Non-
source licensees who find this objectionable can free the NADCON database directory directly (i.e. free
(csNaddirP);). Be sure to set the value of csNaddirP to NULL and the value of csNaddirM and
csNaddirU to zero.

CSnaddbo North American Datum, DataBase Open
extern int cs_Error;

Const struct csNadfcb_ *CSnaddbo (Const double ll_27 [2]);

The database for NADCON datum conversions consists of several different file systems, each covering
a specific geographic area and consisting of two separate files. CSnaddbo returns a pointer to a
csNadfcb_ structure that provides access to the appropriate NADCON database file system for the
geographic region containing the coordinate indicated by the ll_27 argument. Ll_27 must contain
longitude in the first element, and latitude in the second element. Both must be in degrees where
negative values are used to indicate west and south.

CSnaddbo searches the NADCON file control block cache to see if the required database file system is
already open. If so, a pointer to it is returned after this block is made the most recently accessed (i.e.
moved to the top of the linked list). Otherwise, the appropriate NADCON file system is opened and a
pointer to the resulting file control block is returned.

If a NADCON database file system that covers the geographic region containing ll_27 cannot be found
on the system, cs_Error is set to zero and the NULL pointer is returned. If the database open failed
for another reason, the NULL pointer will be returned but cs_Error will be set to indicate the nature of
the failure.

CSnaddbo is called by CSnadptr when CSnadptr needs to access a database to fetch a new grid cell. It
is not typically called by an application program directly. Should an application program need to
access this function directly, CSnadinit must be called prior to the first call to this function.

 Chapter 4 Chatper 4 -- Library Functions 381

ERRORS

For failures due to causes other than the availability of appropriate data, CSnaddbo will return the NULL
pointer and set cs_Error as follows:

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or
the affect of calling CSnadinit was canceled by a call to
CSnadcls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent
information.

CSnaddir NADcon database DIRectory
Const struct csNaddir_ *CSnaddir (Const double ll_27 [2]);

CSnaddir returns a pointer to the csNaddir_ structure in the NADCON database file directory that
contains the grid cell required to convert the coordinate given by the ll_27 argument. The first element
of ll_27 must be the longitude of the coordinate to be converted; the second element must contain the
latitude. Both elements must be in degrees. Negative values are used to indicate west longitude and
south latitude.

In the event a database covering the specific location provided by the ll_27 argument cannot be
located, CSnaddir will set cs_Error to zero and return the NULL pointer.

CSnaddbo, upon determining that a NADCON database file system needs to be opened, calls CSnaddir
to determine the base name of the database required to convert a specific coordinate. The NADCON
database directory pointed to by csNaddirP contains a list of the base names of all NADCON
database file systems present on the system, and the geographic region covered by each.

Application programs do not normally call this function directly. Should an application need to do so,
CSnadinit must be called prior to the first call to this function.

ERRORS

CSnaddir will return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

382 CS-MAP User's Guide User's Guide

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or
the affect of calling CSnadinit was canceled by a call to
CSnadcls.

CSnadinit North American Datum, INITialize
int CSnadinit (void);

CSnadinit causes the application program to be initialized for the conversion of coordinates based on
the North American Datum of 1927 (NAD27) to coordinates based on the North American Datum of
1983 (NAD83).

CSnadinit is not usually called directly by application code. CSnadinit is usually called by CS_dtcsu
when a datum conversion involving NAD27 to NAD83 or NAD83 to NAD27 is requested. Applications
which access CSnad227, CSnad283, CSnadptr, CSnaddbo, or CSnaddir directly will need to call this
function prior to the first call to any of these functions.

CSnadinit will return a zero value to indicate that the NAD27 to NAD83 (or vice versa) conversion has
been properly initialized. A positive non-zero status is returned if the initialization failed due to a lack of
data files. A negative non-zero status is returned if the initialization failed due to a system error such
as a physical I/O error or insufficient memory.

CSnadinit allocates and initializes the NADCON database directory (csNaddirP), the NADCON file
control block cache (csNadfcb) and the NADCON grid cell cache (csNadgrd). The effects of
CSnadinit upon system resources can be undone by calling CSnadcls.

