User's Guide

CS-MAP User's Guide

Copyright (c) 2008, Autodesk, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

= Redistributions of source code must retain the above copyright notice, thislist of conditions and the
following disclaimer.

= Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

= Neither the name of the Autodesk, Inc. nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS DOCUMENTATION AND THE SOFTWARE IT DOCUMENTS IS PROVIDED BY Autodesk, Inc. “AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL Autodesk, Inc. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Printed on 20 March, 2009

Contents

Chapter 1 Chapter 1 -- Distribution/Release Notes 9
CUITENE MANUBI SEBLUScoeeeeeiesieeiesieeie ettt e e ee e sbe st e s aeeseeneeneenteseesbesaeeaeeseeneenseseensessennens 10
LI L= D IE] o 1011 o o T USSR 12

FgTe 100 (o] B = oi (o] YU 13
LiDrary SOUIFCE COOE.ccueiueriirieiie ettt sttt st e b et ae e e e e beseesb e s besaeeae e e anteseesbesaeens 13
Dictionary Source Code and Dalal..........ccceieeerieeieiieieie s stee e eee e sre s e sresre e eaeeaesaestesresresneens 14
Test SOUrCE COUE ANA DBIAevevereieeieriiieiesiee sttt sttt bt sbe e e srensens 15
(Do Twlaal=alr= (1o A 1 = vt (o] Y 16
[z = U 1= o (oY 16
IMBKE PIrOCEAUIE.......cviieieteiteeete ettt sttt sttt stk st be e et ese e et e se et et e sbe e ebeseenenbeneas 16
REIEaSE NOESTOr CSIMAP 12 ...ttt se e be e s besaeeteseesrenne e 20
Chapter 2 Chapter 2 -- Descriptions and Discussion 21
(@ YT USSP 21
Ea TR 2 (o OSSPSR 22
High LEVEl INTEITACE.eceeie et sttt s e e b e e ae e e e e renrenne e 22
Coordinate SYyStEM DiCHIONANYccceiiieeetireeiereere et rae st e st e e sresresreese e s etestesrestesresrenseans 23
(@11 g 1= 0 = o= SRS 24
(@11 g Do To] 0= =SSR 24
Cartographic vs. Geodetic Referencing of Coordinate SyStemS.........ccccveveveveerieseniese e seseeeeeens 25
Latitudes and LONGITUAES.........coeiveuiriirieiieie ettt st st sb e s sre e 26
COOMTINGLE ATTEY'S ...ttt sttt sttt e ettt s et e st b e s e e st sb e e st s b et e be s bt s e st e bt s e bt s b e s eb e s b e b e e eneneenes 27
SElECLEA SOUMCE COUB.....c.eeeeieieeieiesies ettt sttt et e e seesbesbesaeeseeneeneeneenteseeneenneans 28
NAMING CONVENTIONSeiiiieitiete ettt e st eae e e e se e beseeebesaeebeeae e e aseeseebesaeebesaeeaeese et eneeseesbeseens 28
[N F= T ST @0 L TR o oSSR 28
ProjeCtion COOE NBIMIES........oiuiiiie ittt se s bt bt ettt se e b e b e bt eae e e e s e seesbe e ns 30
[TTe N I Y= I g1 = g ot TP 32
Basic Coordinate CONVErSION == CS CNVIM.....ccccuiiiiiiiiieceeeeiese e se et e e et sre e s sre e eneenes 33
Grid SCale FaCtOr -- CS SCAIE ...uiiuicieieiesiese ettt sttt st eaa e e et e te st e besreerenre e 34
ConvergenCe ANGIE = CS CNVIT . .uivierereeeeeeeseeseseseestessessesseeseessessessessessessessessesseesessssssessessensenns 34
Data DIreCtory == CS @loceeeeiereie sttt na e e s rennenne e 35
Recover SysStem RESOUICES == CS FEOVIueccuieiieeeeeeeesteesieeteeseesseesseesseesaesnaesessneesseesseensssnsesssessennes 35
Get Error Message TEXE == CS_EITIMSTcoueiurerererrerre s st sresie e se e e sre e snesne s sn s e snesne s 35
Compute Azimuth and Distance -- CS_118ZAd...........ccoreiririirirereeee s 35
UNit LOOKUP == CS _UNITIUL ..ttt st sttt 35
Coordinate System Name Verification — CS_CSISValid ... 36
Datum Name Verification — CS_dtISValid........ccveiiiiiiiiie et 36
Ellipsoid Name Verification — CS_@llsSValid........ccooveeeienineiecicecereses st 36
LOW LEVE! FUNCHIONS ...ttt ettt sttt et e bt 36
CartographiC PrOJECHIONSccueiieiiecieie et rte ettt st be st s b st esaeeae e e e e e neeseestesnesrenne e 36
Geodetic Datum Shift FUNCLIONSooeiiiieiiere e 42
General ULIlity FUNCLIONScc.ooie ettt st es e e e et snenrenne e 43
T (o =1 o o P 47
(D= it B 0 Tox LB =S TSRS 48
Ellipsoid DEfiNition SEIUCIUIE.couirieeiitiieiesieeet ettt b e e eb e saenenre e 48

Datum DEfINITION SITUCTUIEceveee ettt ettt ettt e e e st e s et e e s s e e e s s st e e e sessseessebesessssbeseseseeessanens 48

ii Contents
Datum COMPOSITE SLIUCIUIEecueceieeeiesie et etee e eaeste st e tesaeste e e esaetessestesrestesseeneeseesestesressessenns 49
Coordinate System DefiNition SEIUCLUIE.........coeiueie et e e st sre e 49
Preprocessed ProjeCtion SLIUCIUIES..........ciiiieieeeeiere e st s s eee e s e sre st eneeneeneen e seessesneens 49
Coordinate System Parameter SITUCKLUE..........ccvieeieieeeceereeesees e et e e ee e e ee e sresresresneeneeneens 50
Projection Name Table SETUCLUIE..........ocueieeeeec ettt se e srenne e 50
Datum Shift DefiNition SIIUCIUIE.........coeeieree ettt e sre e e 51
The Data DiCHIONAITESccueeeeeeeeieesie sttt sttt et eseestenbesaeebeeseeneenaese e beseeebeeseeseenaeneenteseenrennes 51
The Coordinate SyStem DiCHONAIYccocireeririeiririerise et 52
The DELUM DICHONEIYcveeeieieieieie ettt et sb et se e e s ae st e s besaesse e e anseseasbesaeeaeas 52
The EllipS0id DICHONAIYcoueiiiieieiieriesie ettt sttt sae e st e b b s aeeae e e enseseesbesaesaeas 53
(Do Lo 0= Y = 010 Y/ (o] o 53
Dictionary Definition ProtECLIONccviuiiireeeeie e sttt sae st sre st ae e e e e e e sresresre e 54
Y (ST @] (o (= 1 o S 55
[Tox o]0 YA o 1 o = 55
Multiple Regression Datum Transformation FIlES.........c.coevrreienese e 55
Default Datums, EHipsoids, and UNILS ... e 56
High Performance INTEITECE. ..o e bbbt 57
TRE FUNCLIONS......oeiee sttt sttt ae e e e s e se e e seesbesbeeneeseeneenseseeneensenneas 57
Coordinate System to COOrdiNate SYSLEMcceiriiririeirereere e 60
The LL COOIdINGLE SYSIEIM.......eiieieierieie sttt et sb et se et et s besaesbe e e e neeseeseesbesneas 61
MUITIPIE CONVEISIONSoutieieteeieeieeae sttt sttt e e s e et be e ae st et e b e s b e ebesbesaeebe e e ens e e e e e nbeseesaesaeane 61
Adding Datum Conversionsto the INLEIface ..o e 62
Geodetically Referenced Coordinate SYSIEIMS........covieieeeeieriere et sre e st seeneeneens 63
Cartographically Referenced Coordinate SYSIEMSccveveeierine e snens 63
CartographiC PrOJECHIONSccueiieiiecieie et rte ettt st be st s b st esaeeae e e e e e neeseestesnesrenne e 64
Program ENVIFONMENESccviiiiiiieeeeieeeses sttt ese e e e s e tesae st saeese e e e e e aeseentesaesaesseeneeneensenseseessessens 64
Multi-Threaded Programiming.........ceeceeeereriereseseseeeeseesieseesressesseeseesesssessessessessessessssssessessessenns 65
GUI CONSIAEIALIONS.......coveieeieetirieiete ettt st b et b et b e s b et e b e s e e e b e s b e s ebenbeneeneneenes 66
LOT LS (o332 1o o S SPSR 66
TuNiNgG the ProteCtion SYSLEM.......cc.ciiiirieere bbb 66
TUurning Of UNIQUE NAIMES ..ottt 67
ElMIiNating @ PrOJECLIONoiuiiiiieee ettt ettt et se s bt e e e e b e e 67
Data DiCtioNary DITECIONYc.eeueiieieieie ettt b et se et b bt ae e e e e e beseesbeseene 67
DictioNary FIIE NBMES.......cci ittt st e et e st e e sr e st esaesaeenee e entesrentenreens 67
Yo (o [g To 1L Lo O 67
(= TqTo (0= TN I = 101 = o S 68
Chapter 3 Chapter 3 -- Executables 69
CS_COMP—Coordinate System COMPILEScccciiiiiieiee et 69
BYLE OFTEITNG ...ttt ettt et b et b et b bt b b e e bt s b et ebesb e e eb e sbenneneebe e 70
SOUCE FIlE FOMMELS.....c.eeiei ettt ettt et bbbt b e e e e e e e se e beseesbenaene 70
TEST == TEST PIrOQIaIMeeiitieiteet ettt sttt ste e e e e saeesbe e bt easeeseasbeesbeebeeaeesanesaeesaesneesanesneanseanes 78
FgTo [A /Lo [N I ST 78
QLIS S D - TSSO 81
Other Command LiNE OPLIONSccccieiiiiiiciceeeee e ettt re e e e tesre e sresresre e enaeseetesresresreans 8l
BUGS ...ttt e bbbt R R et E e e e Rt R e e Rt EeneeReeEene Rt beneerenbeneeneere e 82
MFCTEST -- MFC DIialog TESTvoiecececerere sttt see et e e et st ene e e e e e seesresne e 82
Dictionary DifferenCES PrOgraM......cceceieerieriresesesteseeseeseeseeseeseestessessesseeesssessesseseessessessessesssensessessessenns 82
Chatper 4 -- Library Functions 83
High Level INterfate FUNCHIONS ..ot et bbb 83

CS _altdr ALTErNae DIRECLOIYccueiuieuieieieie ettt sttt e sb e e et e b e 83

Contents iii

CS _atof ASCii TO FlOatiNg POINE.......cciiieieieierese et e s e e sre st sresre e e e e e e e stesresrenre e 84
CS azddll LatLong Azimuth Distance CAlCUIALONccoveuereeieeiesese s 86
CS _azsphr AZIMUth 0N @ SPHERE........ccueceeeceer et 87
CS_cnvrg CONVERGENCE FUNCLION......cceeeeeeiesiis ettt nrenne e 87
CS _cnvrt generalized CONVERT fUNCHIONccueivveeiiciceeeeee e 88
CS_cnvrt3D 3D generalized CONVERT fUNCLION........coiiiiiiieirieieree e 88
CS_csEnum Coordinate System ENUMEIBEONcuiiieiriiieiriesieesieeee st 88
CS_cslsvalid Coordinate System key name ISV alid.........cooeevireinincnieeeeeeesees 89
CS_csRangeEnum Coordinate System Useful Range ENUMEratorcocceeeeeeereeneneniesene s 90
CS_csRangeEnumSetup Coordinate System Range Enumeration Setupccooeveveveienieneeiens 90
CS_dtENumM DATUumM ENUMEIGLOTccuveuiiieieriese e es e steeeeae e sses e srestessesseeeesensesaessesnessessens 91
CS dtlsvalid DaTumkey Name ISV alid.......ccccvieiiiiiiieccee st 92
CS _elENum ELIIPSOid ENUMEIGLOLccveieeieieiesesiesieseeteesaeseesiestestessessesssessessessessessessessessseeens 92
CS dlsValid ELlipsoid key Name ISV alid.......cccccivivveiiie et 93
CS _eTMSg ERROI MESSAGE.cccuieieeiiesiiestieseesiesee st e steeste e e sae et e teeteenaesreesneesneeneeeneesneesseenes 93
LGSR = o B = o g (= o 94
CS _fASE FAST MOE......cceiieieeteteeete et b bbbt b bbb s e enes 94
CS_ftoa Floating POINT TO ASCilc.eiireeeriirieiriirieiesiese et eie s bbb e e e s s s s 94
CS_geoctrSetUp GEOCENTRIC SEIUP ..c.vevevirieiireiieiesiee ettt sttt st 96
CS _geoctrGetXyz GEOCENTRIC GET XY Z ...cviiieirieisie et ssanes 97
CS _geoctrGetLIh GEOCenTRIC GET LatLONgHGEcccvieriririeieiseieesieeee e 97
CS_getCountyFips Get County Federal Information Processing Standard code............ccceeeeienee 97
CS_getDataDirectory GET DATA DIRECTORYcvieiiiriiiriinieisieneseseesessessees s seesessessenes 98
CS _getDatumOf Get Datum of a Coordinate SYSIEMccveieieierece s 98
CS getDescriptionOf Get Description of a Coordinate SyStem..........ccccecevevenieieceseeeeieeseesesnens 98
CS getEllipsoidOf Get Ellipsoid Of a Coordinate SyStemcccvvvveveseseeeereeseeneeseese e seeseeens 99
CS _getReferenceOf Get Reference Of a Coordinate SyStem.......ccovvvvvevereceesecrese e 99
CS _getSourceOf Get Source Of Coordinate SYStEM........ccvieverereerireeeeereese e e se e eresseeneeneens 99
CS_getUnitsOf Get Units of @ Coordinate SYStEM.........cccevieeiriirireseseeese s 100
CS_getEIVaues Get ElipS0id VAIUES........ccceiirieirierieerieseeie ettt 100
CS_getCurvatureAt get CURVATURE AT specified [atitude...........oeeeereeeninnencnencesseeneae 100
CS 1SGE0 IS GEOQGIAPNIC ...ttt sttt st sb st e e st b e et sb et eae e e e s e besaesbesaeerenaas 101
CS llazdd Lat/Long to AZimuth and Distance CalCUIaLOrcoereieienereneeee e 101
CS lIFromMgrs calculate Lat/Long FROM MGRS..........ccociiieeiesese et 102
CS _mgrsFromLI calculate MGRS FROM Lat/LONG.......cccoeeimieeiieieseneseseseeseeeessesseseesseseesrenns 102
CS_MQrsSEtUP MGRS SETUP......c.oiiiciiitiriee ettt sttt st et seenesre e 102
CS _reCVr RECOV ER IESOUICES.ceeueeeeeesteenieeteetessessseessessseesseessssssssessseessessenssessssssesssesssesssesnees 103
CS scalegrid SCALE factor fFUNCLION..........cooierere e 103
CS scalh grid SCALE factor(H) fUNCLION........cccviiveeeeece et 103
CS_scalk grid SCALE factor(K) fUNCLION..........cuiiiiiriiereecree e 104
CS setHelpPath SET HELP PATH......ociii ettt sttt st st 104
CS_spZoneNbrMap State Plane ZONE NUMBER MAPDEYcociriirereenie e 104
CS _UNENUM UNITS ENUMEIELONcveeiiciecie ettt see st steesre et esreeste e teetesneesnaesreesneennesnnas 105
CS_UNITTUUNIT LOOK UD c.viuiciiiiiieiisieieie sttt st saesa st s stesaesestesaesestesaesessesessessesensessesens 105
High Performance INTEITaCE. ..o bbb e 106
CS audflt Angular Unit DEFAULTcooeeiiiceeee et e e st a et sae e snesreenas 106
CS cs2ll Coordinate System TO Latitude/Longitudeccoeeeveevevenie et 107
CS _cscnv Coordinate System CONVEIGENCE.ciuiieirecieiecreeeeeeseestes e sre e e e ssesesae e sresrennas 107
CS _csdef Coordinate System DEFINition I0CAL0N.........coviieereerere e eeeseese e 107
CS _csdel Coordinate System definition DELELE..........cccvvieeeieeere e 108
CS_csEnumByGroup Coordinate System ENUMerator By Groupc.cceeveeeeeereeniesesiesensennne 109
CS_csGrpEnum Coordinate System GROUP ENUMEIALONcccoivieirenieirieneeesie e 110
CS_cdoc Coordinate System LOCate and initializeccvvereeiinicinenceseneeseseeese e 110
CS_cssch Coordinate System SCale H, along ameridiancoocoeree e 112

CS _cssck Coordinate System SCale K, along aparallel ..., 112

iv Contents
CS _csstl Coordinate SySteM SCal.....c.cccuevieieiieeieie e eie e e e s e re e ae s e tesresresresreenas 112
CS _csupd Coordinate System dictionary UPDELE..........ccccceeiereereresese e seese e e e sneenas 112
CS _dtcls DaTum CONVEISION CLOSE.......cceeeeiereiniesiesteste st e e eaeseestes e sre e sseeseeseeseensessessesnessesees 114
CS _dtcsu DaTum ConVErSioN SEEUD ..ouecueeeeierce et eesee s e e et seenaesaes e ssesrennes 114
CS _dteVt DATUM CONVEIToeciesecese st eeee e see e sttt e e s e e saestesaeeneese e e enaeseeseseenrennes 117
CS_dtdef DaTum DEFINItiON IOCALOTcoveeririeieriiriecriesieeriesee et 118
CS_dtdel DaTum definition DELELEccoeiiiriiiie sttt 118
CS _dtdflt DAaTUM DEFAULTccveieeicieeeti ettt sttt sa et sa e et e saeseeresaenenreseas 119
CS _AtIOC DATUM LOCELEeeceeetecieeie ettt ettt sre et e e esre e be et eenteentesaaesreesneesnennnas 120
CS_dtupd DaTum dictionary UPDELEcc.ceerieiiiesiisie sttt a e s 120
CS eldef ELIipsoid DEFINItiON [OCAOT.........c.ccceviieieieciesecteeceeee e et e e e e sne e 122
CS eldel ELIipsoid definition DELELE.........cccccieiieieiececeeecierees ettt s s 122
CS _eldfit ELIPSOid DEFAULTcoeitiieiietirieiisie sttt s sbesaesesbeseesesbesee e steseesesteseesessesens 123
CS_elEnum ELIIPSOid ENUMEIGLOLccvviueeeeeeeeeiesiesie e ste s eeeeeseeaeseessessesnesseseessesssssessessesses 124
CS elupd ELIlipsoid dictionary UPDELE.........cccoererieriereiesiesieeeeeeseeieseesee e ssesreseesseeessenseseenss 124
CS _&TMSg ERROIN MESSAGE.cccuieieeiieeiestee st et et s e see e sreeseeeee e sseesseeste e tesneessensneesneesenenns 125
CS _ll2cs Latitude/Longitude TO CoOrdinate SYSLEMccoeererererieieeseeesie s 126
CS_lIchk Lat/Long lIMitS CHECKccociiiiiiiiiereierierete ettt 126
CS_Udflt Linear UNit DEFBLLTc.ciiiiiriiieterieesie ettt st es bt be e enesreneas 126
CS xychk X and Y [IMitS CHECKcuo it s 127
CS_usrUnitPtr - Units Look Up HOOK FUNCEIONc.ooviiiiiiiiieieeeee et 127
CS _unitAdd - ADD UNIT t0 TADIE...c.iiuiieiiiiiieierieieie ettt 128
CS unitDel -- DELete UNIT fromtable.......cceeeevieie e 129
LOW Level INterface FUNCHIONS.covciiiieie ettt st nnenes 129
Chapter 4 Cartographic Projection FUNLIONSccco it s 131
Geodetic Conversion (Datum) FUNCLIONS.........ccciieieiereseceeeesesee e e e sre e eae e e e srenns 255
Microsoft MFC User Dialog FUNCLIONS. ..ot e e e e 287
CS csDataDir Coordinate System DATA DIRectory dialog......cccovvvverieeerieeere e 287
CS_csDua Browser Coordinate System DUAL BROWSER ...t 287
CS_csBrowser Coordinate System BROWSER.........coooiiiiiiiinrene s 288
CS_csEditor Coordinate System EDITOR digl0gcoveueeverieirinieiriiieesieseeesiesee e 289
CS_dtEditor DaTum EDITOR dialOgccceveereiierieierieiniesieesieseeestesaesesseseesessesessessesessessessssessenens 289
CS _gdcEdit Geodetic Data Catalog EDITONccueiierieisieieiesieesiesieeste e st seee e sessessesessessenens 290
CS elEditor ELIipsoid EDITOR dialOgcccceeeierierieriiie et seeeeeeseesiesre e se s s essesaesseseesnesns 290
CS csTest Coordinate System TEST dialogccccoeveiiniiiiciseeeeieses et s 291
CS mgTest Military Grid TEST dialOgcccvevieiierieieiece s see e et 291
CS _dtSelector DATUM SELECTOR.......cciiieieeeese st eeeee s e et ns e e sne e snesrennes 292
CS elSelector ELipSoid SELECTOR........cocveieeese et eeeee e e st s e e e e sneneas 292
COWINNIP WINAOWS HELP ...t s nre e 293
GeNeral SUPPOIT FUNCLIONScueiieiitirieisiere ettt ettt ettt st bt be e 293
CS_adj1pi ADJIUSE GNGIETO 2 Pl ...ttt e b e 293
CS_adj180 ADJust angle to 180 TEGIEES........ceiiriererieieterieeete et seeie bbb seere e 294
CS _adj270 ADJust angle t0 270 EGIEES........cvieriererierieesieietesseestesaesessesaesestessesesseseesessessesessenens 294
CS _adj2pi ADJUSE @NGIETO 2 Pl ...ttt sttt sttt st sa et sa st seesesreneas 294
CS _adj2pil ADJust angleto 2 Pl INCIUSIVE.......cccoiiiiiieie et e 294
CS adj90 ADJust angle t0 90 DEOIEES........coeeiererere et sttt e e sa e ae e srenes 294
CS_a0jll ADJUSE LBI/LONG ...veeveeerieierieiietesieeste e st st seeseste e sbesaesesbeseesesteseesesseseesessessesessenens 294
O o110y 2TV A= o o 295
CS DIWAD BYLE SWAPES ...ttt ettt st a e e snenresneenenns 295
CS _cschk Coordinate System CHECKcoveeiie e e nns 297
CS _cslcl Coordinate System, LOCELcccevuererineresresieseeseeseeseeseessessessessessesseesessssssesssssesssssenses 297
CS Pt ErTOr REPOIT ... e s 298
CS _fillin coordinate system definition FILL IN.........oooiiiiiiieecseeeeseseeese e 299
CS_ii??? Imaginary Arithmetic FUNCHIONSoouoiiiiiiree e s 299

CSINIT INITIBIIZE ...ttt b et b e b e r e b e e b e b nre e 301

Contents v

O T1 0/ Ll =0 ST o o 302
CS_isHIpAvailable ISHELP file AVAILABLEcoooiieeeveecte ettt 303
CS _Iget LEft JUSHITIEO GET ...ttt st sttt st s nre e 303
CS_Iput Left justified fIEld PUT ..ottt st s s 304
CS _NamMPP NAME PrePrOCESSOL.......ccuveieeieeieieeseeseeseeseeseeseeeseeeeeeseesseesse e e estesseesseesseesseensesnes 304
CS_prehk ProteCtion CHECK ..ottt ere e 305
CS_priEnum PROJECtION ENUMEIGLOTcceirieiiiierieierie sttt enesneeas 305
CS_prjprm PROJECtion PaRAMELEN USAEc.covireeeeriirieierieeete ettt st sre s sre e 308
CS_quadF QUADIENE FOMWAIT.........cceieiiiiirieiesienieiesieseeiestesestestesestesaesessesaesestesaesessesaesessesaesessesens 309
CS_quadl QUADIANE INVEISE......cueieiieiietesieistesieesteseesestesaesestesaesestesaesesseseesestessesessessesessessesessesens 310
CS renaM RENAME @FIl@.....uecice et s st re e 310
CS_setHelpPath SET HELP PATH......couiiiieice ettt st st st s 311
OIS (o o) VS I 110 [0] = 2 311
CS stnep STring, N characters at MOSt, COPYc.ccvevirieie e seeeeeee e e se e seenes 311
CS _stricmp STRing, case INsensitive, COMPArE..........cccvvveeeeeere e 312
CS _strincmp STRing, case Insensitive, N chars max, COMPare...........ccocvevvevereeceeienecsese s 312
CS_stristr find STRing, case INsensitive, iN aSTRING ..o 312
CS_swpa SWaP ALl binary datafiles..........cciereiiieieireee et 312
CS_SWPFl SIWEP @ SINGIE FILE.....ceiiiieieeiite ettt b e s s 313
CS tPAS TADIE PARSE. ..ottt sttt st s ae st sae e besae e ebeseeseebesaesesteneas 313
CS_trim character array TRIM ..ottt 314
CS zones extract ZONES from definition ..o e 315
CS _znlocF ZONE LOCEOr FOMWAIT........cceieeieieiesiestesie e eteeeeeesaesres e srestesreese e essesessessesnesresns 315
(OST41 (oo Ir4o [T M@ 05 (o] gl 101V/= £ =Y 316
CShcclu Basic Cached Coordinate system LOOK Up.......covciiiereeieiee e 316
CShdclu Basic Datum Conversion LOOK UPc..coviviereiisineceeeesesesese e sseseesseseesseneeseenes 317
CSht???? BeTa (authalic latitude) CalCUlation..........ccceveiieeereeere e e 319
CScesphrD angular distance (CC) on SPHERE IN DEGIEES......ccvvvvevreresesiseeeeeeseee e e 320
CScesphrR angular distance (CC) on SPHeRe N Radians.........coocvviieeniinnencesc s 321
CScsKeyNames Coordinate System Key NAMES ..ot 321
CSchi???? CHI (conformal latitude) CalCUIationcovuereeeiriineiireeeneese e 322
CSOfItpro DEFAUL T PROCESSONcveiteueetirteseeresiesessesieseesessesessessesessessssessessesessessessssessesessessesesseses 323
CSAtKeyNames DaTum K&y NAIMES........c.coiiieieierie ettt st ae e e sae e e 324
CSelKeyNames ELIIpsoid KEY NAIMES.........ccceiueiiiie et eeeestes e st sa e sa et snesrennas 325
CSlinrml Latitude/Longitude NORMAELccceiieieiiieciisecieeeesee e st e e st ens 325
CSMmM???? Meridional distance fUNCLIONScooveiiereiree e 326
Dictionary ACCESS FUNCLIONScceiuieeieecieses e s se st st e et e st te et e s eseeseestesaestessesreeseeneenseneenseseeseennes 327
CS_cscmp Coordinate System COMPAEccveceereririesi s eeeee e e se e e e e sreenes 327
CS csDictCls Coordinate System DICTionary file CLOSE........ccevcvviereveneseeeeeeeeee e 328
CS_csfnm Coordinate System dictionary File NaMe..........ccoireiiincinencseeeeeeese e 328
CS_csgrp Coordinate System dictionary GROUP ... 328
CS_csopn Coordinate System dictionary OPEN.........ccoeiiireirencereee st 328
CS _csrd Coordinate System dictionary RE8Dccooiieiiiiriiieeeree e 329
CS _csrup Coordinate System Release UPHAte.........c.ooiieiiiiniieee e 329
CS_cswr Coordinate System dictionary WRITE.........c.ooiiiiiiereeeeee e e 331
CS USTCSDES ..ottt sttt st s et s e e st et e sae st et e saeseebeseeseebeseeseebeneebenteneas 332
CS _dtDictCls DaTum DICTionary file CLOSE.......ccvvieiecteeeeeeese ettt s 332
CS elDictCls ELIlipsoid DICTIONary file CLOSE........cccoviieireeeie et 333
CS_dtcmp DaTum definition COMPAIEcceeeeeeierere e e 333
CS _dtfnm DaTum dictionary FII@ NAME........c.ccveieierire e 333
CS _dtopn DaTum dictionary OPENcccceeuereerererese e sreseeeeseesees e et sse e e e e sse e snesrenns 333
CS_dtrd DaTum dictionary REBDccoiiriririiiierieiee ettt 334
CS_dtrup DaTum dictionary REase UPHELEccvvereiririeiiereeese st 334
CS_dtwr DaTum dictionary WRITEcc.ciiiiieeie e e 335

CS _usrDtDefPtr - Datum Definition HOOK FUNCLIONooviiieiiceccceeceeeee e, 336

vi Contents
CS _elcmp ELlipsoid definition COMPArE.........ccccvieeieieriee s s 337
CS efnm ELlipsoid dictionary FII@ NAME..........cocvieiiieiiciceceeeeseee et 337
CS elopn ELIipsoid dictionary OPENccccceeeeeereereriene e s seseseeseesseseeseesse e sre e eseessessenseses 337
CS erd ELIipsoid dictionary REEDccccoivieierierieeeeeseese s s e st e e seeee s sre e ere e eneenes 337
CS elrup ELipsoid dictionary Rel€ase UPELEccceeeeiereereresese s e 338
CS_elwr ELIipsoid dictionary WRITE........c.coiiiiiiierese ettt 339
CS_usrEIDefPtr - Ellipsoid Definition HOOK FUNCLIONc.cciiviiiiiiicecese e 340
Well KNown Text IMPIEMENTALIONcoiiiiiieerieee et s sne e 340
Objects/Functions Implemented iN CH ..o e 341
WKT ODJECE SUPPOeee ettt sttt ettt ee st be et ae e s e e seeseesbesaesbe s st eseeeeneeneesbesbesbasaens 347
Name/Number mapping FUNCLIONS..........cocoiieiiieiececeeeee e st sre e e e sreneas 353
(=0 on Y g o 1 o] P 358
CS842grf wgs 84 TO local GeodetiC REFErENCE SYStEM......c.cveieveieee e 358
CS bwecalc Bursa/Wolfe CALCUIALION.........ccceiireiiceseeeceeree e see e e e s sne e 359
CS _getcs GET Coordinate System defiNitionccccvcvvereceereerese e e 359
CS _getdt GET DaTum definition........ccoveeieeeeerese et 360
CS_getel GET ELIIPS0id AefiNitiON.......ccoiuieererieieie ettt st 361
CSgrf284 local Geodetic ReFerence system TO WOS 84.......vcuivviiciiriirieerieesie et 361
CSgrfinit local Geodetic ReFerence system INITIaliZe.......oocvvercevienceneseee e 362
CS_mocalc MOIOAENSKY CALCUIALONcieeieieiesie sttt e s 362
CS _mrcalc Multiple Regression CALCUIALONcoi e 362
CS prcalc 7 Parameter CALCUIBLIONcoiveieieerie sttt sa e 363
CS putcs PUT Coordinate System t0 diCtioNarycccccveveieiesieseseseeieeseeseese e sres e sses e eaenes 363
CS putdt PUT DaTum t0 diCHIONAIYcc.ecueeeeieriesiese et eteee e sae e et ene e sa e sne e snesrennas 363
CS putel PUT ELIIPS0id t0 AiCHONAIYccceiveiieiiciesece et sttt sre e s e e nes 364
CS _un2d Units, Name TO DOUDIE..........ccireeeeeese ettt 364
CS842grf wgs 84 TO local Geodetic REFErENCE SYyStEM.........cvvrerereneresereeeeeeeseee s e s 364
CSgrf284 local Geodetic ReFerence system TO WOS 84......vveeeieverese e e e 365
CSgrfinit local Geodetic ReFerence system INITIaliZe.......ooceveveeiiinceneseeee e 365
CSQEIACIS GEOID, CLOSE........cecteiieuieteiteeetesieestesaees e saesastesaesestesaesestesaesestesaesesteseesestesaesessenens 366
CSgeniddbo GEOID, DataBase OpENcoureeriiricieriiieiesieeete s ssese s ssessenesnas 366
CSgeoiddir GEOID, datanase DIRECIONYcveevueiiierieisieseeiesiesestesiesesiesieestesaesessesessesseseesessesens 367
CSgenidHGt GEOID HEIGRT ..ottt sttt sttt et saenenre e 368
CSgenidinit GEOID, INITIAlIZEccceiiieeriereeiee sttt sttt st st et seesesre e 368
CSgeoidptr GEOID, return grid Cell POINTER......cccvi et 369
CShpg283 High Precision Gps network, 91 TO 83 CONVEISIONccccceieeieieereeeeeesieseesieseesreenns 370
CShpg291 High Precision Gps network, (from 83) TO 91 CONVEIrSIONc.ceveeereeeeereereereeneeseenens 372
CShgndbo High Precision Gps network, DataBase OpeNcccceveveriereseseseseeseeseseeseeseeseenes 373
CShpgdir High Precision Gps network database DIRECLOIYccccvvivveiererieeeeeesene e 374
CShpginit High Precision Gps Network, INITIaliZe ..o 375
CShpgptr High Precision Gps network, return grid cell POINTER ... 375
CSnad227 North American Datum, 83 TO 27 CONVEISIONcueeeuveeieeeeteeeseeeereeestee e esresessessans 376
CSnad283 North American Datum, (from 27) TO 83 CONVEISION.......ccereeeeereerierie e 378
CSnadB83284 NAD-83 TO WS BA....c.ecueiieieeeiiierieiesiesietestestetestesestesaesestesaesestesaesestesaesessesessessanens 379
CSnadcls North American Datum, CLOSEciuiitirirerieeee et e sae e enes 380
CSnaddbo North American Datum, DataBase OPEN.........cccvveeeeieieniesese s eeeee e esseseesse e sreenas 380
CSnaddir NADCON database DIRECLOIYc.ccievuiiieiiiiiesieseeteeeeseseeste e sre e e ese e e esaesae e sresresnas 381
CSnadinit North American Datum, INITIBIIZE.......cccccvveiiiieireneereee s 382

CSnadptr North American Datum, return grid cell POINTER.........cccoveeie v 382

Contents vii

Chapter 5 Chapter 5 -- Data Modules 385
CSdata -- general DATA MOGUIEeoeeeece sttt et e e e e nne e 385
CSdataPJ -- DATA, ProJECtion tA0IE..........cvuuvveieeeiiciicisiee st 388

CSdataU -- DATA module, Unitstable

CHAPTER 1

Chapter 1 -- Distribution/Release Notes

This chapter contains Distribution Notes for new users of CS_MAP and Release Notes for previous
users. The Release Notes which describe recent changesin the library follow the Distribution Notes
which describe the distribution and how to build CS-MAP in some of the more common build
environments.