CSnadinit may be called repeatedly without adverse affects. However, be aware that CSnadinit
increments the global variable csNadcnt once each time it is called. CSnadcls decrements this count
and releases system resource only when the count reaches zero.

ERRORS

CSnadinit will return a negative non-zero value and set cs_Error to the indicated value should any of
the following conditions be encountered:

cs_NO_MEM Insufficient memory is available to allocate the NADCON
database directory, the NADCON file control block cache, or
the NADCON grid cell cache.

CSnadptr North American Datum, return grid cell PoinTeR
extern int cs_Error

Const struct csNadgrd_ *CSnadptr (Const double ll_27 [2]);

CSnadptr will return a pointer to a csNadgrd_ grid cell structure appropriate for use in converting the
coordinate given by the ll_27 argument. The NULL pointer is returned if a grid cell for the coordinate

 Chapter 4 Chatper 4 -- Library Functions 383

could not be returned. If the cause of the failure was simple non-availability of the data, cs_Error is
set to zero. Otherwise, cs_Error will contain the appropriate error code indicating the nature of the
failure.

CSnadptr returns a pointer to an entry in the grid cell cache pointed to by csNadgrd after recording the
returned entry the most recently accessed by making it the first in the linked list. Obviously, if the
required grid cell does not already exist in the cache, it must be fetched from disk. In so doing,
CSnadptr always uses the last entry in the linked list that will always be the least recently accessed grid
cell. Therefore, repeated requests for the grid cell covering coordinates in the same local geographic
region will be satisfied with a minimum of disk I/O.

To a certain extent, increasing the number of entries in the grid cell cache will improve performance on
conversion projects that are large both geographically and in the number of points to be converted.
However, since the cache is searched linearly, a point of diminishing returns can be reached. The
number of grid cell cache entries is specified by the value contained in the csNadccnt (see
CSdcdata.c) global variable. This variable must be set to the desired value prior to the first call to
CS_dtcsu.

CSnadptr is normally called by CSnad283 to obtain the appropriate grid cell for each coordinate to be
converted. Applications do not normally call this function directly. Should an application need to
access this function directly, CSnadinit must be called prior to the first call to this function.

ERRORS

CSnadptr will return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or
the affect of calling CSnadinit was canceled by a call to
CSnadcls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent
a single NADCON database contain inconsistent
information.

 385

In this chapter the several data modules are defined. Most all static data constants are defined in the
modules which do not contain any executable code.

CSdata -- general DATA module
extern char cs_Dir [];
extern char *cs_DirP;
extern char cs_DirsepC;
extern char cs_OptchrC;
extern char cs_ExtsepC;
extern int cs_Sortbs;
extern int cs_Error, cs_Errno;
extern int csErrlat, csErrlng;
extern char cs_Csname[];
extern char cs_Dtname[];
extern char cs_Elname[];
extern char cs_Envvar [];
extern char csErrnam [];
extern double cs_AnglTest;
extern double cs_AnglTest1;
extern double cs_SclInf;
extern double cs_MinLat, MaxLat;
extern double cs_MinLng, MaxLng;
extern double cs_MinLatFz, MaxLatFz;
extern double cs_MinLngFz, MaxLngFz;
extern double cs_NPTest, cs_SPTest;
extern double cs_EETest, cs_WETest;
extern struct cs_Grptbl_ cs_CsGrptbl [];
extern char cs_Mentor [];
extern short cs_Protect;
extern char cs_Unique;

CSdata is the module in which these global variables are defined and initialized to an appropriate value.
This module contains no executable code.

cs_Dir

This character array must always contain the path to the directory in which all Coordinate System
Mapping Package data files reside. This name must end with directory separator character.

cs_DirP

This character pointer must point to the character that immediately follows the directory separator
character that follows the last directory name in cs_Dir. That is, cs_Dir and cs_DirP must be
initialized at all times such that the following code will produce access to any specific Coordinate
System Mapping Package data file:

C H A P T E R 5

Chapter 5 -- Data Modules

386 CS-MAP User's Guide User's Guide

extern char cs_Dir [];
extern char *cs_DirP;
{
 (void) strcpy (cs_DirP,"file_name");
 fd = open (cs_Dir,O_MODE);
}

Setting cs_Dir and cs_DirP up properly is very simple using CS_stcpy. For example:
cs_DirP = CS_stcpy (cs_Dir,"C:\\MAPPING\\");

 cs_DirsepC

This character variable contains the directory separator character in use on the executing system.

cs_OptchrC

This character variable contains the command line option character in use on the executing system.

cs_ExtsepC

This character variable contains the extension separator character in use on the executing system.

cs_Error cs_Errno

Prior to returning a failed status code (i.e. either -1, TRUE, or the NULL pointer as the case may be)
each function sets cs_Error to a code value indicating the specific nature of the problem. The value
of the system's errno is saved in the cs_Errno variable. Neither of these variables should be
examined unless a function has returned a failed status indication. The specific code values used to
identify specific causes of failure are defined in the cs_map.h file.

csErrlng csErrlat

These integer variables are used to communicate the integer portion of the latitude and longitude of
datum conversion data availability errors to CS_erpt. In this manner, the specific geographic area for
which coverage doesn't exist can be reported to the user.

cs_Csname

This array carries the Coordinate System Dictionary file name that is currently in use.

cs_Dtname

This array carries the Datum Dictionary file name that is currently in use.

cs_Elname

This array carries the Ellipsoid Dictionary file name that is currently in use.

cs_Envvar

This array carries the environmental variable name currently which CS_altdr will use when extracting a
directory path from the environment.

csErrnam

 Chapter 5 Chapter 5 -- Data Modules 387

The name that precipitated certain error conditions is communicated to the error function through this
globally defined character array. For example, when a file open fails, the name of the file is copied to
this array before CS_erpt is called.

 Mathematical Constants

Several mathematical constants, used throughout CS_MAP are declared globally here to reduce data
and code space requirements. Some of these deserve special note:

cs_NPTest, cs_SPTest

These doubles are used to test for proximity to the north and south poles, respectively. Both values
are in radians and are 0.001 arc seconds short of the respective pole.

cs_EETest, cs_WETest

These doubles are used to test for proximity to the singularity points of transverse projections. Read
EETest as eastern extent test value, and WETest as the western extent test value. These values are in
radians and are 0.001 seconds of arc short of ±/2.

cs_AnglTest, cs_AnglTest1

cs_AnglTest is set to 0.001 seconds of arc in radians. In many cases, especially geographic
coordinates, absolute values less than this are considered zero. cs_AnglTest1 is 1.0 minus
cs_AnglTest.

cs_SclInf

This double is set to 9.999E+04, and is the value returned by scale functions when the true result
would otherwise require a division by zero.

cs_MinLat, cs_MaxLat

These doubles are used, primarily, to test coordinate system definition parameters. They contain -90
and +90 degrees, respectively.

cs_MinLng, cs_MaxLng

These doubles are used, primarily, to test coordinate system definition parameters. They contain -180
and +180 degrees, respectively.

cs_MinLatFz, cs_MaxLatFz

These doubles are used, primarily, to test coordinate system definition parameters. In degrees, they
represent values which are 0.01 seconds of arc short of ±90.

cs_MinLngFz, cs_MaxLngFz

These doubles are used, primarily, to test coordinate system definition parameters. In degrees, they
represent values which are 0.01 seconds of arc short of ±180.

388 CS-MAP User's Guide User's Guide

cs_SclRedMin, cs_SclRedMax

These doubles carry the minimum and maximum values of scale reduction which the coordinate
system definition check functions (i.e. the projection Q functions) will accept. Note, that these values
are set to accept values equal to, and slightly greater than, 1.0. Such values are occasionally used.

cs_DelMax, cs_RotMax, cs_SclMax

These doubles carry the maximum values allowed for Molodensky, Seven Parameter, and Bursa/Wolf
datum conversions. cs_Delmax, cs_RotMax, and cs_SclMax are the maximum values allowed for
translation, rotation, and scaling respectively.

cs_Protect

This variable controls how the dictionary protection system operates. Set this variable to -1 to disable
the entire protection scheme. Set this variable to zero to enable the protection of distribution
definitions, but to disable the protection of user defined definitions. A value greater than zero indicates
the number of days after which an unchanged user definition becomes protected.