10 CS-MAP User's Guide User's Guide

Current Manual Status

AT the current time, this compilation of documentation for the Open SOurce distribution shows many
ofthe tell-tale signs of a document maintained by different people using different tools over a period of
twenty years. Thusyou will enocunter several distracting formatting issues, and be displeased by the
lack of a comprehensiveindex. The presentation quality of the document will improve over time.

Technical content of this document was current with release 11.11 of CS-MAP. The original Open
SOurce distribution is actually deemed to be release 12. Therefore, a significant amount of writing and
editing which needs to be completed to bring this document up to date. Some of the areas in which this
document is out of date are:

Name Mapping

The original name mapping functions have been replaced with an entirely new scheme which isdriven
by an external datafile for maintenance convenience.

NTF to RGF93 Datum Conversion

There now exists a Geodetic Data Catal og file which controls access to the various grid shift filesin
use. Particularly, NTv2 formatted grid shift files for local municipalitiesin France are now supported.
DHDN To ETRF89 Datum Conversion

A new Geodetic Data Catalog file is now supported to define access to the German BeTA2007.gdb
grid shift file.

ED50 To ETRF89 Datum Conversion

A new Geodetic Data Catalog file is now supported to define access to the Spanish and Portuguese
(and quite likely othersin the future) datum grid shift files.

Geocentric Datum Transformation Technique

The Three Parameter Datum Transformation technique has been deprecated and replaced by a new
technique known as Geocentric Trandation.

Category Dictionary

A Category Dlctionary has been added which is a more flexible version of the origina CS-MAP group

concept. While a definition canonly belog to one group, a definition can belong to several categories.

Danish System 34

Chapter 1 Chapter 1 -- Distribution/Release Notes 11

Due to distribution permission issues, it was determined that the polynomial coefficients for the System
34 coordinate conversions could not be open sourced. Thus, to properly incorporate Syatem 34
capabilitiesinto your application, you will need to obtain a copy of these coefficients for yourself.
Refer to the source module named CSsys34KMS.c for details.

CSV File Support

Implemented as a C++ object, there now exists rather substantial support for reading and writing data
filein the CSV (comma separated value) format.

EPSG Support

Still awork inprogress, there now exists substantial support for accessing data provided by the EPSG
Parameter Dataset. Asthisdataset istraditionally distributed in Microsoft Access format, this facility
relies on the conversion of all EPSG datatablesto .CSV format, and uses the new CSV Flle SUpport
object to access them.

WKT Flavor Support

Using the new Name Mapper facility, CS-MAP's ability to handle various flavors of WKT has been
imporved. Thereislotsyet to be done, but a non-trivial improvement in the accuracy and number of
flavors supported.

So, there remains much to do to bring this documentup to the standard desired by the CS-MAP
contributor team. For now, it'simportant to provide potential users with the basicinformation
necessary to get started using CS-MAP.

12 CS-MAP User's Guide User's Guide

The Distribution

Detailed instructions on how to obtain the distribution are available at
http://trac.osgeo.org/csmap/wiki/HowToGetTheSourceCode

The distribution includes many somewhat voluminous grid data files known to OSGeo as being in the
public domain. There are several such grid data files which are not in the public domain and which
must be obtained from the source on an individual user basis. Simpleregistrationisall that isrequired
in many cases, license fees are rarely required. Mostly, the issuing authority just wants to keep track of
who is using the datain order to adhere to | SO quality control standards.

The Canadian National Transformation datafileis, perhaps, the most widely used example of agrid
datafile which OSGeo is not permitted to distribute. Y ou and your clients will need to obtain thisfile
from the Canadian government. A license fee is no longer required, but Geomatics Canada still needs
to know who is using the datafile. Contact:

www.geod.nrcan.gc.ca

Since the distribution cannot include a copy of the Canadian National Transformation file, the test
cases for this transformation are commented out in the provided TEST.DAT file. After obtaining the
Canadian National Transformation file, you will probably want to uncomment these test cases from the
test file.

Typicaly, aREADME.txt fileis placed in the folder in which an undistributable grid data files would
normally reside. THistext file will usually provide information as to how to obtain a copy of the data
file. When a CS-MAP error message which indicates that afile is missing is encountered, check to see
if thereis not aREADME.txt filein the folder in which CS-MAP was looking for the file and examine
its contents.

The following sub-topics described the directory structure of the distribution.

Chapter 1 Chapter 1 -- Distribution/Release Notes 13

Include Directory

Y ou don't need to be ageniusto figure out that all header files are installed into this sub-directory.
What might surprise you isthat there is only one real header file: cs_ map.h. Whilethisfileis quite
large, the precompiled header feature of most modern compilers make this approach most convenient.

Also, you never have to guess in which header file a specific item is defined in. They're all defined in
cs_map.h. Neither do you have to wonder which files must be included into your application; cs_map.h
isthe one. There are other include files, but are those required by the rather strange environment used
for MFC development.

The cs_map.h header file will specifically include two files. Thefiles, and exactly where they are
included, are described below. These provide a means by which users can incorporate their own
features without having to modify cs map.h after each new release.

cs _clientBeg.h -- Theinclusion of this file occursimmediately after the check for a previous include
of cs_map.h, but before the cs_map.h file does anything else. An excellent place to place defines
which control the environment of the compilation.

cs_clientEnd.h -- The inclusion of thisfile occurs immediately before the #endif which terminates
the multiple inclusion protection. That is, it isincluded after everything elsein cs map.h.

Library Source Code

The directory named Source will contain all source code to the library proper. The source code
components of CS-MAP are normally compiled and the resulting objects used to construct an object
module library. Source code to dictionary compilers and test programs are provided elsewhere. Make
filesfor building the library are provided in this folder.

= Library.mak can used used to build the object library in the Linux environment.
= Library.nmk can use used int the Microsoft WIndows environment using the nmake facility.

Each of the make filesincludes alist of al the modules that belong in the library. Thislist represents
most of the drudgery of creating a makefile. Adjust the actual rules as necessary for your
platform/compiler. Notice that leaving the manifest constant ___MFC___ undefined will cause all MFC
related code to be skipped during the compilation process. Obvioudly, if compiling in an environment
other than Windows 32/64, be sure to leave the ___MFC___ constant undefined.

14 CS-MAP User's Guide User's Guide

Dictionary Source Code and Data

The directory named Dictionaries will contain the source code to the dictionary compiler, and the data
files which this compiler compiles to produce the binary form of the Category Dictionary, the
Coordinate System Dictionary, the Datum Dictionary, the Ellipsoid Dictionary, and the Multiple
Regression Transformation datafiles. Be sure to compile these dictionaries with the /t option if you
intend to run the CS-MAP test program. Refer to Chapter 3 of this manual for more information on the
dictionary compiler program.

Make files for building the compiler are provided in this folder.

= Compiler.mak can used used to build the compiler in the Linux environment.

= Compiler.nmk can use used to build the compiler in the Microsoft WIndows environment using the
nmake facility.

The distribution also uses this directory to convey sample Geodetic Data Catal ogs which you will
definitely want to inspect and perhaps modify. Geodetic datafiles which OSGeo believesto bein the
public domain are deposited in sub-folders of thisfolder in a specific hierarchy. Thishierarchy is
consistent with the provided Geodetic Data Catalog (.gdc) files. There is no specific requirement for
the location of the geodetic datafiles other than their location must be consistent with the
specifications int he Geodetic Data Catalog files.

Also please note that the OSTN97.TXT and OSTNO2.TXT data files must also reside in the primary data
directory. Again, by design, there is only onefile for each of these transformations, and the
implementation of a Geodetic Data Catalog file was skipped. Also, dueto the rather strange nature of
these files, most of the features of a Geodetic Data Catalog file do not apply anyway.

Chapter 1 Chapter 1 -- Distribution/Release Notes 15

Test Source Code and Data

The directory named 7est will contain the source code to the CS-M AP test program and the supporting
datafile, TEST.DAT. Compilation and linking of this program will obviously require the inclusion of the
header file and library. Make filesfor building the test program are provided in thisfolder.

= Test.mak can used used to build the test program in the Linux environment.
= Test.nmk can use used int the Microsoft Windows environment using the nmake facility.

In order to execute the entire test sequence, you will need to have compiled the dictionaries with the /t
option. This causes the retention of the test coordinate systems (not normally distributed with an
application) in the dictionary files. The test program will also expect to have access to the NADCON
and HPGN datafiles provided in the sub-directories of the Dictionaries directory. When executing the
test program, use the /d option to indicate the location of the directory in which the dictionaries,
NADCON, and HPGN datafilesreside; e.g. /d. -\Dictionaries. Refer to Chapter 3 of this manual
for more detailed information on the test program.

This program performs afairly substantial test of most all features and capabilities of CSSMAP. This
program should be used each time CS-MAP is used in a new configuration or compiled with a different
compiler.

Note that alarge number of the tests encoded in the TEST.DAT file are commented out as they rely on
the existence of specific geodetic data files which OSGeo cannot distribute. For example, since
OSGeo cannot distribute the Canadian National Transformation, all test dependent upon that data file
are commented out. Upon obtaining geodetic data files which Mentor Software cannot distribute, you
should consider un-commenting the tests related to such files.

16 CS-MAP User's Guide User's Guide

Documentation Directory

The directory named Documentation is where you will find a copy of this documentation. Depending
upon the format, it may consist of asinglefile, or adirectory containing multiple files. A prinable
version may also be present.

Additionally, this directory will contain the source code to the help file which is provided for use with
the MFC based components of CS-MAP. The source code files include an .rtf file, a contents file (.cnt),
and several screen shotsin .bmp format. Again, a make file compatible with Visual C++ Version 6 (or
later) nmake is provided; it is named help.nmk. (Asthe help fileis not generally usable in the Linux
environment, no Linux compatible make file is provided.) Note, that the CS-MAP MFC based
functions expect to find the help file in the same directory as the mapping data files. Of course, a
function exists which enables application programmers to override this default location
(CS_setHelpPath). If for any reason, the MFC based functions cannot locate the help file, the help
button on al dialogs will be grayed out.

Please note that the help file is designed for distribution with your application. It does not mention

0SGeo, CS-MAP, or the original developers of CS-MAP. It uses arather generic term "coordinate
conversion system" to refer to that which it is describing.

Data Directory
Several datafiles used in the construction of CS-MAP's Name Mapper facility are included in the Data

directory. Itisenvisioned that these files will be replaced by a more convenient and controllable
means in the near future.

Make Procedure

Building CS-MAP on Windows and Linux

The CS-MAP distribution will produce a series of five directories (described in detail in the previous
topics):

Include: Contains all header files referenced the source code in the Source directory.
Source: Contains all the source code for the CS-MAP library itself.

Dictionaries; Contains the coordinate system dictionaries in source form, and the source code for a
compiler which will convert the dictionary source to the operational binary form.

Test: Contains the source code for a console type test program and the test data which it uses.
Data: Contains a series of datafiles used to construct name mapping files.

Building the entire product is a series of five steps:

1 Buildthe CS-MAP library.
2 Build the dictionary compiler.

3 Runthedictionary compiler.

Chapter 1 Chapter 1 -- Distribution/Release Notes 17

4 Build the console test program.
5 Execute the console test program.

After installation, and before building, it will be best to obtain a copy of the Canadian National
Transformation file (NTV2_0.gsb) and copy it to the Dictionaries’Canada directory. This datafile may
not be distributed by OSGeo. Geomatics Canada reserves the right to distribute this file and maintain a
list of those using it. Therefore, since we do not distribute the file as part of this open source
distribution, we recommend strongly that you simply obtain a copy, even if for testing purposes only.
Chances are very good you already have a copy of thisfile on your system aready. If not, you can
obtain one (no fee) at:

http://www.geod.nrcan.gc.ca
The TEST.DAT datafile in the Test directory contains several hundred test points which are directly
related to the above mentioned grid shift datafile. To prevent confusion and unnecessary technical
support, tests related to the Canadian National Transformation data file are commented out in the
distribution. After obtaining a copy of the above mentioned data file, these test should be
"uncommented" back in, so that the test program will test this feature.

OK. Now for building on your system:

For Windows:

18

CS-MAP User's Guide User's Guide

1> Build the CS-MAP Library:

Make the 'Source' directory your current working directory.
Use the MSV C set variables script to set the environmental variables correctly.
Use the 'nmake’ command and supply it with the ‘Library.nmk’ makefile. E.g. 'nmake

[fLibrary.nmk'

2> Build the Dictionary Compiler (CS_comp)

Make the 'Dictionaries directory your current working directory.
Use the MSV C set variables script to set the environmental variables correctly.
Use the 'nmake’ command and supply it with the '‘Compiler.nmk’ make file. E.g. nmake

/fCompiler.nmk’

3> Run the Dictionary Compiler

Make the 'Dictionaries directory your current working directory.
Execute the'CS_comp' program. E.g. CS Comp. .

Note that the first argument to this command is the folder containing the dictionary source, the
second argument is the directory to which the binary dictionary files are to be written.

4> Build the Console Test program (CS_Test)

Make the 'Test' directory your current working directory.
Use the MSV C set variables script to set the environmental variables correctly.
Use the 'nmake’ command and supply it with the 'Test.nmk' make file. E.g. 'nmake /fTest.nmk'

5> Execute the console test program

Make the 'Test' directory your current working directory.
Executethe'CS Test' program. E.g. 'CS Test /d..\Dictionaries

Note that the /d argument is the directory which the test program is to ook to for the dictionaries
and related data files.

For Linux:

Chapter 1 Chapter 1 -- Distribution/Release Notes 19

1> Build the CS-MAP Library:

= Makethe 'Source directory your current working directory.
= Usethe 'make command and supply it with the 'Library.mak' makefile. E.g. 'make -fLibrary.mak

1

2> Build the Dictionary Compiler (CS_Comp)

= Makethe 'Dictionaries directory your current working directory.

= Usethe'make command and supply it with the 'Compiler.mak’ make file. E.g. 'make -
fCompiler.mak’

3> Run the Dictionary Compiler

= Makethe 'Dictionaries directory your current working directory.

= Executethe'CS_Comp' program. E.g.'./CS Comp..'

= Notethat the first argument is the directory containing the dictionary source, the second argument
isthe directory to which the binary dictionary files are written.

4> Build the Console Test program (CS_Test)

= Makethe Test' directory your current working directory.
= Usethe 'make command and supply it with the 'Test.mak' makefile. E.g. 'make -fTest.mak’

5> Execute the console test program

= Makethe Test' directory your current working directory.
= Executethe'CS Test' program. E.g.'./CS Test -d../Dictionaries

= Note that the /d argument is the directory which the test program is to look to for the dictionaries
and related data files.

MS VC++ 2005 (Version 8):

The CS-MAP Open Source distribution will deposit in the primary directory a Microsoft Visual C++
Version 8.0 (VC2005) solution file. Thisfile references project files in the Source, Dictionaries, and
Test directories. Thissolution file and its related project files can be used to manufacture the library,
dictionary compiler, and the test module. No provisions have been made for executing the dictionary
compiler or the test module.

20 CS-MAP User's Guide User's Guide

Release Notes for CS-MAP 12

This section, and its future sub-sections will describe the recent changes made to CS-MAP for the
benefit of users of previous major releases. Recent changes to the CS-MAP trunk will be described in

thistopic. Asmajor releases are created into a branch of the source code tree, these notes should be
moved to a separate sub-topic.

21

CHAPTER 2

Chapter 2 -- Descriptions and Discussion

In Chapters 3 through 5 of this manual, you will find detailed information about the components of the
CS-MAP library and the executable modules supplied in the OSGeo distribution for testing and
maintenance purposes. The purpose of this section of the manual is to provide an overview of CS-
MAP so that you will have an idea as to which specific program elements in the remainder of this
manual you need to look at.

Therefore, in this section we give a broad overview of the structure of CS-MAP and, usualy, asimple
function name so that you can locate the specific information you need in Chapters 3, 4 and 5. It is not
the intent of this section to duplicate the information contained in the remaining chapters.

Note that the first sub-section of this Chapter istitled Overview, and is expressly designed for
Application Programmers who, like the author, don't usually read the manual until something doesn't
work. Please take the five minutes necessary to read that section before attempting to add CS-MAP to
your application.

Overview

As one programmer to another, | present this Overview Section as the manual for people who, like
myself, don't read the manual (until something doesn't work). This section contains al of the
information you'll need to get started quickly, and the specific information you'll need to stay out of
trouble. Please read this section before attempting to use CS-MAP. Refer to the remainder of the
manual as necessary.

Deferring the details to subsequent sections, it is helpful to consider CS-MAP as consisting of a
Coordinate System Dictionary and a set of functions which use the information in the dictionary to
accomplish the desired task. All coordinate systems used by CS-MAP reside in the dictionary and are
given aname, which we refer to as akey name, much like we give namesto files. CS-MAP, then,
performs coordinate system conversion based on the names of the coordinate systems provided. This
technique eliminates the need to have your users process through along list of parameters which they
(usually) don't understand whenever a conversion is necessary. All they need provide are the names of
the appropriate coordinate systems.

22 CS-MAP User's Guide User's Guide

Initialization

CS-MAP needsto beinitialized. Initialization consists of providing CS-MAP with the directory in
which the dictionary filesreside. Thisisaccomplished by calling the CS_a/tdrfunction. Thisfunction
takes a single argument, a character string which is the path to the appropriate directory. Calling
CS_altdrwith aNULL pointer as an argument will cause the value of the environmental variable named
CS_MAP_DIR to be used as the data directory. CS_altarreturns and integer zero if theinitialization was
successful, -1 if not.

Thiswas not arequirement in the past, thus the rather strange name for this initialization function.

Important Note 1: Whenever CS-MAP needs to go to disk to find something, that something often needs
to reside in the directory specified by this function call.

Important Note 2: Failing to call this function successfully prior to using CS-MAP amost aways results
in an memory addressing fault.

High Level Interface

Given the name of the source and target coordinate systems, conversion of coordinate datafrom one to
the other is as simple asa single function call. The following example would cause the coordinate in
the array of three doubles named coordinate to be converted from NAD27 based UTM Zone 13
coordinates to NAD83 based Colorado State Plane, Central Zone, coordinates:

status = CS_cnvrt ("'UTM27-13","C083-C",coordinate);

It'sthat ssmple. The simplicity of this hides several important features. First, note that the datum shift
implied by the coordinate systems, NAD27 to NAD83 in this case, is automatically applied. Second,
you would hardly ever code an application with hard coded coordinate system names as was donein
thisexample. Simple character arrays that are passed by argument, providing data entered by the user
from achoice list, or providing data obtained from a database, whatever, al work just fine. These are
just very simple, case insensitive, null terminated strings. Third, the application programmer has no
need to know which projections, datums, and/or ellipsoids are involved. Fourth, the source and/or
target coordinate systems could just as easily be Latitude and Longitude coordinates, based on any of
several units, and referenced to any prime meridian.

Similarly, should your application need to know the grid scale factor at a specific point, all you need
code isafunction call similar to the following:

grid_scale = CS_scale ('C083-C",coordinate);
Coordinate in this case must be geographic, i.e. the latitude and longitude of the point at which the grid
scaleisto be determined. Again, it isunlikely that the name of the coordinate system would be hard

coded aswas donein this example. Need the convergence angle? Y ou have probably figured it out
aready:

convergence = CS_cnvrg ("'C083-C",coordinate);

Chapter 2 Chapter 2 -- Descriptions and Discussion 23

Concerned about performance? Originaly, the above interface was designed as a means by which
applications written in languages other than 'C' could access CS-MAP; i.e. no pointers required.
However, dueto its design and the high speed processors with on-board caches which are common
today, thisinterface provides amazing levels of performance. It is now the interface which we
recommend for all simple applications.

Several other features are made available in what we call the High Level Interface; that is features
which are available without the use of pointers. The details of al such features are provided in the
topic named High Level Interface.

Coordinate System Dictionary

The coordinate system is the heart of the CS-MAP package. The CS-MAP distribution includes the
definition of more than 5,000 coordinate systems. Each definition includes the projection to be used,
the projection parameters, the datum or ellipsoid to which the coordinate system is referenced, and the
unit to be used. Admittedly, many of the coordinate system definitions provided are very similar to
others, differing only in the system unit or datum referenced. However, we believe your users will
appreciate the simplicity of having only to remember and enter an easy to remember name or two to
get what they need. The default feature described elsewhere in this manual can be used in those cases
where this design becomes inconvenient.

Coordinate system definitions are stored in afile we refer to as the Coordinate System Dictionary.
Thisfileisasimple fixed length record file containing binary data. It is maintained in sorted order by
coordinate system name and is accessed using a binary search technique. This provides portability to
almost any environment without having to license any other software. Y our application will need to
provide the CS-MAP functions with the location of the directory in which the Coordinate System
Dictionary resides (see CS_altdr). Once CS-MAP locates the Coordinate System Dictionary, it expects
to find al most other datafilesin the same directory.

CS-MAP distributionsinclude an ASCI| file which defines al of the coordinate systemsincluded in
the distribution. Thisfile is usually committed to version control and treated has a highly valuable
sourcefile. A compiler included with CS-MAP can convert this ASCII fileinto the binary form used
by the system.

Important Note: Thefirst four bytes of a binary coordinate system dictionary fileisa"magic number".
This sequence of bytes are used to identify that the file is indeed a coordinate system dictionary file.
Therevision level of the dictionary format is also encoded into this "magic number".

24 CS-MAP User's Guide User's Guide

Other Interfaces

It is probably obvious to you that the interface described above can not be the most efficient interface
possible. Applications which require the absolute highest performance, may want to use the High
Performance Interface. Thisinterface requires the knowledge of as many asten functions. It also
requires the use of pointers to structures and, therefore, is usable only from languages such as C, C++,
or Pascal which can handle pointers appropriately. It does, however, provide the application
programmer with the highest performance level possible, while still insulating your application from
changesto theinternals of CS-MAP. Using thisinterface, performance levels of 1,000,000 non-trivial
conversions per second are routinely observed.

Applications which are hard coded around specific projections can use the Low Level Interface to
obtain high performance solutions which do not require a Coordinate System Dictionary or, for that
matter, any other supporting data. That is, at thislevel, the application programmer has access to the
specific code for each projection. Similarly, applications can use the low level interface to access any
of the 12 or so datum shift techniques supported by the library.

The High Performance and Low Level Interfaces are described in detail in the remaining chapters of
this manual.

Other Dictionaries

Like coordinate systems, datums are many and varied. (The term datum iswidely used to refer to a
Horizontal Geodetic Reference System. Although this usage is not technically incorrect, we will go
aong with the crowd and use the ssimpler term.) While several datum conversion technigues are hard
coded into CS-MAP, the actual definitions are not. Asyou might suspect, there exists a Datum
Dictionary which contains the definition of all datums known to the system and provides a name by
which they can be accessed (i.e. key name). Coordinate systems are referenced to a datum by
including the datum key name in the coordinate system definition. Thus, when converting from one
coordinate system to another, CS-MAP can automatically activate the appropriate datum shifts
necessary by examining the datum referencesin the coordinate system definitions. While full support
is provided, application programmers rarely, if ever, access the Datum Dictionary directly.

All datum definitions must include areference to an ellipsoid; coordinate system definitions can
include areference to an ellipsoid. Again, there are many ellipsoid definitions and these are not hard
coded into CS-MAP. You guessed it! Thereisan Ellipsoid Dictionary:

= that carries the definitions of all ellipsoids,

= that assigns each ellipsoid definition a name (i.e. akey name),

= towhich CSSMAP provides afull set of access functions; and

= that the application programmer rarely, if ever, accesses directly.

Important Note: Datum and Ellipsoid dictionaries include a"magic number" as the first four bytes of

the binary file. These "magic numbers’ identify the type of the file in addition to the file format
revision level.

Chapter 2 Chapter 2 -- Descriptions and Discussion 25

Cartographic vs. Geodetic Referencing of Coordinate Systems

While coordinate system definitions can be referenced to a datum, they can also be referenced directly
to an ellipsoid. In this manual, we will use the term geodetically referenced coordinate system to refer
to the former case, and cartographically referenced coordinate system to refer to the latter. When both
the source and target coordinate systemsinvolved in a conversion are geodetically referenced, CS-
MAP can automatically perform the necessary datum shift without any additional information required
from the user, or any additional code required by the application programmer. When either or both
coordinate system definitions are cartographically referenced, the datum shift feature is effectively
disabled. That is, CS-MAP cannot calculate a datum shift it does not know both the source and target
datums.

In many cases, the datums upon which coordinates are based are known. In these cases, coordinate
system definitions are usually geodetically referenced and CS-MAP can, therefore, include the
appropriate datum shift automatically whenever appropriate. In other cases, the datum upon which a
coordinate system is based is not known and the coordinate system should be cartographically
referenced to an ellipsoid. CS-MAP's automatic datum shift feature is then disabled whenever this
coordinate system is involved in a coordinate conversion. Therefore, while the individual maintaining
the coordinate system definitions may need to understand the distinctions between geodetic and
cartographic references, the typical end user is not usually concerned.

Cartographically referenced coordinate systems can be a great convenience to both user and application
programmer. For example, the L. coordinate system which you will find in the CS-MAP distribution is
cartographically referenced to the WGS84 ellipsoid (not the WGS84 datum). This means that using the
LL coordinate system as the target in any conversion produces geographic coordinates which are always
based on the same datum as the source coordinate system. Thisis often very convenient indeed.

26 CS-MAP User's Guide User's Guide

Latitudes and Longitudes

Coordinate systems can be defined to be geographic, i.e. consist of latitude and longitude coordinates.
Thisis achieved through the use of a pseudo projection we call the Unity projection. The Unity
Projection is simply a projection which does nothing, the results being geographic coordinates. Since
the definitions of alatitude and longitude coordinate systems are included in the Coordinate System
Dictionary, they can, and indeed do, have datum references, origin longitudes, and units specifications.
Thus, severd latitude and longitude definitions appear in the coordinate system dictionary. Aswith
any other coordinate system definition, these definitions are either geodetically or cartographically
referenced, have a unit specification, and have an origin longitude. In this context, the units are the
angular units of measure to be used (e.g. degrees, minutes, seconds, grads, etc.) and the origin
longitude is the prime meridian (i.e. Greenwich, Meridian of Paris, etc.). Thus, latitude and longitude
coordinates are fully supported by the system, and the application programmer is not required to write
any special code to process them.

The distribution Coordinate System Dictionary contains a geographic coordinate system simply named
LL. Thisisacartographically referenced latitude and longitude coordinate system which is referenced
to the Greenwich Prime Meridian, using units of degrees. Thus, LL should be considered to be the
generic latitude and longitude coordinate system, and can be used as such. For example, to obtain the
grid scale factor of a coordinate system using cartesian coordinates (as opposed to the geographic
coordinates required by the CS_scale function) one could simply write as follows:

status = CS_cnvrt (*'C0O83-C","LL",coordinate);

grid_scale = CS_scale ('C083-C",coordinate);

Note, that due to the generic nature of the LL coordinate system (i.e. cartographically referenced,
thereby disabling datum shifts), the intermediary latitude and longitude results will be always be based
on the same datum as that of the source coordinate system. Also, the LL coordinate system is defined
to match the specific definition of latitude and longitude used internally within CS-MAP. That is, in
those few cases where CS-MAP specifically requires a coordinate in terms of latitude and longitude:

1. the coordinates must be in degrees,
2. referenced to the Greenwich Prime Meridian, and

3. west longitude and south latitude must be negative val ues.

Chapter 2 Chapter 2 -- Descriptions and Discussion 27

Coordinate Arrays

Asiscommon in theindustry, cartesian coordinates are passed in arrays of doubles. The X coordinate
isawaysthefirst element in the array, the Y coordinate being the second element, and the Z
coordinate being the third element. When performing atwo dimensional conversion, CS-MAP often
ignores the Z coordinate. Obviously, when performing athree dimensional conversion, avalid Z
coordinateisrequired. To simplify use of the library, al coordinate arrays should be dimensioned at
three. Typically, aZ value of zero is provided when performing a two dimensional conversion.

In the case of cartesian coordinates, coordinates must be ordered as described above; specifically X, Y,
and then Z. Whileit is common usage to refer to geographic coordinates as latitude and longitude, and
it is also common to give the latitude first and the longitude second, CS-MAP requires that the first
element of a geographic coordinate be the longitude, the second element be the latitude, and the third
element the height. While negative values are usually used to indicate west longitude and south
latitude, geographic coordinate systems can be defined where the opposite sign convention is used.

It isimportant to note that there is a significant difference between coordinates returned to the user
which may just happen to be geographic, and the geographic coordinates required by certain CS-MAP
functions. The conventions used in "user” coordinates are determined by the coordinate system
definition. Thus, in a"user" geographic coordinate, as returned by CS_cs2//for example, the prime
meridian may be other than Greenwich and the unit other than degrees. Users can also define
geographic coordinate systems where west longitude is positive and/or the order of the coordinatesis
swapped.

However, wherever a CS-MAP function specifically requires a geographic coordinate, the values
provided must:

1. begivenin degrees,
2. bereferenced to the Greenwich Prime Meridian, and

3. west longitude and south latitude be given as negative values.

28 CS-MAP User's Guide User's Guide

Selected Source Code

For historical reasons, most al global data definitions are coded in distinct modules. This has been
very convenient over the years. Many of the features of CS-MAP can be adjusted to better fit into your
application by tweaking one of these source modules. Four of these modules are worth mention in this
overview: CSaata, CSdatal, CSdataPJ, and CS_error. In CSaatayou will find the definition of many
global constants used throughout CS-MAP. While you obviously don't want to change the definition
of m, there are several other aspects of CS-MAP which are controlled by global variables defined in
thismodule. Make the modifications which you need, recompile, and re-link your application.

CSdataU contains the unit table which CS-MAP uses. To add (or remove) a unit, simply modify the
table and recompile.

CSdataPJ contains CS-MAP's projection table. To remove a projection (to reduce the size of your
executable, for example), simply remove the projection's entry in the table an all object code references
to the projection will be removed.

CS_error contains the text of all error messages.

All data which may be language related is contained in these four modules. To translate the entire
system to another language, only these four modules, and perhaps the help file, need attention.

Naming Conventions

Originally, the names of global variables, manifest constants (i.e. defines), structures, and functions
used in CS-MAP adhered to a very definitive naming convention. Much of the library still adheres to
this convention. This convention was developed with three purposesin mind. First, and foremost, it is
necessary to insure that the probability of a name collision with existing application code is kept to a
minimum. Second, to enable programmers to quickly determine the type of entity being referenced by
aname and to quickly determine where the definition of such can be found. Third, provide an efficient
means by which the libraries and other components of CS-MAP can be efficiently maintained and
manufactured.

In later developments of the library, such as the inclusion of some C++ elements and the planned
porting of the entire library to C++, there are several modules no longer adhere to the original naming
convention.

Name Collisions

All names whose scope extends outside the specific filein which isit is defined will start with the two
character sequence CS. As described below, thisinitial sequence may bein upper or lower case.
Additionally, every such name will contain at least one upper case character and at |east one lower case
character. Inthisway, the possibility of a CS-MAP globa name being the same as a name already
used in your application is virtualy nil.

Chapter 2 Chapter 2 -- Descriptions and Discussion 29

Function Names

All function names begin with an upper case CS sequence. If the function is expected to be accessed
by modules outside of the CS-MAP library in normal use, theinitial CS sequence is followed by an
underscore character. The remainder of the function name follows, the first of which will be lower
caseif it is an alphabetic character.

Structure Tags

Structure tags begin with alower case cs sequence. If the structure is expected to be accessed by
modules outside of the CS-MAP library in normal use, theinitial sequenceisfollowed by an
underscore character. The remainder of the structure tag follows, the first character of which will
always be uppercase. Finaly, thelast character of all structure tags will be the underscore character.

Global Variable Names

Global variable names begin with alower case cs sequence. If the global variableis expected to be
accessed by modules outside of the CS-MAP library in normal use, the initial sequenceisfollowed by
an underscore character. The remainder of the global variable name follows, the first character of
which will always be an upper case letter. A global variable name will never end with the underscore
character. A global variable which is adefinition of a structure, or a pointer to same, will usually have
the same name as the structure tag, sans the trailing underscore.

Manifest Constants
Manifest constant names, e.g. include file define's, begin with alower case cs sequence. If the constant
being defined is expected to be used by modules outside of the CS-MAP library, the initial sequenceis

followed by an underscore character. The remainder of the constant name follows and will be al upper
case.

Naming Convention Examples

Table |1 shows several examples of the naming convention.

Name Type Comment

CS cdloc Function, external Name of afunction expected to be called from
outside of the CS-MAP library.

CSnad283 Function, internal Name of afunction not expected to be called from
outside of the CS-MAP library.

cs Csdef Structure tag, external Structure tag name for a structure expected to be
referenced by modules outside of the CS-MAP
library.

csNaddir_ Structure tag, internal Structure tag name for a structure not expected to

be accessed outside of the CS-MAP library.

30 CS-MAP User's Guide User's Guide

cs Dir Global Variable, Global variable name expected to be accessed
externa outside of the CS-MAP library.

csErring Global Variable, internal | Global variable name not expected to be accessed

outside of the CS-MAP library.

¢cs NO_MEM Manifest Constant, Manifest constant expected to be referenced by
external modules outside of the CS-MAP library.

csGRF_MAX_ACTIVE | Manifest Constant, Manifest constant not expected to be referenced by
internal modules outside of the CS-MAP library.

Tablell - Naming Convention Examples

Projection Code Names

Each of the thirty eight projections has a five character code name which is used in al structure tags
and function names associated with the specific projection. Table 11 lists each projection, the five

character code value, the structure tag name, and setup function name associated with each as examples

of how this code valueis used to identify the projection each is associated with. All code elements
which are specifically related to specific projection are named in a similar manner.

Projection Code Structure Setup

Tag Function
Transverse Mercator trmer cs Trmer_ CStrmerS
Lambert Conformal Conic Imbrt cs Lmbrt_ CSImbrtS
Hotine Oblique Mercator oblgm cs Oblgm_ CSoblgms
Alber's Equal Area alber cs Alber_ CSalberS
Mercator mrcat cs Mrcat_ CSmrcatS
Miller Cylindrical millr cs Millr_ CSmillrS
Lambert Equidistant Azimuthal azmed cs Azmed | CSazmedS
Lambert Equal Area Azimuthal azmea cs Azmea_ | CSazmeaS
Polar Stereographic pstro cs Pstro CSpstroS
Oblique Stereographic ostro cs Ostro_ CSostroS
Snyder's Oblique Stereographic sstro cs Sstro CSsstroS
Equidistant Conic edcnc cs Edenc CsedencS
Sinusoidal sinus cs Sinus_ CSsinusS
American Polyconic plycn cs Plyen CSplyens
Modified Polyconic modpc | cs Modpc_ | CsmodpcS
Lambert Tangential Imtan cs Lmtan CSimtanS
Van der Grinten vdgrn cs Vdgrn_ CSvdgrnS
Orthographic ortho cs Ortho CSorthoS

Chapter 2 Chapter 2 -- Descriptions and Discussion 31

Ghomonic gnomc | ¢cs Gnomc_ | CsgnomcS
Equidistant Cylindrical edeyl cs Edeyl CSedcylS
Cassini csini cs Csini_ CScsiniS
Modified Stereographic mstro cs Mstro_ CSmstroS
New Zealand National Grid nzind cs Nzind_ CSnzindS
Robinson Cylindrical robin ¢s Robin_ CSrohinS
Bonne bonne cs Bonne CsbonneS
Equal Area (Authalic) Cylindrical, Normal Aspect nacy! cs Nacyl CSnacylS
Equal Area (Authalic) Cylindrical, Transverse Aspect | tacyl cs Tacyl CStacylS
Mollweide molwd | cs Molwd | CsmolwdS
Eckert IV ekrt4 cs Ekrt4 CSekrtdS
Eckert VI ekrt6 cs Ekrt6 CSekrt6S
Goode Homolosine hmlsn cs Hmisn_ CshmlsnS
Bipolar Oblique Conformal Conic bpcnc cs Bpene CShpcncS
Oblique Cylindrical swiss CS Swiss CSswissS
Snyder Transverse Mercator trmrs cs_Trmrs_ CStrmrsS
Krovak Obligue Conformal Conic krovk cs Krovk CSkrovkS
Non-georeferenced Coordinates nerth cs Nerth CSnerthS
Danish System 34 sys34 | cs Sys34 | CSsys34S
Unity Pseudo Projection unity cs Unity CSunityS

Table 1l - Projection Code Names and Usage Examples

32 CS-MAP User's Guide User's Guide

High Level Interface

Functions are provided which can convert a coordinate from one coordinate system to another with a
single function call. This set of functions was originally developed specifically for the application
programmer who is coding in BASIC, FORTRAN, APL, or other language (other than C or Pascal)
which can make simple function calls. It does not use structure pointers of any sort. Since the affect
on performance is small (about a 20% reduction), it is now the recommended interface for most
applications.

Most of the functions described in this section use CSbcclu and CSbdclu to cache coordinate system
and datum conversion definitions. Therefore the performance penalty of these functionsis reduced to a
search of alinked list for the coordinate system names involved. These cache functions are smart
enough to keep the most recently accessed items at the front of the list to further minimize the
performance penalty.

The information presented in this section isintended only to associate a function name with a specific
capability. Refer to Chapter 4 of the CS-MAP documentation for detailed information and prototypes
for al functionsreferred to in this section.

Chapter 2 Chapter 2 -- Descriptions and Discussion 33

Basic Coordinate Conversion -- CS_cnvrt

Given a coordinate as an array of three doubles, and the names of two coordinate systems as two
character arrays, CS_cnvrt converts the coordinate from one system to another. It'sthat simple. Where
cartesian coordinates are provided and returned, the X coordinate isthe first element of the array, the Y
coordinate is the second, and the Z is the third element of the array. Where geographic coordinates are
provided, the first element in the array must contain the longitude, the second the latitude, and the third
element must contain the height. In either case, the manner in which the values are interpreted depends
upon the coordinate systems involved. For example, if the source coordinate system definition
specifies the unit to be meters, the X, Y, and Z coordinates are considered to be in meters. Similarly, if
the target coordinate system is defined as a latitude and longitude system with an angular unit of grads,
the returned latitude and longitude coordinates will be in units of grads.

The status value returned by ¢S _cnvrtinforms the calling application of the validity of theresults. A
zero return value indicates that the requested conversion was compl eted without complication and the
results now occupy the coordinate array. A negative status return value indicates a hard error occurred
and that the contents of the coordinate array remain unchanged. A positive, non-zero return status
indicates that the conversion was performed, but an abnormality was encountered during the
conversion. In this case, the results returned in the coordinate array may not be exactly what the user
expects.

In all cases of a negative status return, the values in the provided coordinate array will remain
unchanged. Taking the absolute value of the returned status value will often produce the CS-MAP
error code for the specific condition causing the hard error. The numeric error code which defines the
specific cause of the problem will aso be stored inthe cs_Error global variable, and atextua
description of the error condition can be obtained by calling the CS_errmsg function before calling any
other CS-MAP function. Typically, when applications detect a negative status return, the application
informs the user using the textual description obtained from CS_errmsg and terminates the current
operation.

CS_cnvrtreturns a positive non-zero status value whenever it encounters something suspicious, but not
something that precludes a conversion. Positive non-zero return values are usually caused by
coordinate systems and coordinates which are incompatible, or specific values which are singularity
points for the projection(s) involved. A common cause of a positive non-zero return value isthe
conversion of apoint at either pole. CS-MAP will return a positive non-zero value in these cases as
longitude is undefined at the poles, and reversing the calculation is unlikely to reproduce the initial
value. Another common cause of a positive non-zero status return is providing, say, UTM coordinates
when the source coordinate systemisgivenas"LL". UTM coordinates, usually, will not bein the
normal range of geographic coordinates and CS-MAP will consider thisto be suspicious. A positive
return value will also be returned if, for example, it is requested to convert a geographic coordinate in
Europe from NAD27 to NADS3.

When a positive non-zero return value from CS_cnvrtis encountered, the typical application issues a
warning message to the user and continues. These abnormal, but not necessarily fatal, conditions are
often the result the user desires. It should be I€eft the user to decide. For performance reasons, CS-
MAP does not automatically generate a textual message for these conditions. However, application
programs can analyze the returned status value in order to present a more specific warning message to
the end user.

34 CS-MAP User's Guide User's Guide

Grid Scale Factor -- CS_scale

Given a coordinate system name and alocation in the form of a geographic coordinate, CS_scale will
return the grid scale factor of the coordinate system at the specified location. CS_scale returns a
negative one in the event of an error condition. In such cases, the cause of the error can be determined
by examining cs_Error which will contain the CS-MAP numeric error code of the condition which
caused the error. CS_errmsg can be used to obtain atextual description of the error condition. An

error caused by the location being outside of the domain of the coordinate system will be indicated by a
cs_Error vaue of zero. Inthis case, no textual description will be available.

Note that the coordinate provided as the second argument must be a geographic coordinate, i.e. latitude
and longitude in degrees referenced to the Greenwich prime meridian. Longitude isthe first element in
the array, latitude is the second. (The third element is not currently used for grid scale calculations, but
may bein the future.) Asawaysfor internal geographic coordinates, use negative values for west
longitude and south latitude.

Convergence Angle -- CS_cnvrg

Given a coordinate system name and alocation in the form of a geographic coordinate, CS _cnvrg will
return the convergence angle of the coordinate system at the specified location, in degrees east of
north. CS_cnvrg returns anegative 360 (i.e. -360) valuein the event of an error condition. In such
cases, the cause of the error can be determined by examining cs_Error which will contain the CS-
MAP numeric error code of the condition which caused the error. CS_errmsg can then be used to
obtain atextual description of the error condition. An error caused by the location being outside of the
domain of the coordinate system will be indicated by acs_Error value of zero. In thiscase, no
textual description will be available.

Note that the coordinate provided as the second argument must be a geographic coordinate, i.e. latitude
and longitude in degrees referenced to the Greenwich prime meridian. Longitude isthe first element in
the array, latitude isthe second. (Thethird element is not used for convergence calculations.) As
always, use negative values for west longitude and south latitude.

Chapter 2 Chapter 2 -- Descriptions and Discussion 35

Data Directory -- CS_altdr

In order to operate correctly, CS-MAP needs to access to several datafiles, the most important of
which isthe Coordinate System Dictionary. CS_altdr can be used to provide CS-MAP with the path to
the directory it should look in for all of its datafiles. The single argument should contain the full path
to the directory containing al of CS-MAP's supporting datafiles. Y ou can instruct CS_a/tarto use the
value of the CS_MAP_DIR environmental variable by setting the argument to the NULL pointer. Should
the argument point to the null string, CS-MAP will consider the current directory on the current drive
as the directory in which to search for datafile.

Inall cases, CS_aftarwill return a-1if avalid Coordinate System Dictionary file could not be located
in the indicated directory, for whatever reason.

Important Note: Failure to successfully call this function prior to calling any other CS-MAP functionis
likely to cause afatal addressing error and the host application to crash.

Recover System Resources -- CS_recvr

Use this function to recover any and all system resources, such as file descriptors and heap memory,
which CS-MAP may have alocated dueto callsto CS cnvrt, CS_scale, and CS_cnvrg functions.

Get Error Message Text -- CS_errmsg

CS_errmsg returns in the buffer supplied by the calling module a null terminated string which is
suitable for reporting the last error condition detected by CS-MAP. This function should be used only
after any CS-MAP function returns a negative status. It should be called prior to any other CS-MAP
function call.

Compute Azimuth and Distance -- CS_llazdd

CS llazddis a utility function which is a part of the High Level Interface. Use this function to compute
the azimuth from one geographic coordinate to another. It also returns the distance between the two
points. These calculations take full account of the ellipsoid, and ellipsoid parameters are part of the
calling sequence.

Unit Lookup -- CS_unitlu

Use CS_unitlu function to obtain the conversion constant for any of the unit systems understood by CS-
MAP. CS_unitluwill return azero if the supplied unit nameis not valid.

36 CS-MAP User's Guide User's Guide

Coordinate System Name Verification — CS_cslsValid
Usethe CS_cs/sValid function to determine if a coordinate system key nameis that of an existing

coordinate system defined in the currently active Coordinate System Dictionary without any side
affects.

Datum Name Verification — CS_dtlsValid

Usethe CS_dlt/sValid function to determine if a datum key name is that of an existing datum defined in
the currently active Datum Dictionary without any side affects.

Ellipsoid Name Verification — CS_ellsValid

Usethe CS_ellsValid function to determine if aellipsoid key name is that of an existing ellipsoid
defined in the currently active Ellipsoid Dictionary without any side affects.

Low Level Functions

While the use of the High Level or the High Performance I nterfaces described aboveis highly
recommended, certain applications may require the use of the lower level functions. The sub-sections
of this section organize these functions into three major groups:

1. cartographic projection functions,
2. geodetic datum shift functions, and
3. general mapping/geodetic functions.

Cartographic Projections

For each projection supported, there exist eight, possibly nine, functions which comprise the full
implementation of a projection. The brief description of these functionsis given below. These
descriptions will be important to those adding a new projection as well.

Those adding projections to the system only need to add an entry to the projection table cs_Prjtab.
Doing so, you will need to add a pointer to the Definition Check and the Setup functions. To activate
the proper parameter settings in the MFC dialog, you will aso need to add the projection to the
cs_PrjprmMap table. Itisunlikely, but if your new projection uses a new type of parameter, you may
need to add a new entry to thecs_Prjprmtable. All of these tables are defined in the CSdataPJ.c
module.

Chapter 2 Chapter 2 -- Descriptions and Discussion 37

Definition Check Functions

For each projection there exists a function which verifies that a coordinate system definition adheres to
the requirements of the projection. These functions are named in a manner similar to all other
projection functions, but the distinguishing final character is Q. To prevent large scale duplication of
code, each Q function checks only those elements of a coordinate system definition which are specific
to the projection. The generalized check function, CS_cschk, checks those elements which are common
to all coordinate systems (e.g. datum, ellipsoid, and units).

CS csloc calsthis function prior to calling the setup function, thus providing the setup function with
data known to be valid for the given projection. Thisalso impliesthat the pointer to the Q function for
each projection must reside in the projection table.

Setup Function

The setup function for each projection has two basic responsibilities. It should perform all of the one-
time cal culations which can be performed independent of the specific coordinates which are to be
converted and insert in the cs_Csprm__ structure pointers to the nine functions required for coordinate
conversion. It isthe setup function which isthe primary repository for all knowledge about a specific
projection. Therefore, it is one of the five elementsrequired in the projection table other than the name
of the projection. (C++ users would use the term constructor for the setup function. The design of CS-
MAP predates the availability of C++ compilers on personal computers.)

This function is always supplied with a pointer to acs_Csprm_ structure. This single argument
supplies the setup function with the information required to perform the setup viathe csdef and
datum elements and the repository for the results of the setup by way of the 112cs, cs211,
cs_csscl, cs_cscnv, cs_cssck, cs_cssch, Hlchk, xychk, and prj_prms e ements. Note that
the prj_prms element of the cs_Csprm_ structure is a union of all the pre-processed projection
parameter structures, thus providing arepository for setup parameters regardless of the projection in
use. Refer to Table IV (given in the next topic) for the names of the setup functions for al thirty eight
projections currently supported.

Also note that in order to reduce the amount of duplicated code necessary to support the large number
of projection variations now supported, the prj_code element of the cs_Csprm_ structure must be
filled in aswell prior to calling the setup function.

38

CS-MAP User's Guide User's Guide

Forward Functions

For each supported projection, there exists aforward function. It is responsible for converting latitudes
and longitudes to the appropriate coordinates given a pointer to the projection parameters for the
specific projection. A pointer to such function isinserted into the 112cs element of thecs_Csprm_
structure by the setup function. These functions require that they be given a pointer to the projection
parameters calculated by the setup function, e.g. a pointer to a element of the prj_prms union in the
cs_Csprm_ structure. Refer to Table IV for the names of the forward functions for all thirty eight
projections currently supported.

Setup Forward Inverse Projection

Function Function Function

CstrmerS CStrmerF CStrmerl Transverse Mercator
CSmbrtS CSImbrtF CSImbrtl Lambert Conformal Conic
CsoblgmS CSoblgmF CSoblgml Hotine Oblique Mercator
CSalbers CSalberF CSalberl Alber’'s Equal Area Conic
CSmrcatS CSmrcatF CSmrcatl Mercator

CSmillrS CSmillrF CSmillrl Miller Cylindrical

CsazmedS CSazmedF CSazmed| Lambert Equidistant Azimuthal
CsazmeaS CSazmeaF CSazmeal Lambert Equal Area Azimuthal
CSpstroS CSpstroF CSpstrol Polar Stereographic

CSostroS CSostroF Csostrol Oblique Stereographic
CSsstroS CSsstroF CSsstrol Snyder’ s Oblique Stereographic
CsedcncS CSedencF CSedcencl Equidistant Conic

CSsinusS CSsinusF CSsinus| Sinusoidal

CSplyenS CSplyenF CSplyenl American Polyconic
CsmodpcS CSmodpcF CSmodpcl Modified Polyconic

CSimtanS CSImtanF CSimtanl Lambert Tangential

CSvdgrnS CSvdgrnF CSvdgrnl Van der Grinten

CSorthoS CSorthoF CSorthol Orthographic

CsgnomcS CSgnomcF CSgnomcl Gnomonic

CSedcylS CSedcylF CSedcyll Equidistant Cylindrical
CScsiniS CScsiniF CScsinil Cassini

CSmstroS CSmstroF CSmstrol Modified Stereographic
CSnzlndS CSnzindF CSnzindl New Zealand National Grid
CSrobinS CSrobinF CSrobinl Robinson

Chapter 2 Chapter 2 -- Descriptions and Discussion

39

CShonneS CSbonneF CSbonnel Bonne
CSnacylS CSnacylF CSnacyll Normal Aspect, Equal Area (Authalic)
Cylindrical
CStacylS CStacylF CSnacyll Transverse Aspect, Equal Area (Authalic)
Cylindrical
CsmolwdS CSmolwdF CSmolwdl Mollweide
CSekrt4S CSekrtdF CSekrtdl Eckert IV
CSekrt6S CSekrt6F CSekrtél Eckert VII
CShmlsnS CShmisnF CShmisnl Goode Homolosine
CSbpcncs CShpencF CSbpcncl Bipolar Obligue Conformal Conic
CSswissS CSswissk CSswissl Oblique Cylindrical
CStrmrsS CStrmrsk CStrmrsl Transverse Mercator ala Snyder
CSkrovkS CSkrovkF CSkrovkl Krovak Oblique Conformal Conic
CSnerthS CSnerthF CSnerthl Non-georeferenced coordinate system
TablelV - Setup,
Forward, and Inverse
Function Names
CSsys34S CSsys34F CSsys34 Danish System 34
CSunityS CSunityF CSunityl Unity (pseudo projection)

Inverse Functions

Similarly, there exists for each projection an inverse function, responsible for converting coordinate

system coordinates to latitudes and longitudes. A pointer to such function isinserted into the cs211

element of the cs_Csprm_ structure by the setup function, and these functions require a pointer to the
setup parameters calculated by the setup function. Refer to Table 1V for the names of the inverse

functions for all thirty eight projections currently supported. Please note that the last character in the

name of each of these functionsis| (uppercasei).

40

CS-MAP User's Guide User's Guide

Scale Functions

The Coordinate System Mapping Package al so includes the ability to determine the grid scale factor of

acoordinate system at any point. In many casesthere is an analytical formulawhich produces the

desired results. Since analytical formulas for the grid scale factor for all thirty eight projections could

not be found, the grid scale factor is determined empirically for some projections using the
latitude/longitude azimuth and distance calculation function CS_/lazdd.

K Scale H Scale Convergence Projection

Function Function Function

CStrmerK <none> CStrmerC Transverse Mercator

CSImbrtK <none> CSImbrtC Lambert Conformal Conic
CSoblgmK <none> CSoblgmC Hotine Oblique Mercator
CSalberK CSaberH CSaberC Alber's Equal Area Conic
CSmrcatK <none> CSmrcatC Mercator

CSmillrK CSmillrH CSmillrC Miller Cylindrical

CSazmedK CSazmedH CSazmedC Lambert Equidistant Azimuthal
CSazmeaK CSazmeaH CSazmeaC Lambert Equal Area Azimuthal
CSpstroK <none> CSpstroC Polar Stereographic

CSostroK <none> CSostroC Oblique Stereographic
CSsstroK <none> CSsstroC Snyder's Oblique Stereographic
CsedcncK CSedcencH CSedencC Equidistant Conic

CSsinusK CSsinusH CSsinusC Sinusoidal

CSplycnK CSplycnH CSplyenC American Polyconic
CsmodpcK CSmodpcH | CSmodpcC Modified Polyconic

CSImtanK CSImtanH CSimtanC Lambert Tangential

CSvdgrnkK CSvdgrnH CSvdgrnC Van der Grinten

CSorthoK CSorthoH CSorthoC Orthographic

CsgnomcK CSgnomcH CSgnomcC Gnomonic

CSedcylK CSedcylH CSedcyIC Equidistant Cylindrical
CScsiniK CScsiniH CScsiniC Cassini

CSmstroK <none> CSmstroC Modified Stereographic
CSnzindK <none> CSnzindC New Zealand National Grid
CSrobinK CSrobinH CSrobinC Robinson

CsbonneK CSbonneH CSbonneC Bonne

CSnacylK CSnacylH CSnacylC Normal Aspect, Equal Area (Authalic) Cylindrical
CStacylK CStacylH CSnacyIC Transverse Aspect, Equal Area (Authalic) Cylindrical

Chapter 2 Chapter 2 -- Descriptions and Discussion

41

CsmolwdK CSmolwdH | CSmolwdC Mollweide
CSekrtdK CSekrt4H CSekrt4C Eckert IV
CSekrteK CSekrt6H CSekrt6C Eckert VI
CshmlsnK CshmlsnH CShmlsnC Goode Homolosine
CSbpcncK <none> CSbpeneC Bipolar Oblique Conformal Conic
CSswissK <none> CSswissC Swiss Oblique Cylindrical
CStrmrsK <none> CStrmrsC Transverse Mercator ala Snyder
CSkrovkK <none> CSkrovkC Krovak Oblique Conformal Conic
CSnerthK <none> CSnerthC Non-georeferenced coordinate system; scaleis always
1.0, convergence is aways zero.
TableV - K Scae H
Scale, and Convergence
Angle Function Names
CSsys34K <none> CSsys34C Danish System 34 (believed to be conformal, but this
is not a sure thing)
CSunityK <none> CSunityC Unity

As mentioned above, for non-conformal projections, there are two scale factors, K and H. Therefore,
for al thirty eight projections, there exists aK function, and for al non-conformal projections there

existsan H function. A pointer to the appropriate function isinserted into the cs_Csprm_ structure by
the setup function and, as you might expect, each of these functions requires a pointer to the projection

parameters as calculated by the setup function.

Refer to Table V for the names of the K scale functions, i.e. grid scale factor along a parallel, and the H

scale functions (i.e. scale along ameridian) for all thirty five projections currently supported. The

name of the H function is given as <none> for conformal projections. In these cases, the H scale factor

is the same as the K scale factor.

Convergence Functions

For each projection there exists a function which computes the convergence angle for any point given a

coordinate system definition. Refer to Table V for the names of the convergence angle functions for
al thirty one projections currently supported. Again, analytical formulas for the convergence angle
have not been located for al projections. Therefore, for some projections the convergence angleis
determined empirically using the CS_/lazdd function.

42 CS-MAP User's Guide User's Guide

Geographic Limits Check Functions

For each projection, there exists a function which determinesif a given geographic coordinate, great
circle, or region is entirely within the mathematical domain of a coordinate system. These functions
are named in amanner similar to all other projection functions, but the distinguishing final character is
L.

For performance reasons, the actual conversion functions of CS-MAP check the coordinate data they
are provided only to the extent necessary to prevent floating point exceptions. The geographic limits
function of each projection can be used prior to a conversion to determine if a specific geographic
coordinate, great circle defined by two geographic coordinates, or a closed region defined by four or
more geographic coordinates is entirely within the mathematical domain of the projection. It isnot
unusual for applications to know the extents of the data set which is to be converted, and thus the
extents only, not each individual coordinate, need be checked. This can provide significant
performance advantages.

Cartographic Limits Check Functions

For each projection, there exists a function which determines if a given cartesian coordinate, line
segment, or region is entirely within the mathematical domain of a coordinate system. These functions
are named in amanner similar to all other projection functions, but the distinguishing final character is
X.

For performance reasons, the actual conversion functions of CS-MAP check the coordinate data they
are provided only to the extent necessary to prevent floating point exceptions. The cartesian limits
function of each projection can be used prior to a conversion to determine if a specific cartesian
coordinate, line defined by two cartesian coordinates, or a closed region defined by four or more
cartesian coordinates are entirely within the mathematical domain of the projection. It isnot unusual
for applications to know the extents of the data set which is to be converted, and thus the extents only,
not each individual coordinate, need be checked. This can provide significant performance advantages.

Geodetic Datum Shift Functions

The methods/functions associated with geodetic datum shifts are not nearly as well organized as those
of cartographic projections. Thisisthe result of many different governmental agencies solving the
problem independently and relying on different data sets and calculation techniques. However, the
basic functionsinvolved in the most generalized techniques are described in the following sub-
sections.