Mentor distributions have this variable set to 60. This implies that a user defined definition which
remains unaltered for 60 days automatically becomes protected and cannot be deleted or further
modified.

Note, for the purpose of this feature, a distribution system is defined as one produced by the Dictionary
compiler. (Actually, any definition whose protect member is set to +1.)

cs_Unique

CS-MAP normally requires that the key names applied to user defined dictionary entries contain the
colon character in the key name somewhere. Since Mentor never generates a definition with a key
name containing a colon, user definitions are unambiguously defined using this technique. Thus, the
update procedure will never cause a user definition to be replaced with a distribution system. This
feature is controlled by the value of this global variable.

cs_Unique carries the character which is actually used for this purpose. If you like this feature, but
prefer a different character, simply change the character to which this variable is set. If you don't like
this feature, setting the value of this variable to '\0', i.e. the null character, essentially disables the entire
feature.

Coordinate System Group Table

The coordinate system group table is initialized in this module. It consists of an array of cs_Grptbl_
structures, terminated by an entry that has the null string as a group name. The group table performs
two functions. First, presence of an entry in this table makes a specific group name valid. Second, it
associates a descriptive string with the group name.

CSdataPJ -- DATA, ProJection table
extern struct cs_Prjtab_ cs_Prjtab [];
extern struct cs_PrjprmMap_ cs_PrjprmMap [];

 Chapter 5 Chapter 5 -- Data Modules 389

extern struct cs_Prjprm_ cs_Prjprm [];

CSdataPJ carries the definition and initialization of the projection table used within the Coordinate
System Mapping Package. This module contains no executable code. The projection table assigns a
code name to each supported projection and associates this name with a setup function and a
projection code number.

The table also includes a full textual name for each projection, a numeric code which will uniquely
identify each projection, and a bit mapped flag word which will provide information specific to each
projection. The meaning of each bit in the flag word is defined by manifest constants in cs_map.h. It is
this flag word that is copied to the cs_Csprm_ structure when a coordinate system definition is
initialized by CS_csloc. The manifest constants and their meaning are:

390 CS-MAP User's Guide User's Guide

cs_PRJFLG_SPHERE a spherical form of this projection is
supported.

cs_PRJFLG_ELLIPS an ellipsoidal form of this projection
is supported.

cs_PRJFLG_SCALK analytical K scale is available

cs_PRJFLG_SCALH analytical H scale is available.

cs_PRJFLG_CNFRM projection is generally considered to
be conformal.

cs_PRJFLG_EAREA projection is generally considered to
be equal area.

cs_PRJFLG_EDIST projection is generally considered to
be equidistant.

cs_PRJFLG_AZMTH projection is generally considered to
be azimuthal.

cs_PRJFLG_GEOGR projection returns geographic
coordinates (i.e. Unity).

cs_PRJFLG_OBLQ oblique projection.

cs_PRJFLG_TRNSV transverse projection.

cs_PRJFLG_PSEUDO generally considered a pseudo
projection, i.e. pseudo cylindrical.

cs_PRJFLG_INTR projection is interruptable..

cs_PRJFLG_CYLND generally considered cylindrical.

cs_PRJFLG_CONIC generally considered to be a conic.

cs_PRJFLG_FLAT generally considered to be an
azimuthal (i.e. flat plane).

cs_PRJFLG_OTHER something other than cylindrical,
conic, or azimuthal.

cs_PRJFLG_SCLRED the projection requires the
specification of scale reduction.

cs_PRJFLG_ORGFLS the projection does not use either
false origin feature.

 Chapter 5 Chapter 5 -- Data Modules 391

cs_PRJFLG_ORGLAT the projection does not use the origin
latitude parameter.

cs_PRJFLG_ORGLNG the projection does not use the origin
longitude parameter.