NADCON Emulation Functions

Four lower level functions can be used to perform NAD27 to NAD83 conversions. Use CSnadlnitto
initialize the system, and CSnadCls to release all resources absorbed by CS_nadinit.

Once CSnadinit has been called, CSnad27ToNad83 can be called to convert geographic coordinates
from NAD27 to NAD83. CSnad83ToNad27 can be used to convert NAD83 to NAD27. Itsthat simple.

Chapter 2 Chapter 2 -- Descriptions and Discussion 43

Datum Conversion Functions

The basic technique used for NAD83 and HARN described in previous sectionsis used for severa
other datums now defined worldwide. In the descriptions given below, you will see how this technique
appliesto AGD66; the Geodetic Datum of Australiaof 1966. A similar pattern exists for the following
datums and descriptions of these inidividual sets of functions will not be repeated in this section of the
manual. Inthefuture, there arelikely to be alot more of these.

Abbreviated Name Full Name

AGD66 Australian Geodetic Datum of 1966
AGD84 Australian Geodetic Datum of 1984
GDAY% Geocentric Datum of Australia, 1994
NZGD49 New Zealand Geodetic Datum of 1949
NZGD2K New Zealand Geocentric Datum of 2000
ATS77 Average Terrestrial System of 1977
CSRS Canadian Spatial Reference System

Four lower level functions can be used to convert coordinates from AGD66 to GDA94. Use
CSagd66initto initialize the system, and CSagd66Cis to release all resources absorbed by CSagd66init.

Once CSagd66/nit has been successfully called, CSagd66ToGda94 can be used to convert geographic
coordinates from AGD66 to GDA94. Similarly, CSgda94ToAgd66 can be used to convert geographic
coordinates from GDA94 to AGDG66.

General Utility Functions

Supporting the generalized coordinate conversions described in the previous sections, are several
functions which perform cal culations which are quite useful to the GIS/GPS/M apping application
programmer. Several (but probably not all) of these are described in the following sub-sections.

44

CS-MAP User's Guide User's Guide

GEOID Height Functions

Thisfacility enables applications to calculate and use, as appropriate, the geoid height (or geoid
separation if you prefer) at locations for which datais available. Record the data files available, and
desired to be used, in the Geodetic Data Catal og file named GeoidHeight.gdc.

This implementation emulates C++, but iswritten in ANSI compliant C. The functions are named:
CSnewGeoidHeight, CSdeleteGeoidHeight, and CScalcGeoidHeight; and are defined in the module
named cs_GeoidHeight.c. Code specific to geoid height file formats can be found in modules named:
CS geoid96.c, CS genid99.c, CS bynFile.c, and CS osgm9l.c. Low level applications may wish to access
the functions defined in these modules directly.

Note thereis no inverse function, asit is unnecessary. To obtain orthometric height at a given location,
add the geoid height returned by CScalcGeoidHeight to the elipsoid height. To calculate the ellipsoid
height, subtract the geoid height returned by CScalcGeoidHeight from the orthometric height.

Geocentric Coordinates

Converting between geographic and geocentric coordinates has been inside of CS-MAP for many
years. However, this capability has been hidden inside of the datum conversion functions. Inthis
release, this capability is now explicitly available in functions named CS _/ihToXyzand CS xyzTollh
which are defined in the CS dtCalc.c module.

Note that each of these functions requires the definition of the ellipsoid in use, expressed as two
separate double arguments: equatorial radius and eccentricity squared.

MGRS Implementation

Release 11.01 includes a series of new functions that provide the ability to generate MGRS
designations from geographic coordinates, and vice versa. This implementation consists of 6
functions designed for application programmer use, and two supporting functions. The support
functions may be of interest as they provide the ability to convert between geographic and UTM
coordinates’zone number where the rather strange stuff which goes on in northern Europe (i.e. southern
Norway and the Svaldberg Islands) is appropriately accounted for.

While written in 'C' to be consistent with the rest of CS-MAP, the implementation of the MGRS
capability has a definite C++ structure to it. That is, there exists a structure definition, three
constructors, a destructor, two public functions and two private functions (i.e. the supporting
functions).

MGRS Constructors

Construction of acs_Mgrs_ object (i.e. allocation and initialization of aacs_Mgrs__ structure)
requires knowledge of the ellipsoid definition to be used and if the alternative lettering sequence (i.e.
Bessel) isto be used. Thus, the three constructors simply provide three different ways of specifying
the ellipsoid which is to be used:

struct cs_Mgrs_ *CSnewMgrs (double e_rad,double e_sq,short bessel);

struct cs_Mgrs_ *CSnewMgrskE (const char *elKeyName,short bessel);

struct cs_Mgrs_ *CSnewMgrsD (const char *dtKeyName,short bessel);

Chapter 2 Chapter 2 -- Descriptions and Discussion 45

where the elKeyname argument can be used to specify the ellipsoid by key name. Alternatively,
application programmers can specify a datum name (the dtKeyName argument) and the calculations
will be based on the ellipsoid upon which the datum is referenced. Of course, the application
programmer can use the e_rad and e_sq version to specify the equatorial radius and square of
eccentricity directly. In all cases, the bessel argument is zero to indicate the normal lettering scheme.
+1 to indicate the alternative lettering scheme.

All constructors return the null pointer in the event of an error. Use CS_errmsg to obtain a string that
describes the nature of the error.

MGRS Destructor

Use CSdeleteMgrsto delete acs_Mgrs_ object constructed by one of the ocnstructors. Currently, a
call of ¢S _free will accomplish the same thing, but maybe not in the future.

void CSdeleteMgsr (struct cs_Mgrs_ * _ This);
Likeit's C++ equivalent, this function is smart enough not to attempt to free a null pointer.

MGRS Public Functions

Naturally enough, two conversion functions exists. Given a properly initialized cs_Mgrs_ object (i.e.
structure) and a geographic coordinate, CScalcMgrsFromL/will return the appropriate MGRS
designation. CScalcL/FromMgrs reverses the process. In both cases, areturn value of zero indicates
success, non-zero indicates failure. Use CS_errmsg to obtain a description of the cause of failure.

int CScalcMgrsFromLl (struct cs_Mgrs_ *__ This,char *result,int size,double latLng [2],int
prec);

int CScalcLIFromMgrs (struct cs_Mgrs_ *_ This,double latLng [2],Const char *mgrsString);

In these prototypes, the first argument is a pointer to an initialized cs Mgrs_ object obtained from one
of the constructors described above. The latLng argument refers to an array of at least two doubles
which contain the longitude and latitude (in that order) in degrees. The prec argument indicates the
number of digits to be included in the resulting MGRS designation. Valid values range from 0 to 5.
Note, that avalue of 5 indicates that 5 easting, and 5 northing digits will be included in the resulting
string. Of course, CScalcMgrsFromL/will never write more than size charactersto the result array, and
(assuming size is greater than zero) will cause result to be null terminated.

MGRS Private Functions

Two "private” functions, i.e. internal support functions, exist which convert geographic coordinates to
UTM/UPS coordinates and zone number. These functions are aware of the missing/widened zonesin
the northern Europe region. They are also capable of switching between UTM and UPS (Universal
Polar Stereographic) coordinates as appropriate. These functions use a utmZone variable which
carriesthe UTM zone number where: 1) northern UTM zones are positive numbers between 1 and 60
inclusive, 2) southern UTM zones are negative humbers between —1 and —60 inclusive, 3) +61 refersto
the North Pole UPS zone, 4) —61 refers to the South Pole UPS Zone,, and 5) the value zero isinvalid
and used to indicate an error condition.

int CScalcUtmUps (struct cs_Mgrs_ *_This,double utmUps [2],const double latLng [2]);

int CScalclLatLng (struct cs_Mgrs_ *_ This,double latLng [2],const double utmUps [2],int
utmZone);

46

CS-MAP User's Guide User's Guide

Given ageographic coordinate, CScalcUtmUps calculates the appropriate UTM/UPS coordinates and
returns the appropriate utmzZone value. Given a UTM/UPS coordinate and utmZone value,
CScalcLatlng returns the appropriate geographic coordinate. CScalcLatlng returns zero on sUCCeSs,
non-zero on failure. In all cases, the calculation is based on the ellipsoid used to construct the
cs_Mgrs_ argument to the function.

Forward/Inverse Functions

The term Forward/Inverse is a common way of referring to what is also known as the basic geodesy
problem. That is, given ageodetic latitude/longitude, cal culate the a new position given an azimuth an
distance. This may sound pretty simple, but the calculation must be carried out on the ellipsoid. Thus
the calculation is rather complex.

Forward refers to the calculation of a new geodetic position given an azimuth and a distance. Inverse
refers to the calculation of an azimuth and distance given two geodetic positions.

CS llazdd performs the forward calculation, and CS_azdd// performs the inverse calculation.

Chapter 2 Chapter 2 -- Descriptions and Discussion 47

Error Handling

Having it originsin the 'C' language, error reporting in the CS-MAP library isimplemented using the
return status methodology. That is, functions which can detect abnormal situations will return an
integer status value to indicate the success of the operation intended, Status returns are of two types.

With the exceptions described below, all CS-MAP functions which can detect an abnormal situation
will return azero for success. A negative value will be returned for afailure which is considered fatal,
and a non-zero positive value is returned for awarning or providing information about a remarkable
condition.

Whilefatal errors can and do occur during the setup phase of a conversion/transformation combination,
it isan important part of the design of CS-MAP that fatal errors cannot occur with conversion and
transformation functions. Thus, any function involved in the creation and/or initialization of a
conversion or transformation can be expected to return a negative status value. Functions which
actually perform the conversion and/or transformation cal culations can be expected to never return a
negative status.

In the event of a negative status return, applications should immediately call the CS_errmsg function
which will return an (8 bit character, English only) textual description of the cause of the problem.
This description will often include, when appropriate, contextual information such as file names etc.

Status return values from cal culation functions are always positive and non-zero values usually indicate
that the coordinate to be converted is:

= Qutside the useful range of the coordinate system being used,

= Quitside the coverage area of a grid shift datafile,

= Would have produced adomain error (i.e. log (-1))

= Orthe coordinateis at either pole (which means any longitude is equivalent to any other).

In any case, the calculation function will indeed return arational value. In many cases, thisrational
value will be produced by what is called a fallback technique.

In the experience of the developers of CS-MAP, once a conversion/transformation operation has been
successfully constructed (i.e. setup), applications should at most simply count the number of non-zero
positive status values returned by the cal culation functions and report this number to the user

(assuming it is non-zero) upon completion of the conversion. That is, a non-zero status return from any
and all calculation functions should be considered as information only. Otherwise, your application
will be bogged down and end user's can easily come to the conclusion that your application has
crashed.

Also note, that to keep performance levels high, a non-zero positive status return value does not cause
the generation of a descriptive error message and calling CS_errmsg after encountering a positive
status return will produce misleading information, is anything at all.

48 CS-MAP User's Guide User's Guide

Exception

There are several functionsin CS-MAP whose function in lifeisto enumerate alist of entriesin
internal lists or dictionaries. These functionstend to return a positive 1 value to indicate success. A
zero isreturned to indicate that the end of the sequence has been encounters. (Of course, a negative
return value indicates a fatal error of some sort. This convention was chosen so as to make obtaining
such alist or enumeration rather easy to code in arobust manner:

int index;
char elpName [cs_KEEN_DEC};

index = 0;
while (CS_elEnum (index++,elevVate) > 0)
{

/* Do something with this name */

Data Structures

Discussions which follow refer to the primary data structures of CS-MAP. Twelve such data structures
are described. These structure provide the basis for the operation of the Coordinate System Mapping
Package. All structure definitions are found in the cs_map.h header file.

Ellipsoid Definition Structure

The Ellipsoid Definition structure, cs_Eldef _, carries the two principal data elements (among others)
which define an ellipsoid for our purposes. These are the equatorial radius and the eccentricity of the
ellipsoid. Among the other items contained in the structure is akey name, which is used to distinguish
one ellipsoid definition from another.

Datum Definition Structure

The Datum Definition structure, cs_Dtdef _, carries the eight principal data elements (among others)
which define adatum for our purposes. These are the key name of the ellipsoid definition upon which
the datum is based, the X, Y, and Z components of the vector from the geocenter of the datum being
defined to the geocenter of the WGS84 ellipsoid, the three rotation components of the transformation,
and the scale component of the transformation. Among the other elements contained in this structureis
adatum key name which is used to distinguish one datum definition from another.

Chapter 2 Chapter 2 -- Descriptions and Discussion 49

Datum Composite Structure

The Datum Composite structure, cs_Datum_, carries the contents of both the Datum Definition
structure and the Ellipsoid Definition structure in an composite form. This structure is never written to
disk and is used internally as a programming convenience.

Coordinate System Definition Structure

The Coordinate System Definition structure, cs_Csdef _, carries all the elements required to define a
coordinate system. Twenty four of these elements are referred to as projection parameters as their use
depends upon the projection in use (which is one of the other data elements). Therefore, it is difficult
to describe their use without delving into the specifics of each projection. (Refer to the descriptions of
the functions associated with each projection in Chapter 4 for a description of parameter use for each
projection.)

For our purposes here, let it be said that the cs_Csdef_ structure is capable of carrying the definition
of any coordinate system based on any one of the thirty eight projections supported by CS-MAP and
(hopefully) any others which may be added in the future. Thisincludes the parameters specific to the
projection, the projection origin, the coordinate system units, the coordinate system scale, the false
easting, the false northing, etc.

Preprocessed Projection Structures

There exists one structure for each of the thirty eight projections which carry the definition of a
coordinate system based on the respective projection in a preprocessed form. That is, once the specific
projection parameters applicable to a specific coordinate system are established, there are many
calculations which can be performed independent of the specific coordinates to be converted. The
results of these calculations are stored in these structures. The thirty five structure names are shown in
Tablelll. Itisthe content of these structures which actually control the conversion of cartesian
coordinates to and from latitudes and longitudes.

50 CS-MAP User's Guide User's Guide

Coordinate System Parameter Structure

The Coordinate System Parameter Structure, cs_Csprm_, is used to carry a complete definition of a
coordinate system and is the single structure used throughout the development of a coordinate
conversion. It contains acopy of the cs_Csdef _ structure of the coordinate system being used, a copy
of the cs_Datum__ structure which the coordinate system definition references, and the coordinate
system in its pre-processed form as a union of the thirty eight pre-processed parameter structures
described above. It aso contains pointers to the functions which are capable of performing the forward
and inverse coordinate conversions. Pointers are also included for grid scale and convergence angle
functions. cs_Csprm_ aso includes information about the specific projection in use, as well asthe
limits of the coordinate system, both in cartesian and geographic form. While CS-MAP is designed
such that the application should not need to know anything about the projection, there are instances
(such as our own test program) where some knowledge of the projection in use, or its specific features,
is helpful.

As aresult, this single structure represents a complete definition of a coordinate system which can be
easily passed around by pointer. Through the use of pointers to the appropriate coordinate conversion
functions contain in this structure, modules which receive a pointer to this structure do not ever have to
know exactly which projection isin usein order to perform coordinate conversions.

Projection Name Table Structure

The Projection Name Table Structure, cs_Prjtab_, isused solely to create atable of the projections
known to the system. It primarily associates a name with a projection code and a setup function. To
add new projections to the system, one need only create an entry in this table and reference the code
which, of course, must also be written. Y ou can also add additional names for existing projections by
simply making additionsto thistable.

More importantly, to remove a projection from the system (in order to reduce the size of the text space
within an executable, for example), one need simply remove (or comment out) the projection'sentry in
thistable.

In developing a coordinate system parameter structure, the name of the projection is extracted from the
coordinate system definition. Thisname islocated in the projection table. The projection setup
function associated with the selected named entry is then called and given a pointer to the union of pre-
processed structures. The setup function initializes the union asiif it were the pre-processed structure
associated with the projection under construction. Of course, CS-MAP does all of this, mostly in the
function named CS csloc.

The Projection Name Table includes afully descriptive name of each projection as well as a bit map of
the features of the projection. Refer to CSdataPJin Chapter 5 of this manual for full details.

Chapter 2 Chapter 2 -- Descriptions and Discussion 51

Datum Shift Definition Structure

The Datum Shift Definition structure, cs_Dtcprm_, carries al of the information necessary to perform
adatum shift on geographic coordinates (i.e. latitude and longitude). The information contained in this
structure includes the definition of the source and target datums and a road map of the various
conversions necessary to get, in the most accurate form, from the source datum to the target datum.
This structure is alocated upon request given the definitions of the source and target coordinate
systems. Once properly allocated, a pointer to this structureis all that the datum shift function needsin
order to calculate datum shifts.

Thus, applications do not need to have any knowledge of what datums or how many different
conversions are necessary to get from one datum to the next. In fact, quite often the conversionisthe
null conversion which implies that the source latitude and longitude are simply copied to the target
array. Again, in this case, the application has no need to know of this situation.

The above is possible only because CS-MAP (to alarge extent) requires that all datum definitions
define how to convert a specific datum to/from WGS84. Thus, by "going through" WGS84 CS-MAP
can convert any coordinate system/datum to any other. There are certain exceptions to this basic
theme.

The Data Dictionaries

The Coordinate System Mapping Package includes the definition of more than 1,000 commonly used
coordinate systems, more than 130 datum definitions, and 37 commonly referenced ellipsoids. These
definitions are carried in the Coordinate System Dictionary (afile usualy named Coordsys), the Datum
Dictionary (afile usualy named Datums), and the Ellipsoid Dictionary (afile usually hamed Elipsoid)
respectively. These files are normally expected to reside in the C:\MAPPING directory (/usr/MAPPING
under UNIX). The location of these files can be modified to suit your requirements at compile time
(see CSdata) or at run time (see CS_altdr). The names of these files can be changed either at run time
(see CS_csfnm, CS_dltfnm, and CS_elfnm) or compile time (see cs_map.h).

52 CS-MAP User's Guide User's Guide

The Coordinate System Dictionary

The Coordinate System Dictionary is afixed length record file of cs_Csdef_ structures, maintained in
sorted order by the key_nm element, i.e. the coordinate system key name. Entriesin thisfile are
located through the use of the binary search technique, therefore it isimportant that thisfile remain in
sorted order. The file has a magic number in the first four bytes. Thisis a sequence of bytes which
identify the file as being a Coordinate System Dictionary file and is defined by the
¢s_CSDEF_MAGIC manifest constant in cs_map.h. Thisvalueis checked each time thefile is opened
to make sure that the file is indeed a Coordinate System Dictionary and that it has not been seriously
corrupted. The specific value of the magic number is changed each time the format of the cs_Csdef _
structure is changed.

Functions are provided to access and maintain this file as a Coordinate System Dictionary. CS _csopn
will open thefile, verify its magic number, and return afile descriptor (or handle). CS csrd and
CS_cswrwill perform sequential reads from and writes to afile of thistype, handling encryption
appropriately. CS_cscmp compares recordsin the file for sorting and searching purposes. CS csdef
will extract a particular record from the dictionary for you. CS csupdwill update an existing entry or
add a new entry to the Coordinate System Dictionary, assuring that the file remains in sorted order.
Finally, CS_csde/ can be used to delete arecord from the dictionary.

Coordinate system definitions are verified for validity before they are written to the Coordinate System
Dictionary through the use of the CS_cschkfunction. CS_csloc (described below) also checks each
definition beforeit is actually used to create the active form of a coordinate system.

The Datum Dictionary

The Datum Dictionary is afixed length record file of cs_Dtdef _ structures, maintained in sorted
order by the key _nm element, i.e. the datum key name. Entriesin thisfile are located through the use
of the binary search technique, therefore it isimportant that this file remain in sorted order. Thefile
has a magic number in the first four bytes of the file and is defined by the cs_ DTDEF_MAGIC
manifest constant in cs_map.h. Thisis a sequence of bytes which identify the file as being a Datum
Dictionary file. Thisvalueischecked each time the file is opened to make sure that the fileisindeed a
Datum Dictionary and that it has not been seriously corrupted. The specific value of the magic number
is changed each time the format of the cs_Dtdef_ structure is changed.

Functions are provided to access and maintain this file asa Datum Dictionary. CS_dtopn will open the
file, verify its magic number, and return afile descriptor (or handle). CS dtrdand CS_dtwr will
perform sequential reads from and writes to afile of thistype, handling encryption appropriately.
CS_dtcmp compares Datum Dictionary entries for sorting and searching purposes. CS_dtdefwill
extract a particular record from the dictionary for you. CS_dtupdwill update an existing entry or add a
new entry to the Datum Dictionary, assuring that the file remainsin sorted order. Finally, CS dtde/ can
be used to delete arecord from the dictionary.

Chapter 2 Chapter 2 -- Descriptions and Discussion 53

The Ellipsoid Dictionary

The Ellipsoid Dictionary is afixed length record file of cs_Eldef_ structures, maintained in sorted
order by the key_nm element, i.e. the ellipsoid name. Entriesin thisfile are located through the use of
the binary search technique, therefore it isimportant that this file remain in sorted order. Thefile hasa
magic number in the first four bytes of the file and is defined by the cs_ ELDEF_MAGIC manifest
constant in cs_map.h. Thisis a sequence of bytes which identify the file as being a Ellipsoid Dictionary
file. Thisvalueischecked each time the file is opened to make sure that the file isindeed an Ellipsoid
Dictionary and that it has not been seriously corrupted. The specific value of the magic number is
changed each time the format of the cs_Eldef _ structure is changed.

Functions are provided to access and maintain thisfile asa Ellipsoid Dictionary. CS_elopn will open
thefile, verify its magic number, and return afile descriptor (or handle). CS elrdand CS_elwrwill
perform sequential reads from and writesto afile of this type, handling encryption appropriately.
CS_elemp compares Ellipsoid Dictionary entries for sorting and searching purposes. CS_eldefwill
extract a particular record from the dictionary for you. CS elupdwill update an existing entry or add a
new entry to the Ellipsoid Dictionary, assuring that the file remainsin sorted order. Finaly, CS_elde/
can be used to delete arecord from the dictionary.

Dictionary Encryption

The definitions of coordinate systems, datums, and ellipsoids can represent a significant investment on
the part of the application developer. Under certain circumstances, a demonstration disk for example,
the application developer may not wish to provide this information in aform from which this valuable
data can be easily extracted. Asaresult, CS-MAP fully supports a means by which dictionary data can
be encrypted. All CS-MAP functions will work equally as well with encrypted dictionaries as with
normal versions. Dictionary compilers normally produce dictionaries in encrypted form. An optionis
provided to produce unencrypted dictionaries.

54 CS-MAP User's Guide User's Guide

Dictionary Definition Protection

Dictionary entries are normally protected. That is, changes to coordinate system, datum, and €ellipsoid
definitions are controlled. This reduces technical support calls significantly. Application programmers
can control the extent of protection, or turn it off altogether. How this system works is described
below.

In normal operation, CS-MAP will not allow end users to change definitions distributed with the
application. More specifically, definitions created by the Dictionary Compiler are marked as to be
protected. End users can, and often do, create new coordinate system definitions. Therefore, rather
than change a coordinate system as distributed with the application, users would typically create a new
definition which is modified as necessary to achieve the desired results.

Definitions created by end users, and which remain unchanged for 60 days, are also protected. Thisis
done under the assumption that a definition which remains unchanged for 60 days will have been used
and judged satisfactory, and therefore should be preserved as a means of recording the actual definition
used to produce the results.

Finally, CS-MAP normally requires that the key names for all user defined definitions contain the
colon character. By adopting this convention, application updates can include coordinate system
updates without the possibility of the update overwriting avalid and valuable user defined definition.
(This, of course, assumes that the distribution will never contain a coordinate system definition with a
key name containing a colon character.)

Application programmers can control to what degree the protection system is active by simply setting
the value of either, or both, of two global variables, either at compile time (see CSdata.c) or at run time.

char cs_Unique; Inthe CS-MAP distribution, the value of this global variableis set to the colon.
Set the value of this variable to the null character to turn the user definition key name protection
feature described above off. Y ou can select a character other than the colon by simply setting this
variable to the desired character.

short cs_Protect; Usethisvariable to control the protect applied to dictionary definitions. A
positive, non-zero value is the number of days associated with the user defined definition protection
described above. For example, in the CS-MAP distribution, this valueis set to 60, indicating that after
auser defined definition remains unchanged for 60 days, it automatically becomes protected. Set
cs_Protect to zero to maintain distribution coordinate system protection, but disable al user defined
definition protection. Set cs_Protect to a negative value to disable all dictionary definition
protection.

Programmer Note: Dictionary definitions include a short which controls the protection of the
definition. If thisvalueis set to zero, the dictionary entry is permanently unprotected. If thisvalueis
set to one, the entry is permanently protected. Otherwise, this value is set to the date at which the
definition was last modified expressed as the number of days since January 1, 1990. Thus, changing
the value of cs_Protect will change the protection of user defined definitions in a dynamic manner.

Chapter 2 Chapter 2 -- Descriptions and Discussion 55

Byte Ordering

All three dictionary files described in this section contain datain binary form, thus byte ordering
becomes a serious issue when using CS-MAP on different platforms. Beginning with Release 6.0 of
CS-MAP, dictionaries are expected to bein little endian byte order regardless of the platform inuse. A
byte swapping function, CS_bswap, is called immediately after each read from any of these
dictionaries, and immediately before the write of any datato any of the dictionaries. CS_bswapis
programmed to automatically determine if byte swapping is required based on a compile time constant.
Thus, asingle copy of these dictionaries can be distributed for use on all platforms.

Theterm "al platforms" is perhaps misleading. CS_bswap will only swap between little endian and
big endian byte orders. The rather odd byte orderings of some older DEC machinesis not supported at
the current time.

The automatic byte ordering feature is easy to disable if so desired. Refer to CS_bswap for more
information.

The automatic byte ordering feature also appliesto all other binary data files upon which CS-MAP
relies. That is, automatic byte swapping is applied to al reads from NADCON database files, Multiple
Regression data files, Canadian National Transformation files, and all HPGN database files. The
choice of using little endian byte ordering was natural as these files are generally distributed by their
sourcesin thisform.

Dictionary Compiler

ASCII versions of the three dictionaries are provided in the distribution. The names of these files are
COORDSYSASC, DATUMSASC, and ELIPSOID.ASC. Binary versions of the dictionary files can be
produced by using the dictionary compiler program CS_COMP. This enables the definition files to be
committed to version control procedures and the dictionaries remade as part of your product
manufacturing process.

Originally, the ASCII files and the compilers were provided as a means of overcoming the byte order
problem on different platforms. Now that CS-MAP has been modified to process little endian files on
all platforms, this purpose is now obsolete. The version control purpose of these files remains valid.

Multiple Regression Datum Transformation Files

The compiler referred to above will aso compile afourth ASCII source file named MREG.ASC which is
aso supplied in the distribution. MREG.ASC containsin an ASCII, version controllable form, the
definition of all multiple regression transformations known to the system. Compiling this file produces
the .MRT fileswhich CS-MAP accesses, as necessary, when performing datum conversions. Y our
application distribution should include the .MRT files produced by compiling the MREG.ASC file.

56 CS-MAP User's Guide User's Guide

Default Datums, Ellipsoids, and Units

CS-MAP supports the concept of default datums, ellipsoids, and/or units. Defaults represent a
convenient way to switch a coordinate system definition between different datums, ellipsoids, and/or
units without having to change the Coordinate System Dictionary. How this feature applies to datums
is described first; and this description is then extended to ellipsoids and units.

A datum reference in a coordinate system definition may be marked as "defaultable” by enclosing the
name in square brackets. The actual datum name provided must be avalid datum reference as this
reference will be used whenever the default feature is not active. This also impliesthat the default
feature need not be active for the coordinate system definition to be valid and usable.

Upon activation of a coordinate system, regardless of the interface used, CS-MAP will check to see if
the datum specified is "defaultable”. If so, it examines the current default datum setting. If avalid
default datum has been specified, the "defaultable” datum reference is replaced by the current default
setting and coordinate system setup continues. If thereis no current default setting, the "defaultable”
datumisused asis. Thus, in the absence of a default specification, the coordinate system definition
operates as defined. Whenever a default replacement is performed, the replaced datum name in the
cs_Csdef_element of the cs_Csprm_ structure will be enclosed in parenthesis to indicate that a
default replacement has occurred.

Usethe CS_dtdfit function to define a default datum. It will return the status and the name of any
previous default. It will not alow an invalid default setting to be made. Calling CS_dtdfit with the
NULL pointer as its argument can be used to determine if the datum default feature is active and, if so,
what the current default setting is. Call CS_dtdfit with a pointer to the null string to disable the datum
default feature. Until CS drdfitis called with avalid datum reference, the datum default feature
remains disabled.

Cartographically referenced coordinate systems, and datum definitions, can contain "defaultable"
elipsoid references. Use CS_eldfitto enable and disable the "defaultable” ellipsoid feature.

Coordinate system unit specifications can also be "defaultable”. Separate default values are maintained
for linear and angular units. Use CS_/udfftto control the state of linear unit defaults, and CS_audfitto
control the state of angular unit defaults.

Y ou can completely ignore this concept of default datums, ellipsoids, and units by simply not calling
(or even referencing) any of the default functions mentioned above. Default processing is off by
default, and by never calling any of these functions, it never gets turned on. Thisishow most users
deal with the default feature.

Chapter 2 Chapter 2 -- Descriptions and Discussion 57

High Performance Interface

The High Performance Interface to the Coordinate System Mapping Package consists of thirteen
functions. By virtue of the data structures described above, use of these functions is independent of the
actual coordinate systems, projections, or datumsin use. This represents the most efficient meansto
use CS-MAP to convert coordinates from one coordinate system to another. It also insulates your
applications from most changes which could be made to the CS-MAP in the future. Thisbasic API has
not changed since 1992. This interface requires the use of structure pointers and, therefore, may not be
appropriate for use with some languages. Therefore, use this interface wherever high performanceisa
top priority and the application is written in alanguage which can handle pointers such as C, C++, or
Pascal.

These functions make use of the Coordinate System Dictionary, the Datum Dictionary, the Ellipsoid
Dictionary, and the functions which access them. This need not be of concern to the application
programmer using the High Performance Interface as it all goes on "behind the scenes’.

In this chapter, our intent is to associate function names with capabilities and features. Refer to
Chapter 4 for full details and prototypes of the functions introduced here.

The Functions

The thirteen functions which comprise the High Performance Interface are CS csloc, CS_dtcsu,
CS /l2cs, CS _drtevt, CS _cs2ll, CS_dfcls, CS_csscl, CS_cnvrg, CS_cssch, CS_cssck, CS_llchk, CS_xychk,
and CS_free. Thetypical coordinate conversion application uses only seven of these function.

Refer to the major sections following this to see how the use of these functions is combined to
produced generalized coordinate conversion capabilities.