To add new projections to the system, one adds an entry to this table providing the name that is to be
used to reference the projection and the setup module to be called to prepare for the use of the
projection. Of course, one must code the setup function and its companions.

The cs_PrjprmMap array defines the use of all 31 (currently) parameters for each of the 38 supported
projections. Each of the definitions consists of an index into the cs_Prjprm array described next.

The cs_Prjprm_ array carries a definition for each of the (currently 31) different parameter types
used in coordinate system definitions. For example, a "Northern Standard Parallel" parameter may be
used in four or more projections, but is defined once in this array.

At times, such as our own dictionary compiler CS_COMP, it is desirable to have access to portions of
the projection table, without incurring the penalty of having the entire repertoire of CS-MAP projection
functions added to your executable module. You may now compile CSdataPJ with the
__NO_SETUP__ manifest constant defined and obtain a projection table with the NULL pointer for all
setup functions. Similarly, compiling with __NO_QCHK__ defined will provide NULL pointers for the
projection check functions. Combining the two will provide a projection table suitable for, as an
example, checking projection names without referencing any other code.

CSdataU -- DATA module, Units table
extern struct cs_Unittab_ cs_Unittab [];

The units table, i.e. that which enables CS_unitlu to perform its function in life, is defined in this module.
This module contains no executable code. An entry appears in the table for each supported unit, and
each unit is classified as being of the length or angular type. The table has provisions for a full name
and an abbreviation for each supported unit. The factor for each entry must be the multiplier required
to convert values in the units being defined to meters or degrees.

The table is terminated by an entry with a zero type value. The string " z" (i.e. space lowercase z) is
used to indicate that an abbreviation entry is not to be used. The table is searched linearly, so the
order of entries is, currently, unimportant.

Currently supported linear and angular units of length are listed in the tables given below. Check the
source module for the latest unit definitions. Of course, you can add additional units by simply making
a new table entry and recompiling.

Note, as of release 11, the table has been modified such that it includes the plural name of the unit (i.e.
FEET in addition to FOOT) and also classifies each linear unit as belonging to the metric or english
class of units.

392 CS-MAP User's Guide User's Guide

Name Abbreviation Description

 Meter MT Meter

Foot FT US Survey Foot

Inch IN US Survey Inch

Ifoot IFT International Foot

ClarkeFoot Clarke's Foot

Iinch IIN International Inch

Centimeter CM Centimeter

Kilometer KM Kilometer

Yard YD English Yard

 SearsYard Sears Yard

Mile MI US Survey Statue
Mile

Iyard IYD International Yard

Imile IMI International Mile

Knot KT Nautical Mile

NautM NM Nautical Mile

Decimeter DM Decimeter

Millimeter KM Millimeter

Decameter Decameter

Hectometer Hectometer

GermanMeter German Legal Meter

CaGrid Canadian Grid Unit

GunterChain Chain, Gunter

ClarkeChain Chain, Clarke

 Chapter 5 Chapter 5 -- Data Modules 393

BenoitChain Chain, Benoit

SearsChain Chain,Sears

GunterLink Link, Gunter

ClarkeLink Link, Clarke

BenoitLink Link, Benoit

SearsLink Link, Sears

Rod Rod

Perch Perch

Pole Pole

Furlong Furlong

Rood South African Rood

CapeFoot Cape Foot

Brealey Brealey Unit

Supported Linear Units

394 CS-MAP User's Guide User's Guide

Name Abbreviation Description

DEGREE DG Degrees

GRAD GR. Grad

GRADE GR. Grad

MAPINFO MI Degrees * 1,000,000 for MapInfo

MIL 6400 mils = 1 degree

MINUTE MN 1/60th of a degree

RADIAN RD 57.295.... degrees

SECOND SEC 1/3600th of a degree

DECISECOND 1/10th of a second of arc

CENTISECOND 1/100th of a second of arc

MILLISECOND 1/1,000 of a second of arc

Supported Angular Units