Coordinate System Locate

Given the key name of a coordinate system defined in the Coordinate System Dictionary, CS_csloc
returns a pointer to afully initialized cs_Csprm_ structure. Thisinitialization includes all of the "one-
time" calculations and the establishment of pointers to the appropriate coordinate conversion functions.
This structure is mal/loced from dynamic memory. Therefore, you may have several such definitions
active at any given time. Also, you should release these structures when your application no longer has
need of them; use CS free.

58

CS-MAP User's Guide User's Guide

Datum Conversion Setup

Given pointers to the both the source and target coordinate systems as returned by CS csloc, CS dtcsu
returns a pointer to a malloced cs_Dtcprm_ structure which isarequired argument to the CS_dtcvt
function which actually calculates datum shifts. Asitsnameimplies, CS _dtcsu"sets up™" a datum
conversion by alocating and initializing acs_Dtcprm_ structure. Since datum conversions often
require the use of file descriptors, grid cell caches, and the like, do not use free or CS_free to release the
cs_Dtcprm_ structure returned by CS_dltesu. The sixth function of thisinterface, CS_dltc/s must be
used instead to prevent memory and file descriptor leaksin your application. Note, when appropriate,
CS dftcsureturns a pointer to a null datum conversion; a conversion which does nothing successfully
and rapidly.

Coordinate System to Lat/Long Conversion

Given apointer to an initialized cs_Csprm__ structure which describes the coordinate system in use,
the CS_cs2//function will convert a cartesian coordinate to geographic form in terms of latitude and
longitude in internal form. The resulting geographic coordinate will be based on the same datum as the
coordinate system defined in the provided cs_Csprm__ structure.

The conversion function pointers inserted into the cs_Csprm_ structure by CS_cs/oc are used to select
the proper code for the conversion. The application has no need to know what projection isin use or,
for that matter, anything else about the coordinate system in use.

Datum Conversion

Given a pointer to an initialized datum conversion parameter structure, cs_Dtcprm_, as returned by
CS dftcsu, the CS_dteve function will convert the supplied geographic coordinates from the source
datum to the target datum.

Lat/Long to Coordinate System Conversion

Given apointer to aninitialized cs_Csprm_ structure, the CS_//2cs function will convert a geographic
coordinate specified in terms of latitude and longitude (in degrees) to the coordinates of the coordinate
system defined by the cs_Csprm_ structure.

The conversion function pointers inserted into the cs_Csprm_ structure by CS cs/oc are used to select
the proper code for the conversion. The application has no need to know what projectionisin use or,
for that matter, anything else about the coordinate system in use.

Close Datum Conversion

Given a pointer to an initialized datum conversion parameter structure, as returned by the €S drcsu
function, ¢S _d'tc/s will release all system resources allocated for the specific datum conversion. Note,
that since several datum conversions may beinitialized and operative at any given time, CS_dfcls does
not necessarily release all resources associated with certain datum transformations until such time as
the last datum conversion parameter block referencing such resourcesis closed.

Chapter 2 Chapter 2 -- Descriptions and Discussion 59

Grid Scale Factor

Given apointer to aninitialized cs_Csprm_ structure as returned by the CS_csloc function, CS_cssc/
will return the grid scale factor for the coordinate system at alocation indicated by a geographic
coordinate. It isimportant to note that the concept of Grid Scale as a single number applies only to
coordinate systems based on conformal projections such as the Transverse Mercator, Lambert
Conformal Conic, and the Oblique Mercator. Other projections, such as equal area projections, will
have two such scale factors. In the case of equidistant projections, there are two such scale factors but
one of them will usually be one. In the case on non-conformal projections, CS_cssc/will return what
the designers of CS-MAP consider the more interesting of the two scale factors for the specific
projection involved.

Scale Along a Parallel

The two scale factors mentioned above consist of the scale along a parallel, often referred to as 'k, and
the scale along a meridian, referred to as'h'. Given a pointer to aninitialized cs_Csprm_ structure as
returned by CS csloc, CS_cssckwill dways return the scale factor along a parallel at the location
provided.

The nomenclature referred to here is that used by J. P. Snyder in Map Projections - A Working Manual.
Other authors use different symbology. In hislater work, Map Projections - A Reference Manual,
Snyder uses the more common notation. CS-MAP, whose origins date back to 1987, uses the original
Snyder notation.

Scale Along a Meridian

Given apointer to aninitialized cs_Csprm_ structure, CS_cssch returns the scale along ameridian,
often referred to as 'h', at the location given by its second argument which must be a geographic
coordinate.

Convergence Angle

Given apointer to an initialized cs_Csprm_ structure asreturned by CS csloc, CS_cnvrg returns the
convergence angle of the coordinate system, at the location indicated by the second argument which
must be a geographic coordinate. The return value isin degrees; positiveis east of north.

Check Limits, Geographic

Given apointer to aninitialized cs_Csprm_ structure asreturned by CS csloc, CS_llchk will determine
if all coordinatesin thelist provided are within the mathematical domain of the coordinate system
and/or with the useful range of the coordinate system. In the case where the provided list contains two
or more points, the determination applies to each coordinate on each great circle arc formed by
consecutive geographic coordinates. |1n those cases where the provided coordinate list consists of four
or more geographic coordinates which define a closed region, the determination appliesto all
coordinates enclosed within the region, or which reside the provided boundary.

60 CS-MAP User's Guide User's Guide

Check Limits, Cartesian

Given apointer to an initialized cs_Csprm_ structure asreturned by CS csloc, CS_xychk will
determineif all coordinatesin the list provided are within the mathematical domain of the coordinate
system and/or with the useful range of the coordinate system. In the case where the provided list
contains two or more points, the determination applies to each coordinate on each line segment formed
by consecutive cartesian coordinates. In those cases where the provided coordinate list consists of four
or more cartesian coordinates which define a closed region, the determination applies to al coordinates
enclosed within the region, or which reside on the provided boundary.

Free Coordinate System Parameters

Use CS freeto free memory alocated by the any CS-MAP functions. Thisfunction isto be used, for
example, to free the coordinate system parameter block returned by CS cs/oc. It isimportant that

CS free be used asin certain environments (a Windows DLL for example), the heap used by the library
is not necessarily the same as the heap used by the application. Thus, if CS-MAP allocated the
memory, it isbest if CSMAP releases it also.

Coordinate System to Coordinate System

In order to convert from one coordinate system to another, one simply obtains, from the CS_csloc
function, a definition of the two coordinate systems of concern. Theinverse function, €S _¢s2/i, is used
to convert the source coordinates to | atitude and longitude and the forward function, CS_//2cs, is used to
convert to the target coordinate system. The sample code segment shown is, for example, al the code
necessary to convert afile of NAD27 based UTM Zone 13 (UTM27-13) coordinates to NAD27 based
Colorado State Plane, Southern Zone (CO-S). To change the conversion to use other coordinate
systems, only the names provided to the CS_cs/oc function need be changed. Of course, these strings
are rarely hard coded as has been done in this example.

int input, output;
double xy [2], Il [2]:
struct cs_Csprm_ *utm, *co_s;

utm = CS_csloc ("UTM27-13");

co_s = CS_csloc (''CO-S');

while (read (input,xy,sizeof (xy)) != 0)
{

CS_cs2il (utm,11,xy);
CS_I112cs (co_s,xy,I11);
write (output,xy,sizeof (xy)):

}
CS_free (utm);
CS_free (co_s);

Chapter 2 Chapter 2 -- Descriptions and Discussion 61

The LL Coordinate System

Many products will use the above scheme to provide the ability to convert from any coordinate system
to any another. This scheme is completely general, supporting any combination of coordinate systems.
Sometimes, however, it is desirable to convert from or to geographic coordinates. The LL coordinate
system and the Unity projection accommodate this within the general scheme of things described
above. That is, the LL coordinate system is simply a coordinate system in which the coordinates are
latitudes and longitudes, and the Unity projection is simply a set of conversion functions which do little
other than possible units and prime meridian conversion.

Therefore, supplying a coordinate system name of LL, for example, for either the input or output
coordinate system will produce the desired results without the application program having to know
about this specific situation. (Please note that LL is a cartographically referenced coordinate system.
Coordinate systems LL27 and LL83 are usually used in practice.)

Latitude and longitude coordinates in different units or referenced to a prime meridian other than
Greenwich are possible by defining different LL type coordinate systems. These definitions, all based
on the Unity pseudo-projection, can include a units specification and a specification of a prime
meridian other than zero (i.e. Greenwich).

Multiple Conversions

Please note, that since coordinate system definitions (as returned by CS _cs/oc) reside in "heap"
memory, thereis no practical limit as to the number of definitions which can be active at any given
time. Therefore, using the three functions described above, several different coordinate conversions
can be active at the same time.

62 CS-MAP User's Guide User's Guide

Adding Datum Conversions to the Interface

Datum conversions can be added to the basic scheme described above by adding calls to the datum
conversion functions. Refer to the code given below for an example, paying special attention to the
emphasized code. Once the two coordinate system definitions have been initiaized, they are passed to
CS dtcsu. By examining both the source and target coordinate system definitions, CS_dtcsuis able to
determine which, if any, datum transformation techniques need to be applied to accomplish the desired
conversion. CS dtesuwill select one or more datum conversions as necessary to accomplish the
desired conversion. For example, to convert from NAD27 to WGS72, three conversions are actually
setup: 1)from NAD27 to NAD83 viathe NADCON technique, 2NAD83 to WGS84 (which is
currently anull conversion), and finally 3)WGS84 to WGS72 using a hard coded formula. CS_dltesu
assures that all preparations necessary for these conversions are initialized, and saves the resultsin the
cs_Dtcprm_ structure to which it returns a pointer.

In the actual coordinate conversion loop, CS_dtevtis called for each coordinate once its geographic
form has been obtained from CS cs2/. Notethat if CS dtcsu determined that no datum conversion was
required, the information contained in the cs_Dtcprm_ structure which it returns causes CS_drcvtto
simply copy the source geographic coordinates to the target array. Finally, when the conversion
processis complete, CS ditcls is used to release any system resources which were alocated for the
datum conversion and which are no longer needed.

int input, output;

double xy [2], Il [2]:

struct cs_Csprm_ *utm, *co83_s;
struct cs_Dtcprm_ *dtc_ptr;

utm = CS_csloc ('UTM27-13");
co83_s = CS_csloc ("'C083-S");
while (read (input,xy,sizeof (xy)) != 0)
{
CS_cs2il (utm,11,xy);
CS_I112cs (co83_s,xy,11);
write (output,xy,sizeof (xy));

gg_;ree (utm);_
Sample Code Segment —free (c0.9):

Chapter 2 Chapter 2 -- Descriptions and Discussion 63

Geodetically Referenced Coordinate Systems

In the normal case, CS-MAP converts from one geodetically referenced system to another. Inthe
sample code segment in the previoustopic, for example, UTM27-13 is referenced to NAD27 and CO83-C
isreferenced to NAD83. The need for NAD27 to NAD83 conversion is unambiguous and performed
automatically by CS-MAP's High Performance I nterface without the application having to know of this
situation. However, there are circumstances where a coordinate system cannot be referenced to a
specific datum. For example, what datum should UTM zone 25 (middle of the Atlantic Ocean) be
referenced to?

For various reasons, it is not always possible or convenient to reference a coordinate system to a
specific datum. To handle such cases, CS-MAP supports the concept of a cartographically referenced
coordinate system.

Cartographically Referenced Coordinate Systems

The cs_Csdef _ structure, which carries the definition of al coordinate systems, has an ellipsoid key
name element as well as a datum key name element. If the datum key name element is not the null
string, the coordinate system is said to be geodetically referenced. If the datum key name element is
the null string, the ellipsoid key name element must then carry the key name of an ellipsoid definition
in the ellipsoid dictionary. In this case, the coordinate system is said to be cartographically referenced.
(If both elements are not the null string, the ellipsoid key name field isignored.)

The example shown previously in this section showed how conversions are performed between two
geodeticaly referenced systems. If either of the two coordinate systems involved is cartographically
referenced, or if both are cartographically referenced, CS_dtesu simply returns the null datum
conversion. Thus, for example, when the target coordinate system is cartographically referenced, the
resulting coordinates are based on the source datum, whatever it may happen to be. Similarly, if the
source is cartographically referenced and the target is geodetically referenced, thereisan implied
assumption that the source coordinates are based on the datum of the target. If both coordinate systems
are cartographically referenced, we have no knowledge of the datumsin either case and the conversion
is strictly cartographic, hence the semantic convention adopted here.

Examination of the COORDSYSASC file will produce several cartographically referenced coordinate
systems. Many of these are UTM zones in areas other than the US and Canada. (In the US and
Canada, UTM zones can bereliably said to be based on either NAD27 or NAD83.) Perhaps the most
important cartographically referenced coordinate system is that which isnamed LL. This enables usto
use the LL coordinate system to convert generic Lat/Long'sto any coordinate system, or convert any
coordinate system to Lat/Long's based on the same datum as the source, what ever it might be.

64 CS-MAP User's Guide User's Guide

Cartographic Projections

For each projection supported, there exist eight, possibly nine, functions which comprise the full
implementation of a projection. The brief description of these functionsis given below. These
descriptions will be important to those adding a new projection as well.

Those adding projections to the system only need to add an entry to the projection table cs_Prjtab.
Doing so, you will need to add a pointer to the Definition Check and the Setup functions. To activate
the proper parameter settings in the MFC dialog, you will aso need to add the projection to the
cs_PrjprmMap table. Itisunlikely, but if your new projection uses a new type of parameter, you may
need to add a new entry to thecs_Prjprmtable. All of these tables are defined in the CSdataPJ.c
module.

Program Environments

Portability to alarge variety of program environmentsis a mgjor feature of CSSMAP. Thus,
programmers accustomed to a single environment may consider some of the code and design of CS-
MAP rather awkward or old fashioned. Nevertheless, by keeping things very basic and simple (e.g.
binary searching a sorted fixed length record file), CS-MAP portsto just about any other environment
without change and without requiring any additional software beyond the contents of anormal C
runtime library.

However, simplicity isinsufficient to cover the entire range of issues. In this section we discuss
features and aspects of CS-MAP which are specifically intended for differing program environments.

Chapter 2 Chapter 2 -- Descriptions and Discussion 65

Multi-Threaded Programming

Beginning with release 8.0, CS-MAP is fully compatible with multi-threaded Windows environments.
Threads are different from processes in that not only do they share their parents code space, the data
space is also shared. Since CS-MAP uses several global variables, this presents a problem.

This problem is addressed by declaring each of the several dynamically used (i.e. non-constant) global
variables to be (using the Microsoft vernacular) _ declspec (thread). (In the Borland vernacular, its
__thread.) This causes each new thread to have it's own copy of these variables; but the initialization
of these variables upon starting anew thread is unclear. In any case, we do count on the operating
system being able to give us a separate copy of al of these variables for each new thread instance
which is started.

In order to insure that each of these variables is properly initialized, we have provided the function
named CS init. It should be called in each new thread just once, prior to any other CS-MAP function
call inthethread. If the parent thread's value of the global cs Dir and cs_DirP variables are valid,
these values are preserved. If not they areinitialized. 1n the case of several other variables, such as
defaults, the application programmer may specify if these are to be inherited from the parent thread.
Variables dealing with NAD27 to NAD83 datum conversions and the like are always initialized to the
NULL state.

Thus, each thread will have its own set of NADCON datafile buffers. In certain applications, this may
be wasteful, but in most cases this provides the highest performance. Otherwise, we would be wasting
considerable resources with resource locks etc.

UNIX users need not fear. All declarations and definitionsin the CS-MAP code where the __declspec
(thread) or __thread are appropriate are accomplished using the manifest constant Thread defined in
the CS-MAP header file. This constant is defined to be nothing in most cases. Only in the event that
compiler pre-defined constants indicate a multi-thread environment (i.e. _MT), is Thread defined to be
something other than nothing. None of this appliesif you are buildingaDLL. InaDLL, thereisa
single data segment, and multi-threading has no effect.

66 CS-MAP User's Guide User's Guide

GUI Considerations

CS-MAP supports agraphic user interface based on Microsoft's MFC library. Thisis, admittedly, non
portable but does provide useful product capability for alarge percentage of our clients. Use of these
functions requires that you include the csmap.rc file into your projects resources. This can be
accomplished by adding an include "csmap.rc" statement to your project's .rc2 file. Please note that the
use of these functions implies that your application activates the basic infrastructure of the MFC
library. Accessing the functionsin an isolated application does not work without special effort. Also
note, that MFC is a multi-threaded environment. Y ou will need to compile the CS-MAP library using
the multi-threaded options to eliminate frustrations generated by the Microsoft linker.

The CS_csEditor function causes activation of the coordinate system editor. Similarly, the CS_dtEditor
and CS_ellEditor functions cause the activation of the datum and ellipsoid editors respectively. Inall
three cases, the functions require asingle input and return asingle result. Theinput is the key name of
the definition which isto be initially displayed. The result isthe key name that was displayed when the
user caused the dialog to exit. All other user activity is recorded in the appropriate dictionary.

The CS_csBrowser function activates a coordinate system browser and can be used to obtain a
coordinate system key name from the user. The CS_csDataDrfunction displays a dialog which enables
the user to specify the directory in which the mapping datafiles reside.

Customization

Some users will, no doubt, require modification to the basic capabilities of the Coordinate System
Mapping Library as provided by OSGeo. The following sections describe how some of the more
common requirements can be accomplished with a minimum of effort.

Tuning the Protection System

Asdistributed, CS-MAP will not allow users to modify or delete a dictionary definition whichis
produced by the dictionary compiler; i.e. adistribution definition. Further, CS-MAP will not permit
modification or deletion of a user defined coordinate system after such definition has remained
unaltered for 60 days. The behavior of thisfeature is controlled by the cs_Protect global variable,
an int defined in the CSdata module. 'Y ou can change the value of thisvariable in CSdata and
recompile, or at run time.

Setting cs_Protect to anegative value disables al of the above described protection features.
Setting cs_Protect to zero enables distribution coordinate system protection, but disables the user
defined protection system. Setting cs_Protect to a positive value enables the user definition
protection feature, and also specifies the number of days which must elapse from the last modification
before the definition is protected.

Chapter 2 Chapter 2 -- Descriptions and Discussion 67

Turning of Unique Names

Asdistributed, CS-MAP requires that a colon appear in al dictionary definition key names. By doing
s0, CS-MAP guarantees that the names of all user definitions will be different from any definition
which may be contained in a future distribution of CS-MAP. Y ou can disable this feature of CS-MAP
by setting the global char variable named cs_Unique to the null character (i.e. \0'). Alternatively,
you can enabl e this feature using a different character by setting the value of cs_Unique to that
character. cs_Unique isdefined in the CSdata module and be set at compile time or run time.

Eliminating a Projection

If you do not have a need for al thirty eight supported projections, you can simply remove from the
projection table (defined in CSdatarJ) the entry which references any projection which you do not
need. Doing so will eliminate all references to the code for a specific projection and reduce the code
size of your executable.

Data Dictionary Directory

Thedirectory inwhich CS_csdef, CS_dtdef, and CS_eldeflook for their respective dictionary filesis
defined in the CSdata.c module. Y ou must use the CS_a/tdrfunction to initialize this variable to point
to the directory which contains al datafiles. CS aftdrwill use the value of an environmental variable
when called with a NULL pointer as an argument. The name of this environmental variable,
CS_MAP_DIR by default, is established in cs_map.h as a manifest constant.

Dictionary File Names

The names assigned to the three dictionary files are defined as manifest constants in the cs_map.h
header file, declared and initialized in the CSdata module. They can also be modified at run time by
using the CS_csfnm, CS_dltfnm, and CS_elfnm function.

Adding Units

The units which are recognized by the Coordinate System Mapping Package are defined in the
CSdataUmodule. You can add or delete as necessary. Note that this table has provisions for an
abbreviation in addition to the full name. Use the code as provided as an example of how to
incorporate a new unit. Also note that the factor is the multiplier required to change the new unit to
meters, or degrees, by multiplication depending upon the type of unit.

68 CS-MAP User's Guide User's Guide

Language Translation

Textual descriptions of al error conditions are provided in the CSerpt module. All language oriented
text islocated either in the cs_ map.h header file, one of the three data modules. CSdata, CSdatay,
CSdataPJ, or in the ASCII form of the dictionary files (COORDSYSASC, DATUMSASC, and
ELIPSOID.ASC). Language trandlations efforts need only address these eight files (MFC dialogs
excepted).

69

CHAPTER 3

Chapter 3 -- Executables

This section describes the use and function of the three executable modules which are a part of the CS-
MAP distribution. Note that the executables modules themselves are not provided. Source code which
can be used to create the executable modules on your platform are included.

CS_COMP—Coordinate System
COMPiler

CS _COMP [/c] [/b] [/s] [/t] [/w] source_file _dir output dir

CS COMP creates binary dictionary files from the ASCII source files provided with the CS-MAP
distribution. This feature has been added to 1) eliminate problems with the byte order of binary data on
platforms other than Intel and 2) provide a means by which coordinate system definitions can be
committed to source control procedures. Release 6 (and later) of CS-MAP precludes, to a large
extent, the first need described above. See Byte Ordering below.

On UNIX systems, you will need to use the UNIX option character (i.e. the dash) when specifying
options.

Source code to CS_COMP and its components is provided to all licensees, and has been tested as a
console application under Windows XP and Linux 3.2.2. As CS-MAP is intended for use in a large
variety of systems, and for compilation and linking by users who may not have access to lex and yacc,
the user interface and source file formats are very simple and basic.

By compiling all four source files at the same time, CS_COMP can now perform consistency checks
between all four files. To simplify use, the actual file names are hard coded into the program. Thus,
the source files are required to be named Coordsys.asc, Datums.asc, Elipsoid.asc, and Mreg.asc for
the Coordinate System, Datum, Ellipsoid, and Multiple Regression Transformation data files
respectively. CS COMP expects these files to reside in the directory specified as the first positional
argument on the command line.

Similarly, the names of the output files are fixed by the program, being the names specified in the
CSdata module. These are the same names that the library in general searches for. The directory in
which these files are written is specified as the second positional parameter on the command line.

Since CS_COMP performs a consistency check between all files, it expects to compile all four files. Itis
not possible to compile the files individually.

CS COMPis coded for possible compilation as a Windows XP console application. Therefore, it
requires an acknowledgment before it exits, enabling the operator to verify successful completion
before the window disappears. For use in make files and/or batch files, you may wish to use the /b
option to suppress the requirement for acknowledgment before exit.

70 CS-MAP User's Guide User's Guide

CS COMPnormally produces encrypted output files. Use the /c option to cause unencrypted versions
of the dictionaries to be produced for testing and/or debugging purposes.

Presence of the /t option instructs CS_COMPto include coordinates systems, datums, and ellipsoids in
the Test group. Normally, these are neither compiled or distributed with your application.

Use the /w option to instruct CS_COMPto report any inconsistency in the data which may only be
suspicious.

In the UNIX environment, the dash must be used as the option character.

Use the /s option to instruct CS_COMPto produce dictionary files in big endian byte order regardless of
the system on which the program has been compiled. This forces a byte swap before output on little
endian processors (e.g. Intel) and omits the byte swap on big endian processors (e.g. Sun).

Byte Ordering

CS COMP-calls CS_bswap immediately prior to writing any data to the dictionary file in order to effect,
as necessary, a byte order switch to little endian (i.e. Intel/DOS) byte order. This is the same byte
order expected by the CS-MAP library on all platforms. It is also the byte order which the data file from
other sources, such as the NADCON LAS/LOS files, are distributed. Use of the /s options reverses
this effect, causing big endian data files to be produced, regardless of the processor in use.

Source File Formats

Coordsys.asc

Records in the COORDSYS.ASC source file consist of a line of text. Blank lines are generally ignored.
All characters following an un-escaped pound sign character (‘#) are ignored. The pound sign
character can be escaped by the backslash (\\') or pound sign (‘#') characters. Note that this is
required to get a pound sign character into a coordinate system description as these descriptions are
not quoted. Leading and trailing whitespace on all records is also ignored. Records to be processed
must start with one of the 39 keywords described below. The colon separator character is considered
to be part of the keyword. The value of the keyword must follow the keyword on the same line of text,
white space may be used to separate the keyword from its value.

Chapter 3 Chapter 3 -- Executables 71

Each occurrence of the CS_NAME : keyword indicates the beginning of anew coordinate system
definition and the end of any previous coordinate system definition. Otherwise, the order of the
specifications is not important. However, to maintain your source in a comprehensible format, it is
strongly recommended that each coordinate system definition begin with the CS NAME: keyword and
be terminated by one or more blank lines. No blank lines should appear within the definition itself.
Further, while ¢S_compPwill sort the resulting binary Coordinate System Dictionary file, maintaining
the coordinate system source file in sorted order makes it (relatively) easy to locate a definition should
review or editing be required.

For projection specific information, refer to the projection descriptionsin Chapter 7 of thisguide. Note
that rarely will any projection require the use of al 39 keyword specifications.

The 39 keywords and their values are:

CS_NAME: - Used to specify the key name of the coordinate system which isto be defined, 23
characters max. See CS_nampp for conventions concerning key names.

DESC_NM: - Used to specify the 63 character descriptive name of the coordinate system being defined.

DT_NAME: - Used to specify the datum key name to which a geodetically referenced coordinate
system isto be referenced to. The ellipsoid used is a part of this datum definition. Presence of avalid
datum key name here indicates that the coordinate system is geodetically referenced. Either a
DT_NAME: specification, or an EL_NAME: specification must be provided for each coordinate system
definition. If both DT_NAME: and EL_NAME: specifications are provided, the EL_NAME:
specification isignored by CS-MAP.

EL_NAME: - Used to specify the ellipsoid key name for a cartographically referenced coordinate
system. A coordinate system is cartographically referenced to the ellipsoid named by this specification
if, and only if, the datum key name specification is omitted. If both DT_NAME: and EL_NAME:
specifications are provided, the EL_NAME: specification isignored by CS-MAP.

ORG_LAT: - Used to specify the origin latitude of the coordinate system. Thisvalue may bein any
form acceptable to CS_atof, but is dwaysin degrees relative to the equator. Use positive numbers for
north latitude, negative numbers for south latitude.

ORG_LNG: - Used to specify the origin longitude of the coordinate system. Thisvalue may in any
form acceptable to CS_atof, but dwaysin degrees and is always relative to the Greenwich prime
meridian. Use positive numbers for east longitude, negative numbers for west longitude.

SCL_RED: - Used to specify the scale reduction which may apply to a coordinate system. Thisvalue
isignored by the many projections which do not support this feature. The value may be specified asa
decimal number, e.g. 0.9996, or asaratio, e.g. 1:2500. A value of 1.0 or greater is unusual, but is
accepted.

ZERO_X: - Used to specify the minimum X value which isto be considered non-zero. X coordinate
values whose absolute value is less than the value specified here will be converted to hard zeros. This
is used to suppress coordinate output such as 4.3472E-07 which can be of value in certain applications.
A vaue of 0.0 isassumed if no specification is made.

72

CS-MAP User's Guide User's Guide

ZERO_Y: - Used to specify the minimum Y value which isto be considered non-zero. Y coordinate
values whose absolute value is less than the value specified here will be converted to hard zeros. This
is used to suppress coordinate output such as 4.3472E-07 which can be of value in certain applications.
A vaue of 0.0 isassumed if no specification is made.

PARM1: thru PARM24: - Used to specify the value of as many as 24 parameters which are specific to
the particular projection in use. The use of these items varies from one projection to another. The
valueis awaysareal number. Where alongitude is specified, it must be given in degrees, relative to
Greenwich, where west longitude is negative. Where alatitude is expected, it must be given in degrees
relative to the equator where north latitude is positive and south latitude is negative. When an azimuth
is specified, it must be given in degrees east of north (i.e. west of north would be negative). Inall
cases, the values are processed by CS_atof, and any form acceptable to that function may be used.

X_OFF: - Used to specify the value of the false easting of the coordinate system. A valueof 0.0is
assumed if no specification is made. Any form acceptable to CS_atof may be used, including the use of
the comma as a thousands separator.

Y_OFF: - Used to specify the value of the false northing of the coordinate system. A value of 0.0 is
assumed if no specification is made. Any form acceptable to CS_artofmay be used, including the use of
the comma as a thousands separator.

PROJ: - Used to specify the code name of the projection upon which the coordinate system is based.
This code value must be the value assigned to the desired projection in the CSdataPJ module, i.e. the
projection table. Thisvaueisa character string of two to eight characters. Since projections can now
have several variations, this code value is not the same as the five character code used to generate
function and structure tag names. Y ou will need to refer to the CSdataPJ module to determine the code
name for a specific projection type.

UNIT: - Used to specify the name of the system unit for the coordinate system being defined. Inthe
case of anormal cartesian coordinate system, this must be one of the supported unit of length names as
defined in the CSdatal module. 1n the case of the Unity projection, i.e. the coordinate system being
defined is latitude and longitude or a variation thereof, the unit name must be one of those names
defined as a unit of angular measure in the CSdatat module.

GROUP: - Used to classify coordinate systems into groups to make selection of a coordinate system
from the 5,000+ provided a hit easier. The supported group codes are defined in the CSdata module.

SOURCE: - Used to specify the source of the information used to define this coordinate system, 63
characters maximum. The term Authority is often used to describe this information.

QUAD: - Used to indicate the quadrant of the cartesian coordinates produced by the coordinate system.
Zero or 1 indicate the normal right handed cartesian system where X increases to the east, and Y
increases to the north. Quadrants are numbered counterclockwise, therefore avalue of 2 specifiesa
cartesian system where X increases to the west, while Y increases north. A value of 3 indicates that X
increases to the west and Y increases to the south. A value of 4 indicates that X increases to the east
and Y increases to the south. A negative value will cause the axes to be swapped after the appropriate
quadrant isapplied. A value of 1 isassumed if this specification is absent.

Chapter 3 Chapter 3 -- Executables 73

MIN_LNG: - This parameter is optional and can be used to specify the minimum longitude of the useful
range of the coordinate system. The valueis given in degreesrelative to Greenwich in any form
acceptableto CS_atof. Positive values indicate east longitude, while negative values indicate west
longitude. Its value should be normalized between -360 and +360 and when used must be
algebraically less than the MAX_LNG: parameter.

MAX_LNG: - This parameter is optional and can be used to specify the maximum longitude of the useful
range of the coordinate system. The value is given in degrees relative to Greenwich in any form
acceptableto CS_atof. Positive values indicate east longitude, while negative values indicate west
longitude. Its value should be normalized between -360 and +360 and when used must be
algebraically greater than the MIN_LNG: parameter.

MIN_LAT: - This parameter is optional and can be used to specify the minimum latitude of the useful
range of the coordinate system. The valueisgiven in degreesrelative to the equator in nay form
acceptable to CS_atof. Positive values indicate north latitude while negative values indicate south
latitude. Its value should be normalized between -90 and +90 and when used must be algebraically less
than the MAX_LAT: parameter.

MAX_LAT: - This parameter is optional and can be used to specify the maximum latitude of the useful
range of the coordinate system. The valueisgiven in degreesrelative to the equator in nay form
acceptableto CS_atof. Positive values indicate north |atitude while negative values indicate south
latitude. Its value should be normalized between -90 and +90 and when used must be algebraically
greater than the MIN_LAT: parameter.

MIN_XX: - This parameter is optional and can be used to specify the minimum X coordinate value of the
useful range of the coordinate system. The valueis given in system units and may be provided in any
form acceptableto CS_atof. Its value must be algebraically less than the MAX_XX: parameter.

MAX_XX: - This parameter is optiona and can be used to specify the maximum X coordinate value of
the useful range of the coordinate system. The value is given in system units and may be provided in
any form acceptableto CS_atof. Itsvalue must be algebraically greater than the MIN_XX: parameter.

MIN_YY: - This parameter is optional and can be used to specify the minimum Y coordinate value of the
useful range of the coordinate system. The valueis given in system units and may be provided in any
form acceptable to CS_atof. 1tsvalue must be algebraically lessthan the MAX_YY: parameter.

MAX_YY: - This parameter is optiona and can be used to specify the maximum Y coordinate value of
the useful range of the coordinate system. The valueis given in system units and may be provided in
any form acceptableto CS_atof. Its value must be algebraically greater than the MIN_YY: parameter.

Other key words have been coded into the CS_COMP module but are reserved for future use by
OSGeo contributors. They should not be used until their exact usage is defined in a future release.

Datums.asc

Records in the DATUMS.ASC source file consist of a line of text. Blank lines are ignored. All
characters following an un-escaped pound sign character (‘#) are ignored. The pound sign character
can be escaped by the backslash (') or pound sign (‘#') characters. Note that this is required to get a
pound sign character into a datum description as these descriptions are not quoted. Leading and

74

CS-MAP User's Guide User's Guide

trailing whitespace on all records is also ignored. Records to be processed must start with one of the
twelve keywords described below. The colon separator character is considered to be part of the
keyword. The value of the keyword must follow the keyword on the same line of text, white space may
be used to separate the keyword from its value.

Each occurrence of the DT_NAME: keyword indicates the beginning of a new datum definition and the
end of any previous datum definition. Otherwise, the order of the specifications is not important.
However, to maintain your source in a comprehensible format, it is strongly recommended that each
coordinate system definition begin with the DT_NAME: keyword and be terminated by one or more
blank lines. No blank lines should appear within the definition itself. Further, while CS_COMP will sort
the resulting binary Datum Dictionary file, maintaining the datums source file in sorted order makes it
(relatively) easy to locate a definition should review or editing be required.

Also note, that CS-MAP uses the Datum Key name as the base portion of a file name to access the
Multiple Regression Transformation file. Therefore, a datum key name of more than 8 characters on a
DOS based system may not work as expected.

The twelve keywords and their required values are:

DT_NAME: - Used to specify the key name of the datum which is to be defined, 23 characters max.
Refer to CS_nampp for conventions concerning key names. Since datum key names are used to link to
the Multiple Regression Transformation files, datum key names longer than 8 characters may present
problems on systems using the DOS FAT-16 file system (i.e. file name limited to 8 characters).

DESC_NM: - Used to specify the 63 character descriptive name of the datum being defined.

ELLIPSOID: - Used to specify the key name of the ellipsoid definition upon which this datum is based.
This name must be the key name of an entry in the Ellipsoid Dictionary.

USE: — This parameter is required and is used to specify the datum conversion technique to convert
coordinates based on the datum being defined to WGS84 coordinates. There are, currently, ten valid
values. They are:

1 MOLODENSKY - Usethe Molodensky transformation to convert to WGS84.

2 GEOCENTRIC - Use the geocentric translation method to convert to WGS84.

3 BURSA - Usethe Bursa/Wolfe Seven Parameter Transformation to convert to WGS84.
4

7PARAMETER - Use the Seven Parameter Transformation to convert to WGS84, default to
Molodensky if the necessary parameters are not present.

5 MULREG - Use the Multiple Regression Transformation formulas. If such adefinition is not
available, default to the Bursa/Wolfe Seven Parameter Transformation.

6 NAD27 - Usethe NADCON or Canadian National Transformation emulation as appropriate to
convert to NADS83, and consider the result to be WGS84 coordinates.

NAD83 - Consider the coordinates to be WGS84 coordinates already, no shift is to be performed.
8 WGS84 - The coordinates are WGS84 coordinates already, no datum shift is required.
WGS72 - Use an internal formulato convert to WGS84.

10 HPGN - Use the NADCON algorithm, but use the HPGN datafiles, to shift the coordinates to
NADB83, then consider the result to be WGS84 coordinates without any further datum shift.

Chapter 3 Chapter 3 -- Executables 75

DELTA_X: - The X component of the vector from the geocenter of this datum to the geocenter of the
WGS-84 datum in meters.

DELTA_Y: - TheY component of the vector from the geocenter of this datum to the geocenter of the
WGS-84 datum in meters.

DELTA Z: - The Z component of the vector from the geocenter of this datum to the geocenter of the
WGS-84 datum in meters.

BWSCALE: - The scale of the Bursa/Wolfe or Seven Parameter Transformation, given as parts per
million asis ordinarily the case for this transformation. This value can be positive or negative. The
actual resulting scale factor used in the transformation is 1.0 + (BWSCALE * 1.0E-06).

ROT_X: - Therotation about the X axis, given in seconds of arc. Positive valuesindicate clockwise
rotation of the right handed Helmert coordinate system.

ROT_Y: - Therotation about the Y axis given in seconds of arc. Positive values indicate clockwise
rotation of the right handed Helmert coordinate system.

ROT_Z: - Therotation about the Z axis given in seconds of arc. Positive values indicate clockwise
rotation of the right handed Helmert coordinate system.

SOURCE: - The source of information from which this definition was devel oped.

Support of other keywords has been coded into the CS_COMP module; but use of these is reserved by
OSGeo contributors for future use.

Elipsoid.asc

Records in the ELIPSOID.ASC source file consist of a line of text. Blank lines of text are ignored. All
characters following an un-escaped pound sign character (‘#) are ignored. The pound sign character
can be escaped by the backslash (\') or pound sign (‘#) characters. Note that this is required to get a
pound sign character into an ellipsoid description as these descriptions are not quoted. Leading and
trailing white space on all records is also ignored. Records to be processed must start with one of the
five keywords described below. The colon separator character is considered to be part of the keyword.
The value of the keyword must follow the keyword on the same line of text, white space may be used
to separate the keyword from its value.

Each occurrence of the EL_NAME : keyword indicates the beginning of a new ellipsoid definition and
the end of any previous ellipsoid definition. Otherwise, the order of the specifications is not important.
However, to maintain your source in a comprehensible format, it is strongly recommended that each
ellipsoid definition begin with the EL_NAME : keyword and be terminated by one or more blank lines.
No blank lines should appear within the definition itself. Further, while CS_COMP will sort the resulting
binary Ellipsoid Dictionary file, maintaining the ellipsoid definition source file in sorted order makes it
(relatively) easy to locate a definition should review or editing be required.

The five keywords and their required values are:

76

CS-MAP User's Guide User's Guide

EL_NAME: - Used to specify the key name of the ellipsoid which is to be defined, 23 characters max.
DESC_NM: - Used to specify the 63 character descriptive name of the ellipsoid being defined.

E_RAD: - Used to specify the equatorial radius of the ellipsoid being defined. This radius must be
specified in meters.

P_RAD: - Used to specify the polar radius of the ellipsoid being defined. This radius must be specified
in meters. Use the same value given for E_RAD: to define a spherical ellipsoid.

SOURCE: - The source of the information used to make this definition.

GROUP: - Thiskeyword isused to mark ellipsoid definitions as being for testing only. Additional
groups may be established in the future.

CS COMPwill calculate the eccentricity and flattening from the provided radii.

MReg.asc

Records in a MREG.ASC source file consist of a line of text. Blank lines are ignored. All characters
following an un-escaped pound sign character (‘#) are ignored. The pound sign character can be
escaped by the backslash (') or pound sign (‘#) characters. Note that this is required to get a pound
sign character into a datum description as these descriptions are not quoted. Leading and trailing
white space on all records is also ignored. Records to be processed must start with one of the 12
keywords described below. The colon separator character is considered to be part of the keyword.
The value of the keyword must follow the keyword on the same line of text, white space may be used
to separate the keyword from its value. In certain cases, the actual keyword contains humeric
qualifiers which indicate the specific power series term the keyword applies to.

Each occurrence of the DATUM_NAME : keyword indicates the beginning of a new multiple regression
definition and the end of any previous multiple regression definition. The order of the specifications is
not important. However, to maintain your source in a comprehensible format, it is strongly
recommended that each multiple regression definition begin with the DATUM_NAME : keyword and be
terminated by one or more blank lines. No blank lines should appear within the definition itself.
Maintaining the multiple regression source file in sorted order makes it (relatively) easy to locate a
definition should review or editing be required.

Please note that a test case is required for each datum. A binary multiple regression coefficient data
file will not be written unless the provided coefficients satisfy the provided test case. In the terminology
used in this module, LAMBDA refers to longitude, and PH1 refers to latitude. In preparation for future
enhancements to CS-MAP, the HEIGHT coefficients are also required. If such are not currently
available, simply use values which will produce a zero change in height to get around the required
coefficient check.

Values for the various keywords are given in a manner which is somewhat inconsistent with CS-MAP.
However, the manner in which these values are specified is consistent with the conventions used in the
source for most of this type of information: DMA TR-8350.2B.

The 12 keywords and their required values are:

Chapter 3 Chapter 3 -- Executables 77

DATUM_NAME: - Used to specify the 23 character name of the datum for which the following
coefficients represent the multiple regression coefficients. Thisisthe name, with the MRT extension
appended, which is given to the coefficient datafile. The association of a datum in the Datum
Dictionary and the multiple regression data file is established by this name.

TEST_LAMBDA: - Thiskeyword must be followed by the longitude of the test point. Thislongitude
must be given in degrees, minutes, and seconds form, where west longitudes are given as values greater
than 180. Thisentry is processed by a"%d %d %If" sscanf format specification.

TEST_PHI: - This keyword must be followed by the latitude of the test point. This|atitude must be
given in degrees, minutes, and seconds form. Use a negative value to indicate south latitude. This
entry is processed by a"%d %d %lf" sscanf format specification.

DELTA_LAMBDA: - Thiskeyword must be followed by asingle real value which represents the amount
of longitude shift, in seconds of arc, which is expected at the provided test paint.

DELTA_PHI: - Thiskeyword must be followed by a single real value which represents the amount of
latitude shift, in seconds of arc, which is expected at the provided test point.

DELTA HEIGHT: - This keyword must be followed by a single real value which represents the amount
of elevation shift, in meters, which is expected at the provided test point.

LAMBDA_OFF: - This keyword must be followed by the longitude offset used to normalize the
coefficient formula. Thisvalue must be given in decimal degrees, use negative values for west
longitude.

PHI_OFF: - This keyword must be followed by the latitude offset used to normalize the coefficient
formula. Thisvalue must be given in decimal degrees, use negative values for west longitude.

KK - This keyword must be followed by the scale factor which is used to normalize the regression
formula. Thisvalueis unitless.

LAMBDA - This keyword is used to identify alongitude formula coefficient. The keyword itself must
be followed by aUn and aVn sequence which indicates which coefficient follows. For example,

LAMBDA Ul V2: 1.23456

indicates that 1.23456 is the coefficient for the longitude times latitude squared term in the regression
formula CS-MAP does not support terms with powers higher than 9.

PHI - Thiskeyword is used to identify alatitude formula coefficient. The keyword itself must be
followed by aUn and a z sequence which indicates which coefficient follows. For example,

PHI U2 V1: 1.23456

indicates that 1.23456 is the coefficient for the longitude squared times latitude term in the regression
formula. CS-MAP does not support terms with powers higher than 9.

HEIGHT - This keyword is used to identify an elevation formula coefficient. The keyword itself must
be followed by aUn and a z sequence which indicates which coefficient follows. For example,

78 CS-MAP User's Guide User's Guide

HEIGHT UO VO: 1.23456

indicates that 1.23456 is the constant term in the regression formula. CS-MAP does not support terms
with powers higher than 9.

TEST -- TEST program

TEST [/t12345...] [/dmap_dir] [/pnn] [/s] [/Vv] [/b] [test _data file name]

TEST will exercise most (but not all) of the functions included in the Coordinate System Mapping
Package library. It can be used to verify the correct operation of the library in different environments,
especially useful after compiling the library with a new or different C compiler or on a different platform.

Since 7EST relies on the test coordinate systems, datums, and ellipsoids, CS_COMP should be run with
the /t option prior to using the TEST program.

The program requires no arguments and normally expects the Ellipsoid Dictionary, the Datum
Dictionary, the Coordinate System Dictionary, all Multiple Regression Transformation files, and
Geodetic Data Catalogs to reside in their default locations and the file TEST.DAT to reside in the
current working directory when executed. As a convenience, however, if a file named COORDSYS
exists in the same directory from which 7£S7 was executed, 7EST will look to that directory for all
supporting data files (except the TEST.DAT file). Alternatively, you may use the /d option to specify
the directory you want 7£S7to look to for all supporting data files.

TEST will write all diagnostic messages to the console screen. On Windows 95/98/NT systems, you
will need to use the MS-DOS option character (i.e. the forward slash) when specifying options.

The provided test file, TEST.DAT, includes tests for the NAD27 to NAD83 datum conversion software.
Therefore, the NADCON CONUS database file system must exist in the default data directory (see
CSdata(5CS)) if these tests are to be successful. TEST.DAT also includes tests for the Canadian
National Transformation. However, since OSGeo cannot distribute the data files associated with the
Canadian National Transformation, these tests have been commented out. Canadian users may wish
to uncomment these tests before using 7EST.

The command line options can be used to modify the operation of the test procedure. There are,
currently, 16 separate tests performed by 7E£S7, and each is designated with a number or a letter.
Normally, 7EST performs each of the first fifteen tests twice; first in forward numeric order, and then in
reverse numeric order. Use the /t option to specify the specific test(s) you would like performed, and
the order in which they are to be performed; one test per character (120 maximum).

Individual Tests

The nature of the 16 tests are:

Chapter 3 Chapter 3 -- Executables 79

Test 1 - Thistest manipulates the Ellipsoid Dictionary using CS_eldef, CS_elupd, and CS_eldel.
Test 2 - This test manipulates the Datums Dictionary using CS_dltdef, CS_dtupd, and CS_dltdel.

Test 3 - Thistest manipulates the Coordinate System Dictionary using CS_csdef, CS_csupd, and
CS csdel.

Test 4 - Thistest reads the file named TEST.DAT in the current directory and performs all of the
conversions indicated, comparing the cal culated results with the expected results recorded in thefile.
Of course, al discrepancies are reported to the user. Y ou may specify an aternate file name (and
directory) on the command line as the only positional argument. Each supported projection (except the
Equidistant Cylindrical) has at |east one test from a source other than CS-MAP in TEST.DAT.

TEST.DAT also includes tests of datum conversions.

Test5 - Test 5isaperformancetest. Normally, it records the amount of wall clock time necessary to
make 300,000 conversions from "UTM27-13" to "CO83-C" using the High Performance Interface.
Each conversion, therefore, includes an inverse Transverse Mercator, aNAD27 to NAD83 datum shift,
and aforward Lambert Conformal Conic conversion. Thetest cyclesthrough alist of 10 different
coordinate pairs to add some reality to the test without distorting the numeric results with 1/0 time
and/or system overhead. The elapsed time and the effective conversion rate are reported to the user.
The Ip option can be used to change the number of conversionsin the test. For example, /p45 would
instruct 7£ST7to perform 450,000 conversions whenever it performs test number 5.

Test 6 - Thistest exercises the sorting and binary search functions of CS-MAP well beyond what
would be experienced in normal use. Thisisaccomplished by sorting the Coordinate System
Dictionary into reverse order, binary searching the result, and resorting back into normal order.
Finally, the order of the result is verified to be correct.

Test 7 - Thistest exercisesthe CS_csgrp function and its supporting data.

Test 8 - For each coordinate system in the Coordinate System Dictionary, thistest will cause a
coordinate to be converted in both the forward and inverse direction, as well as calculate the grid scale
factor and the convergence angle. Thistest does not verify the accuracy of the results, but ssmply
assures that every calculation function is exercised at least once. Thistest is somewhat superfluous
now that Test C isavailable.

Test 9 - Thistest exercises the functions which are used to calcul ate the power series solutions to the
dliptical integrals used quite frequently in CS-MAP. It verifiesthe results against an outside source,
and then compares forward and inverse cal culations with each other. Please note that the external
source for the correct values is limited in precision. Therefore the RMS discrepancy values may be
alarmingly high. Thisis not the case, however, as indicated by the RM S discrepancies between forward
and reverse calculations.

Test A - Thistest isidentical to test 4 in every way except it usesthe High Level Interface function
CS cnvrtfunction for all conversions, thus testing the caching system for coordinate systems and
datum conversions.

80

CS-MAP User's Guide User's Guide

Test B - Test B tests the grid scale and convergence angle functions of all non-azimuthal projections. It
uses an empirical technique to determine the grid scale and convergence angle of several random
points within the useful range of each coordinate system. Azimuthal projections are skipped as the grid
scale functions in these cases usually return scale factors along and normal to radials from the origin.
An empirical means of calculating these scale factors eludes us at the current time.

Test C - Thistest tries very hard to produce afloating point exception. Very regular and randomly
generated coordinate values, both geographic and cartesian, are generated and passed to al functions
for each coordinate system in the coordinate system dictionary. The coordinates are, in most cases,
completely outlandish numbers. Reporting floating point exceptions is very difficult, however, varying
from compiler to compiler, system to system. However, CS-MAP has passed this test many times, on
four different compilers.

Test D - Thistest tests the forward and inverse functions of each projection against each other. That is,
random geographic coordinates within the useful range of each coordinate system are converted to
cartesian form using the forward function, and then back to geographic using the inverse function. The
results are then compared.

Test E - Thistest performs al the functions of Test D; but in this case the useful range of each of the
projectionsis reduced by about one half, and thus enabling the error tolerance to be substantially
reduced.

Test F - Test F teststhe CS_atofand CS_ftoa functionsin two phases. First, the standard system
function sprintf is used to check the operation of the CS_atoffunction. In the second phase, CS_atofis
used to test the CS_froafunction. Neither phase, currently, tests the operation of the degree, minute.
and/or second processing.

Test G - Test G isthe coordinate creep test. Creep is defined as the number of millimeters a coordinate
moves after repeated conversions from cartesian to geographic and back. Test G starts with a specific
cartesian coordinate well within the useful range of a projection (but certainly not the natural origin)
and converts the coordinate to geographic and back to cartesian 1,000 times. The distance between the
original coordinate and the final result is calculated in millimeters to arrive at the creep value. A creep
value greater than 10 is considered afailure. Asof release 8.01, only the four most used projections
are tested.

Test S - Thisisnot redly atest, per se, but arequest that the test program switch its mode with regard
to byte ordering. Thus, on an little endian processor such as Intel, theinitial S in atest sequence will
cause al binary datafilesto be swapped to big endian byte ordering and the CS_bswap module
adjusted to cause the necessary byte swaps for the program to function. Thus, all byte swapping
mechanisms can be tested on asingle processor. Since the byte swap algorithm isitsown inverse, a
second occurrence of Test S reverses the effect of a previous execution. Note, including an odd
number of S specificationsin the test specification will leave all dictionary filesin a swapped
condition.

TestV - Thisisnot atest. Occurrence of aV in thetest string simply toggles the verbose flag. Thus,
the verbose flag can be turned off , or on, for specific testsindividually.

Test Z - Thisisnot atest. When 7EST encounters this character in the test sequence, it simply starts the
test sequence again from the beginning. Thus, an infinite loop can be established. Typicaly, a
CONTROL-C is used to terminate the program at some point.

Chapter 3 Chapter 3 -- Executables 81

Test Data

The TEST.DAT file specifies the actual coordinates which are to be converted and the expected results.
TEST ignores empty lines in the file and lines which begin with the pound sign (#) character. Other
records are expected to contain 8 fields separated by commas. The eight fields are expected to
contain:

1 Key name of the coordinate system of the coordinates specified in fields 2 and 3 of thisline.
That is, the name of the source coordinate system of the test conversion to be performed.

2&3 TheX andthenY coordinates to be converted. These are expected in decimal form and are
converted to binary using the CS_atoffunction of the CS-MAP library. Thus avariety of forms can be
used.

4 Key name of the coordinate system to which the coordinates givenin fields 2 & 3 areto be
converted.

5&6 Theexpected X and Y coordinates of the conversion. Again, any form acceptableto CS_atof
can be used.

7&8 TheX andY tolerance within which the converted values must agree with the expected values.
If the converted values do not match the expected values within the specified tolerance, a diagnostic
message is printed.

Most conversion examples provided in TEST.DAT were obtained from reputable sources other than

CS _MAPItself. Commentsin the TEST.DAT file itself will indicate those specific tests which have not
been verified with sources outside other than CS-MAP. The tolerance values given in the provided
TEST.DAT file should not be considered as an indication of the accuracy or precision of the CS-MAP
library. Rather, these values usually indicate the accuracy and precision of the source data from which
the examples were obtained. Occasionally, the tolerance values do indicate the accuracy of the CS-
MAP library; comments in the TEST.DAT file indicate when thisis the case.

Other Command Line Options

Finally, the /v option can be used to cause 7E£S7 to operate in verbose mode. In this mode, 7EST will
report its progress through each test. In order to enable use of 7ES7 as a Windows NT console
application, 7ES7 normally requires an acknowledgment when all tests are complete. The /b option
can be used to suppress this feature. The /s option can be used to instruct 7£S7 to start out in big
endian mode; useful when testing the automatic byte swapping feature. Use the /d option to provide
TEST with the full path to the directory containing the binary dictionary files it is to use. In the absence
of this option, 7EST uses the directory encoded into the CSdata module; except that if a valid
COORDSYS file exists in the directory from which 7EST was executed, that directory is used (MS-DOS
only). Use the /p option to indicate the length of the performance test (i.e. Test 5). The value provided
is multiplied by 10,000 to obtain the number of conversions which are performed and timed in order to
produce the conversion rate.

82 CS-MAP User's Guide User's Guide

BUGS

Test C, the floating point exception test, does not exercise the datum conversion functions as yet.

mfcTEST -- MFC Dialog TEST

mFcTEST

mfcTestis designed to test the MFC based GUI interactive dialogs provided with CS-MAP. The
program is a simple dialog box MFC program which contains a menu. The single menu entry provides
a selection for each of the primary dialogs provided. Note also, that the Test dialog can be very
convenient for testing projection and datum shift calculations in an interactive environment (assuming
you're using Windows, of course).

This test program requires no arguments. All testing must be done in an interactive manner. Note,
that each of the dialogs has a help button, and expects to find the help file in the same directory as the
primary mapping data files. The help buttons are grayed out if the help file does not exist in this
location.

Dictionary Differences Program

The sourceto Dictionary Difference program, DictDi ff, is conveyed in afile named CS DictDiff.c;
the distribution places this file in the Dictnary directory. The main module calls functions named

CS csDiff, CS _dtDiff, and CS_elDiff which are defined in a module named CSdictDiff.c which the
distribution depositsin the Source directory. These three functions are a part of the normal library
build.

Messages which report differencesrefer to "was" and "is'. That is, messages report the previous value
and the new value for all detected changes.

DictDiffisacommand line program and can used in virtually any environment that supportsa C
compiler. It compares the binary forms of dictionary files and reports all differences detected. It
requires exactly two positional arguments. The first command line argument is the directory
containing the "was" or previous dictionary files. The second argument is the directory of the "is" or
current dictionary files. All messages are reported to stdout, i.e. the terminal.

In producing the differences, some tolerance numbers had to be chosen to delineate what a change
consists of. Y ou should examine the source code in file named CSdiffDict.c to verify that you are
comfortable with the tolerance values that were chosen. The tolerance values are manipul ated
throughout the program, but the variable name okValue is consistent.

83

Chatper 4 -- Library Functions

This section includes a technical description of 500+ functionsin the CS-MAP library. The
descriptions are organized by the interface of which they areapart. Anindex isprovided elsewherein
this document.

High Level Interface Functions

Functions described in this section are designed to be called from high level languages such as Visual
Basic. Therefore, descriptions of most functionsin this section also include a function declaration
appropriate for use in Visua Basic and Delphi in addition to the standard C prototype.

CS_altdr ALTernate DiRectory

Function CS_altdr (ByVal new_dir As String) As Integer
function CS_altdr (alt_dr :PChar):Integer;
int CS _altdr (Const char alt _dir);

Normally, all functions in the Coordinate System Mapping Package library expect to find data files in
the C:\MAPPING directory as defined in CSdata. CS_altdr can be used to specify an alternate directory
at run time; that indicated by the alt_dir argument. CS_altdrreturns zero if a coordinate system
dictionary was indeed found in the directory provided; otherwise, it returns -1.

Calling CS_altdrwith the NULL pointer as its argument instructs CS_a/tdrto use the value of the
environmental variable CS_MAP_DIR as the location of the CS-MAP data files. Again a zero is
returned if this was successful, -1 if not. (The string defining the name of the environmental variable
name is defined in the cs_map.h header file.)

Calling CS_altdrwith the alt_dir argument pointing to the null string instructs CS_aftdrto use the
current directory on the current drive as the location of CS-MAP data files. Again a zero is returned if
this selection produces a directory which contains a Coordinate System Dictionary File. Otherwise -1
is returned.

Notice, that using the return status as a guide, several attempts at locating the CS-MAP data directory
can be made in any application.

The name of the directory which is searched for all data files is maintained in a global character array
cs_Dir, which is defined in the CSdatamodule. The cs_Dir array must, initially, contain a null
terminated string, the last non-null character of which must be the directory separator character. The
global character pointer cs_DirP (also defined in CSdata) is expected to point to the terminating null
character of the string in cs_Dir. Under this scheme, Coordinate System Mapping Package data files

are accessed as follows:
extern char cs_Dir [];
extern char *cs_DirP;

84 CS-MAP User's Guide User's Guide

étrcpy (cs_DirP,"fFile_name™);
fd = open (cs_Dir,0_MODE);

Achieving this particular setup is relatively easy using CS_stcpy:

cs_DirP = CS_stcpy (cs_Dir," "C:\\MAPPING\\");
BUGS

The purpose of this function is to insulate the library from system implementation issues. Without a
function of this nature, all applications using CS-MAP would have to implement a specific directory on
a specific drive. Not very pleasant. There does not appear to be a nice clean solution to this problem.

CS_atof Ascii TO Floating point

Function CS_atof (ByRef result As Double,ByVal value As String) As Long
function CS_atof (var result :double;value: PChar) :Longlint;
long CS_atof (double *result,Const char *value);

CS_atofwill convert the ASCII, null terminated string provided by the value argument to double
precision floating point form, returning this result in the location pointed to by the result argument.
Obviously, the string provided by value is expected to be an ASCII representation of a numeric value.

CS atofhas several features built into it for handling numeric formats that are commonly used in
mapping, specifically, large numbers, and values in degrees, minutes, and seconds format. Use of
thousands separators is supported and, when present, their improper use is reported. Other than
leading white space, spaces in the input value are interpreted to indicate degrees, minutes, and
seconds format. Values can be entered using minutes only (a single space) or minutes and seconds
(two spaces encountered). Use of either directional characters (i.e. N, S, E, W) or plus and hyphen
characters for sign is also supported. CS_atofreturns a long that carries a complete specification of
the format used to enter the value, suitable for use by CS_ffoa for formatting the value for output.

CS atofwill also correctly process scale factors entered as ratios, and this feature can be mixed with
the thousands separator feature. Thus, scale reduction for state plane coordinate systems can be
entered as "1:17,000."

The return value is a bitmap of information used to contain precision, formatting specifications, and
error status values. The following descriptions refer to constants defined in the various header files.
Construct a format specification by inclusively or'ing the desired options:

Chapter 3 Chatper 4 -- Library Functions

85

cs_ATOF_PRCMSK

The least significant five bits are used to indicate the number
of digitsfound after the decimal point. The valueis actually
the number of digits plusone. (Zero isreserved to indicate
automatic precision determination on output.) This constant is
amask that will mask out the precision value.

cs_ATOF_VALLNG

The value processed is acceptable for alongitude value.

cs_ATOF_VALLAT

The value processed is acceptable for alatitude value.

cs_ATOF_MINSEC

The value processed was in degrees, minutes, and seconds
form.

cs_ATOF_MINUTE

The value processed was in degrees and minutes form.

cs_ATOF_EXPNT

The value processed was in scientific notation form.

cs_ATOF_COMMA

The value processed included thousands separators to the left
of the decimal point.

¢s_ATOF_DIRCHR

The value processed included directional charactersto indicate
sign.

cs_ATOF_XEAST

The directional characters used to indicate the sign came from
the E and W set, as opposed to the N and S set.

cs_ATOF_MINSECO

The value processed included leading zeros in the minutes or
seconds fields.

cs_ATOF_DEGO

The value processed included leading zerosin the degrees
field.

cs_ATOF_OBLNK

The value processed was the null string.

cs_ATOF_FORCE3

The value processed used minutes or minutes and seconds
format, and 3 digits of degrees were encountered; implying a
longitude value.

cs_ATOF_RATIO

The processed value was provided in the form of aratio, e.g.
1:2500, to indicate a value such as, for example, 0.9996.

Bits defined by the following constants are set to indicate the associated error condition. The
¢s_ATOF_FMTERR bit is set if any error condition is detected and forces the return value to negative.
In all such cases, CS_atof will report the error condition and a subsequent call to CS_errmsg will return
an appropriate error message.

86 CS-MAP User's Guide User's Guide

cs_ATOF_SECS60

What was interpreted to be the seconds field of the processed
value produced a value greater than or equal to 60.

cs_ATOF_MINS60

What was interpreted to be the minutes field of the processed
value produced a value greater than or equal to 60.

cs_ATOF_MLTPNT

More than one decimal point was encountered in the input
value.

cs_ATOF_MLTSGN

More than one sign indication was encountered in the input
value.

cs_ATOF_ERRCMA

Improper positioning of the thousands separator character was
detected in the input value.

cs_ATOF_RATERR

A string that contained the ratio character, usually ', did not
conform to the normal convention for aratio. Usually, the
character immediately left of the colon wasnot a'l'.

cs_ATOF_FMTERR

A general format error, not covered by the above, was
encountered in the input value.

cs_ATOF_ERRFLG

This bit is set, producing a negative return value, if any of the
above error conditions are encountered during processing.
Whenever this bit is set, the error condition will have been
reported to CS_erpt, and a subsequent call to CS_errmsg will
produce an appropriate error message.

CS_azddll LatLong Azimuth Distance calculator

Function CS_azddll (Byval e _rad As Double, ByVal e _sq As Double,

ByRef 11 _from As Double,
ByVal azimuth As Double,
ByVal distance As Double,
ByRef Il _to As Double) As Integer

function CS_azddll (e_rad,e sq :Double; var 11_from :Double;

azimuth, distance :Double;
var Il_to :Double) :Integer;

int CS_azddll (double e rad,double e _sq,double Il _from [3],
double azimuth,
double dist,
double 11_to [3]);

Chapter 3 Chatper 4 -- Library Functions 87

CS_azddll calculates the latitude and longitude of atarget point given an initia point, an azimuth from
theinitia point, and adistance. Theinitia point and the result are in degrees, where the longitude
occupies thefirst element in the array and latitude the second element. The reference of the longitude
isimmaterial, as both (the initial point and the calculated point) will share the same reference whatever
itis. Currently, the third element in each array is unused (i.e. un-referenced and unmodified). This
may change in future releases. e_rad is the equatorial radius, and e_sq the eccentricity squared, of the
ellipsoid to be used. The units of the radius are immaterial other than they must be the same as that
used to specify the distance. Azimuth isthe azimuth at the initial point given in degrees east of north.
distance is the distance traveled in the same units as used to specify the equatoria radius of the
ellipsoid. Theresult isreturned in the array pointed to by the ll_to argument.

CS azddllreturns a zero to indicate success, -1 for failure. Failure of the internal Newton Rhapson
iterative calculation is the only possible cause of failure. This can be caused by rather strange input
values, specifically values that would produce results that are antipodal to the initial point.

The algorithm used is known as: "Solution of the geodetic inverse problem after T. Vincenty modified
Rainsford's Method with Helmert's elliptical terms," whatever all that means. This algorithm is
appropriate for any combination of points that are not antipodal.

CS_azsphr AZimuth on a SPHeRe

Function CS_azsphr (ByRef 11_1 As Double, ByRef 11 _2 As Double) As Double
function CS_azsphr (var 11_1, 11_2 :Double) : Double;
double CS _azshpr (Const double 110 [2],Const double 111 [2]);

CS_azsphrireturns the azimuth, in degrees east of north, from the geographic location given by 110 to
the geographic location given by Il1. The calculation assumes a spherical earth, so a radius and
eccentricity is not required.

CS_cnvrg CoNVeRGence function

Function CS _cnvrg (ByVal cs _name As String, ByRef Il _ary As Double) As

Double
function CS_cnvrg (cs_name :PChar;var 1l_ary :-double) :Double;
double CS_cnvrg (Const char *cs_name,Const double 1l1_ary [2]);

CS cnvrg returns the convergence angle of the coordinate system whose key name is provided by the
cs_name argument, at the location provided by the ll_ary argument. The position provided by the
ll_ary argument must be in longitude and latitude form, in degrees, where the first element of the array
is the longitude and the second element of the array is the latitude. Use negative values for west
longitude and south latitude. The returned value is in degrees, east of north.

CS cnvrg uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

ERRORS
CS cnvrg will return a value of -360.0 (clearly a bogus value for a convergence angle) if an error is

detected during the calculation. The most common cause of errors is an invalid coordinate system
name.

88 CS-MAP User's Guide User's Guide

CS_cnvrt generalized CoNVeRT function

Function CS_cnvrt (ByVal src_cs As String,Byval trg _cs As String,
ByRef coord As Double) As Integer

function CS_cnvrt (src_cs,trg_cs :PChar;var coord :double) :Integer;

int CS_cnvrt (Const char *src_cs,Const char *trg_cs,double coord [3]);

CS _cnvrtis in essence a High Level Interface to the CS_MAP library. Using this single function, one
can convert coordinates from any defined system to any other. Simply provide the key name of the
source system via the src_cs argument, and the key name of the destination coordinate system via
the trg_cs argument, and CS_cnvrtwill cause the coordinate in the array given by the coord argument
is converted from the source system to the destination system. CS cnvrtreturns zero if the conversion
completed successfully without incident. Otherwise, a CS-MAP error code value is returned (see
cs_map.h).

CS cnvrtrelies on a cache of coordinate systems, and for each conversion linearly searches the cache
for the definitions of the two coordinate system definitions, and the datum conversion definition, it
needs to perform its function. Thus, the performance penalty incurred from using this High Level
Interface is not as great as one may think.

Currently, the third element of the coord argument is unused; but may be used in the future.

CS_cnvrt3D 3D generalized CoNVeRT function

Function CS _cnvrt3D (ByVal src _cs As String,ByVval dst _cs As String,
ByRef coord As Double) As Integer

function CS_cnvrt3D (src_cs,dst cs :PChar; var coord :Double) :Integer

int CS cnvrt3D (Const char *src_cs,Const char *dst _cs,double coord [3]);

CS cnvrt3Dis in essence a High Level Interface with regard to three dimensional conversions. Using
this single function, one can convert three dimensional coordinates from any defined system to any
other. Simply provide the key name of the source system via the src_cs argument, and the key name
of the destination coordinate system via the dst_cs argument, and CS_cnvrt3D will cause the
coordinate in the array given by the coord argument to be converted from the source system to the
destination system. CS cnvrt3Dreturns a zero if the conversion completed successfully without
incident. Otherwise, a CS_MAP error code value is returned.

CS cnvrt3Drelies on a cache of coordinate systems, and for each conversion linearly searches the
cache for the definitions of the two coordinate system definitions, and the datum conversion definition,
it needs to perform its function. Thus, the performance penalty incurred from using this High Level
Interface is not as great as one may think.

Use CS_cnvrt3D only when converting data maintained in a three dimensional database. Note that if
the application is able to supply the returned Z value during an inverse calculation, the inverted result
may not match the original values.

CS_csEnum Coordinate System ENUMerator

Function CS _csEnum (ByVal index As Integer,ByVal key name As String,

ByVal size As Integer) As Integer
function CS_cskEnum (index :Integer;key name :Pchar;size :Integer) :Integer;
int CS_cseEnum (int index,char *key name,int size);

Chapter 3 Chatper 4 -- Library Functions 89

CS csEnumis used to enumerate all coordinate systems in the Coordinate System Dictionary.
CS_csEnumreturns in the memory buffer pointer to by the key_name argument the key name of the
index'th entry in the Coordinate System Dictionary. CS_csEnum will never write more than size bytes
to the indicated location. Index is a zero based index; the index of the first entry in the Coordinate
System Dictionary is zero.

CS csEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS csEnumwill return a -1 and set cs_Error appropriately if any of the following conditions are

encountered:
cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. See CS_altar.
cs_IOERR A physical I/O error occurred in accessing the Coordinate

System Dictionary.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number or was of an incompatible
release level.

cs_INV_INDX The index argument was negative.

CS_cslsValid Coordinate System key name Is Valid
Function CS cslsValid (Byval key name As String) As Integer

function CS_cslsvalid (key name :PChar) :Integer;
int CS cslsValid (Const char *key name);

CS cslsValidis used to validate coordinate system key names. CS cs/sValid returns a positive 1 if
key_name is a valid coordinate system key name, a zero if not.

ERRORS

CS _csEnumwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

90 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. (See CS_altar)

cs_IOERR A physical I/O error occurred in accessing the Coordinate
System Dictionary.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by

virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number. This can aso be caused by an
incompatible release.

CS_csRangeEnum Coordinate System Useful Range Enumerator

Function CS_csRangeEnum (ByVal index As Integer,ByVal csKeyName As String,

ByVal size As Integer) As Integer
function CS_csRangeEnum (index :Integer;csKeyName :Pchar;size :Integer)
cInteger;
int CS_csRangeEnum (int index,char *csKeyName,int size);

CS csRangeEnum is used to enumerate all coordinate systems which were located by the last call to
the CS_csRangeEnumSetup function. Using these two functions, it is possible to obtain a list of only
those coordinate systems whose useful range include a specific point. CS _csRangeEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the list
generated by CS_csRangeEnumSetup. CS_csRangeEnum will never write more than size bytes to the
indicated location. Index is a zero based index; the index of the first entry in the Coordinate System
Dictionary is zero.

CS_csEnumreturns a positive 1 to indicate success. If index is too large, a zero is returned. A
negative value is returned for a serious error, such as failure to call CS_csRangeEnumSetup prior to
calling this function.

CS_csRangeEnumSetup Coordinate System Range Enumeration Setup

Function CS_csRangeEnumSetup (ByVal longitude As DOuble,

ByVal latitude As Double) As Integer
function CS_csRangeEnumSetup (longitude, latitutde :Double) : Integer
int CS_csRangeEnumSetup (double longitude,double latitude);

Use this function to set the base location for subsequent CS_csEnumRange useage. That is, use this
function to produce (internally) a list of all coordinate systems whose useful range includes the given
location. Essentially, this function will generate the list, and the application programmer then uses the
CS csEnumRange function to enumerate the list.

Chapter 3 Chatper 4 -- Library Functions 91

Thelocation is specified in geographical terms (i.e. latitude and longitude). These values must bein
degrees, relative to Greenwich. Since datum differences are on the order of, at most, afew hundred
meters, the datum upon which these coordinates are based isimmaterial for the purpose of this
function.

CS _csRangeEnumSetup will return a negative value in the event of a serious error, such as beung
unable to access the Coordinate System Dictionary. Use CS_errmsg to get atextual description of the
error which can be reported to the application user. Otherwise, CS_csRangeEnumSetup will return the
number of coordinate systems located, which can be zero.

Finally, note that the CS_recvrfunction will recover all allocated resources, including the list of
coordinate systems generated by the last cal to this function.

CS_dtEnum DaTum ENUMerator

Function CS _dtEnum (ByVal index As Integer,ByVal key name As String,

ByVal size As Integer) As Integer
function CS_dtEnum (index :Integer;key name :Pchar;size :Integer) :Integer;
int CS_dtEnum (int index,char *key name,int size);

CS dtEnumis used to enumerate all datums in the Datum Dictionary. CS_dtEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the Datum
Dictionary. CS_dtEnum will never write more than size bytes to the indicated location. Index is a zero
based index; the index of the first entry in the Datum Dictionary is zero.

CS dtEnumreturns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_dtEnumwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_DTDICT The Datum Dictionary could not be found or otherwise opened.
(See CS_altar)

cs_IOERR A physical I/O error occurred in accessing the Datum
Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Datum Dictionary by virtue of its
name was not a Datum Dictionary; it had an invalid magic
number. This can aso be caused by adictionary file of an
incompatible release.

cs_INV_INDX The index argument was negative.

92 CS-MAP User's Guide User's Guide

CS_dtlsValid DaTum key name Is Valid

Function CS_dtlsValid (ByVal key name As String) As Integer
function CS_dtlsvalid (key_name :PChar) :Integer;
int CS_dtlsvValid (Const char *key name);

CS dltlsVvalidis used to validate datum key names. CS dt/sValid returns a positive 1 if key_name is a
valid datum key name, a zero if not.

ERRORS

CS dltlsVvalid will return a -1 and set cs_Error appropriately if any of the following conditions are

encountered:
cs_DTDICT The Datum Dictionary could not be found or otherwise
opened. (See CS_altar.)
cs_IOERR A physical I/O error occurred in accessing the Datum

Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Datum Dictionary by virtue of its
name was not a Datum Dictionary; it had an invalid magic
number. This can also be caused by adictionary file of an
incompatible release.

CS_elEnum ELlipsoid ENUMerator

Function CS_elEnum (ByVal index As Integer,ByVal key name As String,

ByVal size As Integer) As Integer
function CS_elEnum (index :Integer;key name :Pchar;size :Integer) :Integer;
int CS_elEnum (int index,char *key name,int size);

CS _elEnumis used to enumerate all ellipsoids in the Ellipsoid Dictionary. CS_elEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the
Ellipsoid Dictionary. CS_elEnum will never write more than size bytes to the indicated location. Index
is a zero based index; the index of the first entry in the Ellipsoid Dictionary is zero.

CS elEnumreturns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_elEnumwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

Chapter 3 Chatper 4 -- Library Functions 93

cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise
opened. (See CS_altar.)

cs_IOERR A physical /O error occurred in accessing the Ellipsoid
Dictionary.

cs_DT_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name was not an Ellipsoid Dictionary; it had an invalid magic
number. Note that dictionary magic numbers can be different for
different releases.

cs_INV_INDX The index argument was negative.

CS_ellsValid ELlipsoid key name Is Valid

Function CS_ellsValid (Byval key name As String) As Integer
function CS_ellsvalid (key name :PChar) :Integer;
int CS _ellsValid (Const char *key name);

CS ellsValidis used to validate ellipsoid key names. CS ellsValidreturns a positive 1 if key_name is a
valid ellipsoid key name, a zero if not.

ERRORS

CS ellsValidwill return a -1 and set cs_Error appropriately if any of the following conditions are

encountered:

cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise
opened. (See CS altar.)

¢s_IOERR A physical I/O error occurred in accessing the Ellipsoid
Dictionary.

cs_EL_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name was not a Ellipsoid Dictionary; it had an invalid magic
number. Note that magic numbers can be different for
different releases.

CS_errmsg ERRor MeSsaGe

Sub CS_errmsg (ByVal my_ bufr As String,ByVal bufr_size As Integer)
procedure CS_errmsg (msg_bufr :-PChar;bufr_size :Integer);
void CS_errmsg (char msg_bufr,int bufr_size);

CS _errmsg returns to the calling function a null terminated string which describes the last error

94 CS-MAP User's Guide User's Guide

condition detected by the CS_MAP library. The result is returned in the buffer pointed to by the
msg_bufr argument, which is assumed to be bufr_size bytes long. The message is returned in one
character per byte ANSI code characters.

CS errmsg will return the null string if called before any error condition is detected.

BUGS

After returning an error message to the user, CS_errmsg should reset itself to the null string preventing
the same error message from being returned a second time. It should, but it doesn't.

CS_erpt Error RePorT

extern int cs_Error,cs Errno;
void CS_erpt (int err_num);

CS erptis called by all functions in the Coordinate System Mapping Package whenever an error
condition is detected. The value of err_num indicates the specific error condition detected and must
be one of the manifest constants defined in cs_map.h.

At the current time, CS_erpt does nothing other than set the value of global variable cs_Error to the
supplied value of err_num and set the global variable of cs_Errno to the current value of the
system's global variable errno.

It is expected that users will want to write their own CS_erpt function that will properly inform the
operator of the nature of the problem encountered.

Each function in the Coordinate System Mapping Package is programmed to clean up after itself after
return from CS_erpt. That is, upon return from CS_erpt, all memory malloced by the function detecting
the error is freeed and any temporary file created by the function detecting the error is removed.

CS fast FAST mode

Sub CS_fast (Byval fast As Integer)
procedure CS fast (fast :Integer);
void CS_fast (int fast);

CS fastcan be used to improve the performance of applications using the High Level Interface. When
incorporated into a DLL, the High Level Interface normally verifies the veracity of each pointer
argument provided by the application. This is convenient, of course, but also somewhat time
consuming. Calling CS_fastwith a non-zero value for the fast argument will disable this checking. Itis
recommended that calling CS_fastbe added to your application only after it has been debugged. Fast
mode can be turned off by calling CS_fast with argument fast set to zero.

CS _ftoa Floating point TO Ascii

Function CS_ftoa (ByVal buffer As String,ByVal size As Integer,ByVval value
As Double,

ByvVal format As Long) As Long
function CS_ftoa (buffer :Pchar; size :Integer;value :Double;format
:Longint) :Longint;
long CS_ftoa (char *buffer,int size,double value,long format);

Chapter 3 Chatper 4 -- Library Functions 95

CS ftoaformats the double precision floating point value provided by the value argument into ASCII
form returning the result in the character array pointed to by the buffer argument. The result is always
a null terminated string, and the length of the string is never longer than size - 1 characters. The
format of the character string is controlled by the format argument. CS ftoa returns a long that
indicates the actual format used to format the value. The returned format specification may be different
from the requested format if the buffer provided was not large enough, or if the requested format is not
appropriate for the value provided.

CS ftoais intended to be a generalized formatting function that accommodates the formats commonly
used in mapping. That is, large numbers and values in degrees minutes and seconds form. The
somewhat awkward format argument is designed such that the value returned by CS_atofis suitable
for use by CS ftoa.

The original intent behind the design of the format specification was to enable users to indicate the
desired format of output by simply entering a suitable value in the form they desire. The application
would then use CS_atofto convert the value to binary form. If no errors occurred during the
conversion, the returned long could then be used to format output. Experience will determine the
success of this approach.

The format argument is a bitmap of information used to contain precision, formatting specifications,
and error status values. The following descriptions refer to constants defined in the various header
files. Construct a format specification by inclusively or'ing the desired options.

96

CS-MAP User's Guide User's Guide

cs_ATOF_PRCMSK

The least significant five bits are used to indicate the number of
digits to be produced after the decimal point. Thevalueis
actually the number of desired digits plus one. Zero indicates
that the precision isto be calculated automatically. This
constant is amask that will mask out the precision value.

cs_ATOF_MINSEC

Output isto be in degrees, minutes, and seconds form.

cs_ATOF_MINUTE

Output isto be in degrees and minutes form.

cs_ATOF_EXPNT

Thisbit is set in thereturned value if CS ftoa had to resort to
scientific notation in order to format the value in the space
provided.

cs_ATOF_OVRFLW

This bit is set in the returned value if CS_froa could only output
the overflow indication (i.e. *.*) in the space provided.

cs_ATOF_COMMA

Output is to include thousands separators to the left of the
decimal point as appropriate.

cs_ATOF_DIRCHR

Output isto include directional charactersto indicate the sign of
the numbers rather than plus or minus signs.

cs_ATOF_XEAST

Meaningful only when the cs_ATOF_DIRCHR hit is set.
Indicates that character set used to indicate positive or negative
are E and W asopposed to N and S.

cs_ATOF_MINSECO

Output isto include leading zeros in the minutes and seconds
fields instead of leading spaces.

cs_ATOF_DEGO

Output isto include leading zeros in the degrees field rather
than spaces.

cs_ATOF_0BLNK

Output anull string if the provided valueis zero.

cs_ATOF_FORCE3

Used to force at |east three character output in the degree field.
Usually used when formatting a longitude.

cs_ATOF_RATIO

Output the result in aratio format, e.g. 1:2500. Can beusedin
conjunction with cs_ATOF_COMMA to get something like
1:2,500.

CS_geoctrSetUp GEOCenTRic setup

Function CS_geoctrSetUp (ByVval ellipsoid As String) As Integer
function CS_geoctrSetUp (ellipsoid :PChar) :lInteger;
int CS geoctrSetUp (const char *ellipsoid);

Chapter 3 Chatper 4 -- Library Functions 97

Use this function to specify the ellipsoid definition that is to be used in geocentric coordinate
calculations. The ellipsoid argument must be the key name of an ellipsoid defined in the ellipsoid
dictionary. Zero is returned on success, -1 on error. Errors are usually caused by invalid ellipsoid
names.

CS_geoctrGetXyz GEOCenTRic GET XYZ

Function CS_geoctrGetXyz (ByRef xyz As Double,ByRef Ilh As Double) As
Integer

function CS_geoctrGetXyz (var xyz, 1lh :Double) :Integer;

int CS_geoctrGetXyz (double xyz [3], double 1lh [3]);

Given the geographic coordinates of a point via the llh argument, CS_geoctrGetXyz returns the
corresponding geographic coordinate in the array indicated by the xyz argument. Use the
CS_geoctrSetUp to specify the ellipsoid that is to be used in the calculation. Note that the returned
geocentric coordinates will be in meters, and the third element of the llh argument is considered to be
the ellipsoidal height in meters. CS geoctrGetXyz returns zero on success and —1 on failure. Failure
can be caused by failing to specify an ellipsoid by calling CS_geoctrSetUp, or providing a bogus set of
geographic coordinates.

CS_geoctrGetLIh GEOCenTRic GET LatLongHgt

Function CS_geoctrGetLIh (ByRef Ilh As Double,ByRef xyz As Double) As
Integer

function CS_geoctrGetLIh (var 1lh, xyz :Double) :Integer;

int CS _geoctrGetLlh (double 1lh [3], double xyz [3]);

Given the geocentric coordinates of a point via the xyz argument, CS_geoctrGetL/h returns the
corresponding geographic coordinate in the array indicated by the Ilh argument. Use the

CS geoctrSetUp to specify the ellipsoid that is to be used in the calculation. Note that the geocentric
coordinates must be in meters, and the height (i.e. the third element of the llh result) is the ellipsoidal
height in meters. CS_geoctrGetL/h returns zero on success and —1 on failure. Failure can be caused
by failing to specify an ellipsoid by calling CS_geoctrSetUp, or providing a bogus set of geocentric
coordinates.

CS_getCountyFips Get County Federal Information Processing
Standard code

Function CS_getCountyFips (ByVal stateFips As Integer,ByVal countyName As
String) As Integer

function CS_getDataDirectory (stateFips :Integer; countyName :PChar)
:Integer;

int CS_getCountyFips (int stateFips,Const char* countyName);

98 CS-MAP User's Guide User's Guide

This function returns the Federal Information Processing Standard code value assigned to a county
indicated by the countyName argument. Thisis appropriate for the US only. Y ou can obtain the
appropriate value for the stateFips argument by using CS_getStateFips. Note, that countyName must
be the complete offical name of the county without any punctuation. The lookup procedure is NOT
case sensitive. The function returns zero if the information provided by the two arguments fails to
produce a county code.

CS_getDataDirectory GET DATA DIRECTORY

Function CS _getDataDirectory (ByVal data dir As String,

ByvVal dir_sz As Integer) As Integer
function CS_getDataDirectory (data dir :PChar; dir_sz :-Integer) :Integer;
int CS_getDataDirectory (char *data dir,int dir_sz);

CS getDataDirectory will return in the character array pointed to by the data_dir argument the full path
to the directory it is searching for supporting data file. It will always return a null terminated string, but
never write more than dir_sz characters to the array. CS_getDataDirectory will return TRUE if the
directory returned does indeed contain a Coordinate System Dictionary file (i.e. a file named
COORDSYS).

CS_getDatumOf Get Datum of a Coordinate System

Function CS_getDatumOf (ByVal cskKeyName As String,ByVal datumName As
String,ByVal size As Integer) As Integer

function CS_getDatumOf (cskKeyName, datumName :PChar; size :Integer)
cInteger;
int CS _getDatumOf (Const char *csKeyName,char *datumName,int size);

Use this function to obtain the key name of the datum assigned to the coordinate system whose key
name is provided by the csKeyName argument. The datum key name is returned in the string pointed
to by the datumName argument. CS_getDatumOT will never write more than size characters to the
datumName string. A zero value is returned for success, and -1 for failure. Failure is almost always
caused by providing an invalid coordinate system key name. The string at datumName will be the
empty string if the coordinate system referred to is cartographically referenced (i.e. referenced directly
to an ellipsoid).

CS_getDescriptionOf Get Description of a Coordinate System

Function CS_getDescriptionOf (ByVal csKeyName As String,
ByvVal description As String,
ByVal size As Integer) As Integer
function CS_getDescriptonOf (cskKeyName, description :PChar; size :Integer)
cInteger;
int CS_getDescriptionOf (Const char *csKeyName,char *description,int size);

Use this function to obtain the description the coordinate system whose key name is provided by the
csKeyName argument. The description is returned in the string pointed to by the description
argument. CS_getDescriptionOT will never write more than size characters to the datumName
string. A zero value is returned for success, and -1 for failure. Failure is almost always caused by

Chapter 3 Chatper 4 -- Library Functions 99

providing an invalid coordinate system key name. Note that description field of a coordinate system
definition is limited to 63 characters, and size is typically 64 (to accommodate for the null terminating
character used in C).

CS_getEllipsoidOf Get Ellipsoid Of a Coordinate System

Function CS _getEllipsoidOf (Byval csKeyName As String,
Byval ellipsoidName As String,
ByVal size As Integer) As Integer
function CS_getEllipsoidOf (csKeyName, ellipsoidName :PChar;
size :Integer) :Integer;
int CS_getEllipsoidOf (Const char *csKeyName,char *ellipsoidName,int size);

Use this function to obtain the ellipsoid referenced by the coordinate system whose key name is
provided by the csKeyName argument. The ellipsoid key name is returned in the string pointed to by
the ellipsoidName argument. CS_getEllipsoidOf will never write more than size characters to the
ellipsoidName string. A zero value is returned for success, and -1 for failure. Failure is almost
always caused by providing an invalid coordinate system key name. Note that key names are limited
to 23 characters, and size is typically 24 (to accommodate for the null terminating character used in C).

This function usually returns the empty string as most coordinate systems are referenced to a datum
rather than an ellipsoid. Use this function only in those cases where the CS_getDatumOf function
returns the empty string, indicating a coordinate system which is cartographically referenced.

CS_getReferenceOf Get Reference Of a Coordinate System

Function CS_getReferenceOf (ByVal csKeyName As String,
ByvVal reference As String,
ByVal size As Integer) As Integer
function CS_getReferenceOf (csKeyName, reference :PChar;
size :Integer) :Integer;
int CS _getReferenceOf (Const char *csKeyName,char *reference,int size);

Use this function to obtain an ASCII representation of what the coordinate system referenced by the
csKeyName argument is referenced to. This operates correctly for both geodetic and cartographic
references. The returned ASCII string will include an indication of the type of reference, and also the
key name imvolved. The reference description is returned in the string pointed to by the reference
argument. CS_getRefernceOf will never write more than size characters to the reference string. A
zero value is returned for success, and -1 for failure. Failure is almost always caused by providing an
invalid coordinate system key name. 32 is a customary value for the size argument. A geodetic
reference looks something like: Datum: WGS84.

CS_getSourceOf Get Source Of Coordinate System

Function CS_getSourceOf (ByVal csKeyName As String,ByVal source As String,
ByVal size As Integer) As Integer

function CS_getSourceOf (cskKeyName, source :PChar; size :Integer) :Integer;

int CS_getSourceOf (Const char *csKeyName,char *source,int size);

100 CS-MAP User's Guide User's Guide

Use this function to obtain the source of information field of the coordinate system definition whose key
name is provided by the csKeyName argument. The source information is returned in the string
pointed to by the source argument. CS_getSourceOT will never write more than size characters to
the source string. A zero value is returned for success, and -1 for failure. Failure is almost always
caused by providing an invalid coordinate system key name. Note that source of information field of a
coordinate system definition is limited to 63 characters, and size is typically 64 (to accommodate for
the null terminating character used in C).

CS_getUnitsOf Get Units of a Coordinate System

Function CS_getUnitsOFf (ByVal cskKeyName As String,ByVal units As String,
ByVal size As Integer) As Integer

function CS_getUnitsOf (csKeyName, units :PChar; size :Integer) :Integer;

int CS_getUnitsOf (Const char *cskKeyName,char *units,int size);

Use this function to obtain the key name of the units of the coordinate system definition whose key
name is provided by the csKeyName argument. The unit key name is returned in the string pointed to
by the units argument. CS_getUnitsOT will never write more than size characters to the units
string. A zero value is returned for success, and -1 for failure. Failure is almost always caused by
providing an invalid coordinate system key name. Note that unit key name field of a coordinate system
definition is limited to 23 characters, and size is typically 24 (to accommodate for the null terminating
character used in C).

CS getEIValues Get Ellipsoid Values

Function CS_getElValues (ByVal elKeyName As String,ByRef eRadius As Double,
ByRef eSquared As Double) As Integer

function CS_getElValues (elKeyName :PChar; var eRadius, eSquared :Double)

cInteger;

int CS _getElValues (Const char *elKeyName,double *eRadius,double

*eSquared) ;

Use this function to obtain the equatorial radius and the eccentricity squared values for the ellipsoid
referenced by elKeyName argument. The appropriate values are returned in the double variables
pointed to by the eRadius and eSquared arguments.. A zero value is returned for success, and -1 for
failure. Failure is almost always caused by providing an invalid ellipsoid key name. Note that the value
returned in eRadius is the equatorial radius and is always in meters. The value returned in the
eSquared variable is unitless, and will be zero if the ellipsoid definition referenced by the elKkeyName
argument ia actually the definition of a sphere.

CS_getCurvatureAt get CURVATURE AT specified latitude

Function CS_getCurvatureAt (ByVal csKeyName As String,
ByVal latitude As Double) As Double

function CS_getCurvatureAt (csKeyName, source :PChar; latitude :double)
:Double;

double CS _getCurvatureAt (Const char *csKeyName,double latitude);

Chapter 3 Chatper 4 -- Library Functions 101

This function uses the ellipsoid underlying the coordinate system definition indicated by the
csKeyName argument, and computes the Gaussian curvature at the specified latitude. The key name

argument must be that of a coordinate system definition, and the latitude argument is specified in
degrees.

The function returns a hard zero in the event of an error, which can be caused by providing an invalid
coordinate system key name. The latitude argument is not checked and used asis, since only the sine
of the latitude is necessary for the calculation (and all real values have, technically, asine value).

CS _isgeo IS GEOgraphic

Function CS_isgeo (ByVal key nm As String) As Integer
function CS_isgeo (key nm :PChar) :Integer;
int *CS_isgeo (Const char *key _nm);

CS isgeo will check the coordinate system definition with the key name indicated by the key_nm
argument and return +1 (i.e. TRUE) if the coordinate system does return geographic coordinates. A
zero is returned if the named coordinate system is not geographic.

CS isgeoreturns a negative value in the event of a hard error. The most frequent cause of a hard error
is providing an invalid coordinate system name.

CS_llazdd Lat/Long to AZimuth and Distance calculator

Function CS_llazdd (Byval e _rad As Double, ByVal e_sq As Double,
ByRef 11_from As Double,
ByRef 11_to As Double,
ByRef dist As Double) As Double
function CS_llazdd (e_rad,e sq :Double;var Il _from,11_to :Double;
var dist :Double) :Double;
double CS_llazdd (double e rad,double e sq,Const double 11 _from [2],
Const double 11_to [2],
double *dist);

CS llazdd returns the ellipsoidal azimuth and distance between two points on the surface of an ellipsoid
specified in terms of latitude and longitude. e_rad specifies the equatorial radius and e_sq specifies
the square of the eccentricity of the ellipsoid. The returned azimuth is calculated from the location
specified by Il_from to that specified by Il_to, and the distance between the two points is returned at
the location pointed to by dist. The units of the returned distance are the same as those used to
specify the equatorial radius.

Latitude and longitude values are in degrees where the first element in each array is the longitude and
the second element is the latitude. West longitude and south latitude are negative.

The algorithm used is known as: "Solution of the geodetic inverse problem after T. Vincenty modified
Rainsford's Method with Helmert's elliptical terms."

ERRORS

102 CS-MAP User's Guide User's Guide

CS /llazdd makes no checks for possible errors. The algorithm used is appropriate for any combination
of points that are not antipodal. That is, the points used must not be exactly opposite each other, i.e.
on the endpoints of a straight line that passes through the center of the earth.

CS_lIFromMgrs calculate Lat/Long FROM MGRS

Function CS_mgrsFromLl (ByRef latLng As Double, ByVal mgrs As String) As

Integer
function CS_mgrsFromLl (var latLng :Double; mgrs :PChar) :Integer;
double CS mgrsFromLl (double latLng [2],const char *mgrs);

CS_llIFromMagrs returns in the array indicated by the latLng argument the geographic coordinate
equivalent of the MGRS (Military Grid Reference System) string provided by the mgrs argument. This
function is aware of the poles and the rather strange stuff that happens in the northern Europe.

CS lIFromMagrs returns a zero for success, and —1 for failure. Failure can be caused by failing to call
the CS_mgrsSetUp prior to calling CS_/IFromMgrs or providing an invalid MGRS string.

CS_mgrsFromLlI calculate MGRS FROM Lat/Long

Function CS _mgrsFromLl (ByVal mgrs As String, ByRef latLng As Double,
ByVal precision As Integer) As Integer
function CS_mgrsFromLl (mgrs :PChar; var latLng :Double;precision :Integer)
:Integer;
double CS mgrsFromLl (char *mgrs,double latLng [2],int precision);

CS _magrsFromlL/returns the MGRS (Military Grid Reference System) equivalent of the geographic
position provided by the latLng argument in the character array (string) indicated by the mgrs
argument. The precision of the result is controlled by the precision argument that must have a value
between 1 and 5 (inclusive). The result array is assumed to be at least 16 bytes in length. The latLng
argument must adhere to the convention established for internal coordinates. This function is aware of
the poles and the rather strange stuff that happens in the northern Europe.

CS _magrsFromlL/returns a zero for success, and —1 for failure. Failure can be caused by failing to call
the CS_mgrsSetUp prior to calling CS_mgrsFromL/or providing an invalid geographic coordinate.

CS_mgrsSetUp MGRS SETUP

Function CS_mgrsSetUp (ByVval ellipsoid As String, ByVal bessel As Integer)
As Integer

function CS_mgrsSetUp (ellipsoid :PChar; bessel :Integer) :lInteger;

double CS mgrsSetUp (const char* ellipsoid, int bessel);

Use the CS_mgrsSetUp to specify the ellipsoid that is to be used in the MGRS (Military Grid Reference
System) calculations. Use the ellipsoid argument to provide the key name of the ellipsoid definition
that is to be used. There are two alphabetic code sequences used with MGSR. A zero value for the
bessel argument causes the normal code sequence to be used, a value of +1 indicates that the code
sequence associated with the Bessel ellipsoid is to be used.

CS_mgrsFromL/returns a zero for success, and —1 for failure. Failure is usually caused by a invalid
ellipsoid name.

Chapter 3 Chatper 4 -- Library Functions 103

CS_recvr RECoVeR resources

Sub CS_recvr
procedure CS_recvr;
void CS_rcvr (void);

CS revrwill release all system resources allocated by use of the single function user interface
functions CS cnvrt, CS_cnvrg, and CS _scale. It essentially frees up the coordinate system cache and
the datum conversion cache established by these functions to enhance performance.

CS_scale grid SCALE factor function

Function CS_scale (ByVal cs_name As String,ByRef Il As Double) As Double
function CS_scale (cs_name :PChar;var 11 :Double) :Double;
double CS_scale (Const char *cs_name,double 11 [2]);

CS scalereturns the grid scale factor of the coordinate system whose key name is provided by the
cs_name argument, at the location provided by the Il argument. The position provided by the Il
argument must be in longitude and latitude form, in degrees, where the first element of the array is the
longitude and the second element of the array is the latitude. Use negative values for west longitude
and south latitude. The returned value is the grid scale factor.

CS scale uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

In the case of a conformal projection, the K and H scale factors are the same; there is no ambiguity.
For non-conformal projections, however, the K and H functions are not the same. In these cases, this
function will return the more interesting of the two factors. For example, for the Equidistant Conic, the
K factor is always 1.0, and this function would return the H factor for this projection.

ERRORS

CS scale will return a negative one (i.e. -1.0) if an error occurs. Providing an invalid coordinate system
name is the most common source of error.

CS_scalh grid SCALE factor(H) function

Function CS_scalh (ByVal cs_name As String,ByRef Il As Double) As Double
function CS_scalh (cs_name :PChar;var 11 :Double) :Double;
double CS_scalh (Const char *cs_name,double 11 [2]);

CS scalhreturns the grid scale factor along a meridian of the coordinate system whose key name is
provided by the cs_name argument, at the location provided by the Il argument. The position provided
by the Il argument must be in longitude and latitude form, in degrees, where the first element of the
array is the longitude and the second element of the array is the latitude. Use negative values for west
longitude and south latitude. The returned value is the grid scale factor.

CS scalh uses the same cache of coordinate system definitions as does CS_cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

ERRORS

104 CS-MAP User's Guide User's Guide

CS scalhwill return a negative one (i.e. -1.0) if an error occurs. Providing an invalid coordinate system
name is the most common source of error.

CS_scalk grid SCALE factor(K) function

Function CS_scalk (ByVal cs_name As String,ByRef Il As Double) As Double
function CS_scalk (cs_name :PChar;var 11 :Double) :Double;
double CS_scalk (Const char *cs_name,double 11 [2]);

CS scalk returns the grid scale factor along a parallel of the coordinate system whose key name is
provided by the cs_name argument, at the location provided by the Il argument. The position provided
by the Il argument must be in longitude and latitude form, in degrees, where the first element of the
array is the longitude and the second element of the array is the latitude. Use negative values for west
longitude and south latitude. The returned value is the grid scale factor.

CS scalk uses the same cache of coordinate system definitions as does CS cnvrt, therefore, the
performance penalty of using this very simple function is not as great as one might expect.

ERRORS

CS scalk will return a negative one (i.e. -1.0) if an error occurs. Providing an invalid coordinate system
name is the most common source of error.

CS_setHelpPath SET HELP PATH

Function CS_setHelpPath (ByVal helpPath As String) As Integer
function CS_setHelpPath (helpPath :PChar) :Integer;
int CS_setHelpPath (const char *helpPath);

Use the CS_setHelpPath function to set the directory that you desire to have CS-MAP search when
seeking the MFC dialog help file. The helpPath argument must point to a null terminated string that
carries the full path to the desired directory.

CS setHelpPathreturns +1 (i.e. TRUE) if a properly named file exists in the indicated directory. Zero
(i.e. FALSE) is returned if such a file does not exist.

CS_spZoneNbrMap State Plane ZONE NumBeR MAPper

Function CS_spzone (ByValue cskKeyName As String,ByVal is83 As Integer) As
Integer

function CS_spzone (cskeyName :PChar; is83 :Integer) :Integer

int CS_spzone (char *csKeyName,int is83);

CS_spZoneNbrMap examines the character array provided by the csKeyName argument and if it
determines that the array contains a valid state plane zone number specification, the contents of the
array is replaced with the appropriate corresponding coordinate system key name. If the is83
parameter is non-zero, the zone number is interpreted as a NAD83 zone number. Otherwise, the zone
number is interpreted as a NAD27 zone number.

If the original content of the character array pointed to be the csKeyName argument is not a valid
state plane zone number, the contents of the array remains unchanged.

Chapter 3 Chatper 4 -- Library Functions 105

CS spZoneNbrMap returns 0 if a substitution was made. A positive one is returned if a substitution was
not made because the value passed was not considered to be a valid state plane zone number. Minus
one is returned if the original passed value is close to a state plane zone number (i.e. consisted of
three or four digits), but did not match a valid state plane zone number.

CS_unEnum UNits ENUMerator

Function CS_unEnum (ByVal index As Integer,ByVal type As Integer,
Byval key name As String,
ByvVal name_sz As Integer) As Integer
function CS_unEnum (index, type :Integer;key name :Pchar;name_sz :Integer)
cInteger;
int CS_unEnum (int index, int type,char *key name,int nm_size);

CS _unEnumis used to enumerate all units of a specific type in the CS-MAP units table. CS unEnum
returns in the memory buffer pointer to by the key_name argument the name of the index'th entry in
the unit table of the type specified by the type argument. CS_unEnum will never write more than
nm_size bytes to the indicated location. Index is a zero based index; the index of the first entry in the
unit table is zero.

Currently, only two types of units supported, length and angular measure. Manifest constants defined
in the cs_map.h header file are used to distinguish the desired type. These are cs_UTYP_LEN, for
linear units, and ¢s_ UTYP_ANG, for angular units. The type argument must be one of these values.

CS_unEnum returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS _unEnumwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_INV_INDX The index argument was negative.

BUGS

If called with an invalid type, CS_wunEnum should probably return an error condition, but it doesn't.
Calling CS_unEnum with an invalid type causes a return value of zero for all positive values of the
index argument.

CS_unitlu UNIT Look Up

Function CS_unitlu (ByVval type As Integer,ByVal unit_nm As String) As
Double

function CS_unitlu (type :Integer;unit nm :-PChar) :Double;

double CS _unitlu (short type,Const char *unit_nm);

Given the type of measurement, either length or angular, as specified by the type argument and the
unit name as specified by the unit_nm argument, CS_wunit/u will return a double which represents the
multiplier required to convert a value in the unit system indicated by unit_nm to units of meters or
degrees.

106 CS-MAP User's Guide User's Guide

Currently, only two types of units supported, length and angular measure. Manifest constants defined
in the cs_map.h header file are used to distinguish the desired type. These are cs_UTYP_LEN and
¢s_UTYP_ANG. The type argument must be one of these values.

unit_nm must be a null terminated string matching one of the supported units as defined in CSdataU.
CS _unitlureturns zero in the event the provided unit name is not known. unit_nm may be one of the
supported abbreviations for any of the units defined in the unit table.

For example, to convert a value in feet to meters, one could code:
double CS_unitlu ;
meters = feet * CS_unitlu (cs_UTYP_LEN,"FOOT");

Or to convert degrees to grads:
%ouble CS_unitlu Q;

grads = degrees / CS_unitlu (cs_UTYP_ANG,"GRAD™);

CS _unitluknows about the first and second abbreviations provided for in the cs_Unittab_ structure.

Therefore, the following are equivalent to the above:
double CS_unitlu ();
{

meters = feet * CS_unitlu (cs_UTYP_LEN,"FT"™);

double CS_unitlu ;
grads = degrees / CS_unitlu (cs_UTYP_ANG,"GR"™);

ERRORS

CS_unitluwill return zero and set cs_Error to cs_INV_UNIT if the unit name pointed to by unit_nm
is not defined in cs_Unittab for the specified type, or the specified type is not valid.

High Performance Interface

Functions which are considered part of the High Performance Interface are described in this section.
Several of these functions return addresses (i.e. pointers to) malloc'ed memory, and therefore these
functions are not suitable for all languages. Function prototype definitions are given in the C syntax
only.

CS_audflt Angular Unit DeFauLT

char *CS_audlt (Const char *new_dflt);

Use CS_audfitto control the status of the "defaultable" angular unit reference feature of CS-MAP.
new_dflt must be either a pointer to a valid angular unit name, a pointer to the null string, or the NULL
pointer. In the case where new_dflt is a pointer to a valid angular unit name, CS_audfit causes the
default angular unit feature to be activated, using the angular unit name provided as the, possibly new,
default value. When new_dflt is a pointer to the null string, CS_audfit disables the default angular unit
feature. When new_dflt is the NULL pointer, the status of the angular unit default feature remains

Chapter 3 Chatper 4 -- Library Functions 107

unchanged.

In all cases, CS_audfitreturns the previous status (or in the case of new_dflt == NULL, the current
status) in the form of a pointer to a static character array that contains the name of the previous default
angular unit. Should the returned pointer point to a null string, the indicated previous status is
disabled.

ERRORS

CS_audfitwill return the NULL pointer if the key name provided is not that of a valid angular unit. In
this event, the current status of the default angular unit feature remains unchanged.

CS cs2ll Coordinate System TO Latitude/Longitude

void CS _cs2ll (Const struct cs_Csprm_ *csprm,double 1l [2],Const double xy
[2D;

Given the definition of the coordinate system, csprm, such as returned by CS csloc, CS_cs2// will
convert the coordinates xy to latitude and longitude, returning the results in Il. The Il and xy arguments
may point to the same array.

In the array arguments, the X coordinate and the longitude occupy the first element, the Y coordinate
and the latitude the second element. West longitudes and south latitudes are negative. The returned
values are in degrees.

CS_cscnv Coordinate System CoNVergence

double CS cscnv (Const struct cs Csprm_ *csprm,Const double 11 [2]);

Given the definition of the coordinate system, csprm, such as returned by CS csloc, CS_cscnvwill
return the convergence angle in degrees east of north at the location given by II.

The location, as given by Il is in terms of latitude and longitude. The longitude is the first element of
the Il array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

CS_csdef Coordinate System DEFinition locator

struct cs_Csdef_ *CS_csdef (Const char *key nm);

CS csdefwill return a pointer to a malloced cs_Csdef _ structure that contains the definition of the
coordinate system indicated by key_nm. Key_nm must point to an array that contains the null
terminated key name of the desired coordinate system. The memory allocated for the coordinate
system definition may be released by calling CS_free when no longer needed.

ERRORS

CS_csdefwill return a NULL pointer and set cs_Error if any of the following conditions are detected:

108 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary file could not be found or
otherwise opened. (See CS_altar.

cs_IOERR A physical I/O error occurred during access to the Coordinate
System Dictionary file.

cs_CS_BAD_MAGIC The file accessed under the assumption that it was a
Coordinate System Dictionary wasn't a Coordinate System
Dictionary after all; it had an invalid magic number on the
front end.

¢cs_CS_NOT_FND A coordinate system definition with the name given by
key_nm was not found in the Coordinate System Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for the cs_Csdef_ structure.

CS_csdel Coordinate System definition DELete

int CS _csdel (struct cs Csdef_*csdef);

CS csde/will delete from the Coordinate System Dictionary the definition of the coordinate system
pointed to by csdef.

The delete is accomplished by creating a new Coordinate System Dictionary file and copying all but the
referenced coordinate system definitions from the existing dictionary to the new one. This implies that
sufficient disk space must exist to perform the copy. A zero is returned if the delete was successfully
completed, a -1 if a problem occurred. An attempt to delete a non-existent coordinate system definition
is NOT considered an error.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_csde/will not delete
a coordinate system which is marked as being a distribution coordinate system (i.e.

cs_Csdef .protect == 1). Ifthe value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined coordinate system is protected. For example, is
cs_Protect s 60, a user-defined coordinate system becomes protected 60 days after it is last
modified.

ERRORS

CS csde/will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

Chapter 3 Chatper 4 -- Library Functions 109

¢s_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. (See CS_altar)

cs_IOERR A physical I/O error occurred in copying the Coordinate System
Dictionary to the new file.

¢cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it
had an invalid magic number.

¢cs_TMP_CRT The attempt to create a new file, to which the modified
Coordinate System Dictionary was to be copied, failed.

cs_DISK_FULL Insufficient disk space was available to accommodate the
copying of the Coordinate System Dictionary to the new file.

¢cs_UNLINK The request to remove the old copy of the Coordinate System
Dictionary failed.

¢s_RENAME The request to rename the new Coordinate System Dictionary
file from its temporary name to COORDSY Sfailed.

¢cs_CS_PROT The coordinate system to be deleted is a distribution coordinate
system and may not be deleted.

¢cs_CS_UPROT The coordinate system is a user defined coordinate system that

has not been modified for 60 days and is therefore protected.

CS_csEnumBYyGroup Coordinate System ENUMerator By Group

int CS_csEnumByGroup (int index,Const char *grp_name,struct cs Csgrplst_
*cs_descr);

CS csEnumByGroupis used to enumerate a specific group of coordinate systems in the Coordinate
System Dictionary. CS_csEnumByGroup returns a completed cs_Csgrplst_ structure at the location
given by the cs_descr argument containing information that describes the index'th entry in the
coordinate system group named by the grp_name argument. Index is a zero based index; the index
of the first coordinate system in any group is zero. The next element of the returned cs_Csgrplst_
structure is always set to the NULL pointer.

CS csEnumByGroup returns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS csEnumByGroup will return a -1 and set cs_Error appropriately if any of the following conditions
are encountered:

110 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary could not be found or
otherwise opened. (See CS_altar)
cs_IOERR A physical I/O error occurred in accessing the Coordinate

System Dictionary.

cs_CS_BAD_MAGIC The file assumed to be the Coordinate System Dictionary by
virtue of its name was not a Coordinate System Dictionary; it

had an invalid magic number.

cs_CSGRP_INVKEY The grp_name argument was not that of avalid group name.

cs_INV_INDX The index argument was negative.

CS_csGrpEnum Coordinate System GRouP ENUMerator

int CS _csGrpEnum (int index,char *grp_name, int name_sz,char *grp_dscr,int
dscr_sz);

CS csGrpEnum is used to enumerate all groups in the Coordinate System Group table. CS_¢sGrpEnum
returns in the memory buffer pointer to by the grp_name argument the key name of the index'th entry
in the Coordinate System Group Table. CS c¢sGrpEnum will never write more than name_sz bytes to
the indicated location. Similarly, CS csGrpEnum returns the Coordinate System Group description in
the buffer pointed to be grp_dscr and whose size in indicated by dscr_sz. The grp_name and/or the
grp_dscr arguments may be the NULL pointer to suppress return of the indicated item.

Index is a zero based index; the index of the first entry in the Coordinate System Group Table is zero.
CS _dtEnumreturns a positive 1 to indicate success. If index is too large, a zero is returned. Inactive
groups (a feature planned for a future release) are ignored, and are not considered to exist as far as
index is concerned.

ERRORS

CS csGrpEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_INV_INDX

The index argument was negative.

CS_csloc Coordinate System LOCate and initialize

struct cs_Csprm_

*CS_csloc (Const

char *cs_nam);

struct cs_Csprm_ *Cscslocl (Const struct cs Csdef_ *cs_ptr);

struct cs _Csprm_ *Cscsloc2 (Const struct cs Csdef_ *csPtr,
Const struct cs Dtdef_ *dtPtr,
Const struct cs_Eldef_ *elPtr);

struct cs _Csprm_ *CScsloc (Const struct cs Csdef_ *csPtr,
Const struct cs Datum_ *dtPtr);

Chapter 3 Chatper 4 -- Library Functions 111

CS csloc locates the coordinate system definition indicated by ¢s_nam and returns a pointer to a
malloced, coordinate system parameter structure initialized for the specified coordinate system. The
return value is the argument required by CS ¢s2/l, CS ll2cs, CS csscl, and CS_cscnv. When no longer
needed, the memory pointed to by the returned pointer should be released using CS_free.

CS csloc accesses the definition dictionaries as is necessary to accomplish its task. The alternative
functions enable applications to create coordinate system parameter structures using definitions that
may have been obtained from sources other than the dictionaries. For example, certain applications
may store definitions in vehicles other than the dictionaries, and then desire to construct a coordinate
system parameter structure from these definitions.

Note that Cscs/oc1 does not need to access the coordinate system dictionary as the coordinate system
definition is provided by the cs_ptr argument. However, it will need to access the datum and ellipsoid
dictionaries to resolve datum and ellipsoid references. Cscsloc2is completely independent of all
dictionaries as all three definitions must be provided. CScs/ocis simply a basic function is encapsulates
the basic functions of CS_cs/oc and its alternatives, and thus prevents duplication of large amounts of
code.

ERRORS

CS_csloc, CScsloc1, CScslocZ, and CScsloc return a NULL pointer and set cs_Error through the use of
CS erptif any of the following conditions occur:

¢cs_UNKWN_PRO]J] The projection specified in the coordinate system definition is
unknown to the system.

CS csloc uses the following functions that detect a majority of the exceptional conditions that may
occur:

CS csdef L ocates and fetches the coordinate system definition from the
Coordinate System Dictionary.

CS dtloc Locates and fetches the datum definition from the Datum
Dictionary.

CS eldef L ocates and fetches the ellipsoid definition from the Ellipsoid
Dictionary.

CScslocl uses the following functions that detect a majority of the exceptional conditions that may
occur:

CS dtloc Locates and fetches the datum definition from the Datum
Dictionary.

CS eldef Locates and fetches the ellipsoid definition from the Ellipsoid
Dictionary.

112 CS-MAP User's Guide User's Guide

CS_cssch Coordinate System SCale H, along a meridian

double CS cssch (Const struct cs Csprm_ *csprm,Const double 11 [2]);

Given the definition of the coordinate system, csprm, such as returned by CS csloc, CS_cssch will
compute the grid scale factor along a meridian at the location given by Il and return this value. See
CS cssckfor the grid scale factor along a parallel. Note that in conformal projections, the grid scale
along a parallel equals the grid scale along a meridian at any point.

The location, as given by Il, is in terms of latitude and longitude. The longitude is the first element of
the Il array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

CS_cssck Coordinate System SCale K, along a parallel

double CS _cssck (Const struct cs Csprm_ *csprm,Const double 11 [2]);

Given the definition of the coordinate system, csprm, such as returned by CS csloc, CS_cssck will
compute the grid scale factor along a parallel at the location given by Il and return this value. See
CS_csschfor the grid scale factor along a meridian. Note that in conformal projections, the grid scale
along a parallel equals the grid scale along a meridian at any point.

The location, as given by Il is in terms of latitude and longitude. The longitude is the first element of
the Il array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

CS_csscl Coordinate System SCale

double CS_csscl (Const struct cs _Csprm_ *csprm,Const double 11 [2]);

Given the definition of the coordinate system, csprm, such as returned by CS csloc, CS_cssc/will
compute the grid scale factor at the location given by Il and return this value.

The location, as given by I, is in terms of latitude and longitude. The longitude is the first element of
the Il array, latitude is the second, and both must be given in degrees. Positive values are used to
specify north latitude and east longitude, negative values are used to specify south latitude and west
longitude.

Non-conformal projections have two different grid scale factors: the scale along a meridian and the

scale along a parallel. In the case of azimuthal projections, the two scale factors are along a radial line

from the origin and normal to such radial lines, respectively. Inthese cases, CS_cssc/will return the
more interesting of the two. For example, in the American Polyconic, the grid scale factor along all
parallels is always 1.0; therefore CS cssc/return the grid scale factor along a meridian for this
projection.

CS_csupd Coordinate System dictionary UPDate

int CS csupd (struct cs_Csdef_*csdef,int crypt);

Chapter 3 Chatper 4 -- Library Functions 113

CS csupd will cause coordinate system definition pointed to by csdef to be added to the Coordinate
System Dictionary. If a coordinate system with the same key name already exists, it is replaced by the
definition provided. If no such definition exists, the new definition is added to the dictionary. If cryptis
non-zero, the entry will be encrypted before being written to the dictionary.

In the event that the indicated coordinate system already exists, CS_csupd will return a 1 to indicate a
successful update. In the event that the provided coordinate system had to be added to the
Coordinate System Dictionary, a zero is returned. A -1 is returned if the update failed for any reason.

Please note that the addition of a new coordinate system definition requires the sorting of the
Coordinate System Definition file. This may take a few seconds to complete, depending upon the size
of the Coordinate System Dictionary.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_csupd will not
change a coordinate system which is marked as being a distribution coordinate system (i.e.
cs_Csdef_.protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined coordinate system is protected. For example, if
¢s_Protectis 60, a user-defined coordinate system becomes protected 60 days after it is last modified.

Additionally, if the value of the global character variable cs_Unique is not the null character, CS_csupd
will not add a coordinate system definition if its key name does not contain the character indicated. For
example, if cs_Unique is set to the colon character, CS_csupd will not add a coordinate system whose
key name does not contain a colon character.

ERRORS

CS csupdwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

114 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary file could not be opened.
(See CS_altar).
cs_IOERR A physical I/O error occurred during the update process.

cs_CS_BAD_MAGIC Thefile that, by virtue of its name and location, was supposed
to be a Coordinate System Dictionary wasn't a Coordinate
System Dictionary; its magic number was invalid.

¢cs_DISK_FULL There was insufficient disk space available to add the
coordinate system definition to the dictionary.

cs_CS_PROT The coordinate system to be updated is a distribution coordinate
system and may not be updated.

¢cs_CS_UPROT The coordinate system is a user defined coordinate system that

has not been modified for 60 days and is therefore protected.

cs_UNIQUE The coordinate system provided does not already exist and
would need to be added; but the key name does not contain the
unique character.

CS_dtcls DaTum conversion CLoSe

void CS dtcls (struct cs Dtcprm_ *dtc_ptr);

Initializing a datum conversion can use file descriptors (handles) and allocate memory from the heap.
Applications may need to recover these system resources for other use prior to exiting. CS_dfcls will
release all system resources allocated to the datum conversion indicated by the dtc_ptr argument (as
returned by CS dfcsd). This function is, essentially, the inverse of CS_dlcsu.

CS_dtcsu DaTum Conversion Set Up

struct cs_Dtcprm_ *CS_dtcsu (Const struct cs_Csprm_ *src_cs,
Const struct cs_Crprm_ *dest_cs,
int dat _err,
int blk _err);

CS dtecsu, CS dtevt, and CS_dftcls, are designed to provide a generic application interface for datum
conversion. The objective is to enable application programmers to incorporate datum conversion
capabilities into applications with a minimum of impact. Therefore, application programmers use

CS dfcsuto set up a datum conversion and CS_dfcvito perform the actual conversions independently
of the number or type of datum conversions that may or may not be supported. CS dfcls provides a
means of recovering any system resources that may be allocated by the activation of a datum
conversion.

Application programmers use CS_dlcsuto initiate a datum conversion process. Src_cs points to the
coordinate system definition of the source data that is to be converted while dest_cs points to the

Chapter 3 Chatper 4 -- Library Functions 115

coordinate system definition for the results. CS_dfcsu examines the datum references in these
coordinate systems, initializes the appropriate datum shift conversion, and returns a pointer to a
malloced datum conversion parameter block. The returned pointer is a required argument for the
CS dftevtfunction.

As is often the case, should the source and destination coordinate systems share the same datum, the
null datum conversion is activated. That is, source latitudes and longitudes are copied directly to the
destination array without modification.

The dat_err argument is used to indicate the desired disposition of certain errors that are encountered
during the setup of the datum conversion. The error disposition control afforded by dat_errapplies
only to errors indicating that an unsupported datum conversion was requested. System errors, such as
physical I/O or insufficient memory for example, are always treated as fatal errors and a NULL pointer
is returned.

The following values for dat_err are recognized:

cs_DTCFLG_DAT_1 Ignore unsupported datum conversion request errors and, in the
event of such an error, silently activate the null conversion.

cs_DTCFLG_DAT_W In the event of an unsupported datum conversion request error,
report the condition asawarningto CS_erpt
(cs_DTC_DAT_W) and activate the null conversion. In this
case, the user is notified, but data processing continues.

cs_DTCFLG_DAT_F In the event of any error, report the condition as afatal error to
CS erpt (cs_DTC_DAT_F) and return the NULL pointer.

The blk_err argument is used to indicate the desired disposition of certain errors that are encountered
during the conversion of individual coordinate values. The error disposition control afforded by blk_err
applies only to errors indicating that the required data for the geographic region containing the
coordinate to be converted is not available. System errors, such as physical I/O or insufficient memory
for example, are always treated as fatal errors.

The following values for blk_err are recognized:

116

CS-MAP User's Guide User's

Guide

cs_DTCFLG_BLK_I

Ignore datum conversion errors caused by data availability
problems and silently use the null conversion for the specific
coordinate that could not be converted and cause CS_dtcvtto
return a zero value.

cs_DTCFLG_BLK_W

In the event a datum conversion fails due to data availahility,
report awarning through CS_erpt (cs_DTC_BLK_ W), convert
the coordinate using the null conversion, and cause a
CS_dtevtto return a positive non-zero value for the specific
coordinate that could not be converted. The warning
message is issued for each coordinate that could not be
converted.

cs_DTCFLG_BLK_1

In the event a datum conversion fails due to data availahility,
cause CS_dfevtto return a positive non-zero value for the
specific coordinate that could not be converted. That such
an error has been reported is recorded in the datum
parameter block and thisis used to suppress repeated
reporting of the error with regard to the same block.

cs_DTCFLG_BLK_F

Report afatal condition through ¢S _erpt (cs_DTC_BLK_F),
convert the coordinate using the null conversion, and cause
CS_ditcvtto return a negative non-zero value to indicate that
the expected conversion did not take place.

Special Cases

Three special cases have been coded into this function. Normally, the geographic coodinates of the
source datum are converted to WGS84 values, and the resulting WGS84 values are then converted to

the target datum.

There are three cases where this genberal technique proved to be unsatisfactory. In these three cases,
CS _dtcsu has been expressly coded to look at the source and target datums, and implement direct
conversions where appropriate. Note, that in each case, a specific Geodetic Data Catalog fileis also
involved. Thus, if the required Geodetic Data Catalog fileis not present, al of the special processing is

disabled.

The following table defines the special cases:

Source Datum | Target Datum | Geodetic Data Catalog Description

NAD27 ATS77 Nad27ToAts77.gdc Converts directly from NAD27 to ATS77 using the
very special TRANSFORM algorithm.

ATS77 CSRS Ats77ToCsrs.gdc Convertsdirectly asdirect NTv2 format files are
generaly available.

NAD27 CSRS Nad27ToCsrs.gdc Convertsdirectly asdirect NTv2 format files are
generaly available.

ERRORS

Chapter 3 Chatper 4 -- Library Functions 117

Should the requested datum conversion requested be unsupported, CS_dtcsu will perform as indicated
by the dat_err argument. Should the initialization of a supported datum conversion fail due to a
system error, the NULL pointer will be returned and cs_Error set to indicate the nature of failure.
Should a datum conversion for which appropriate code is present fail because a required data file is
not present, the failure is treated as an unsupported datum conversion request.

CS_dtcvt DaTum ConVerT

int CS _dtcvt (struct cs Dtcprm_ *dtc_ptr,Const double src Il [2],
double dest_I11 [2]);

CS_drtevt performs the datum conversion indicated by dtc_ptr returning in the array pointed to by
dest_lI the result of converting the latitude and longitude values pointed to by src_Il. Src_Il and
dest_Il may point to the same array. Latitude and longitude values must be given in degrees, where
negative values indicate south and west. The longitude is carried in the first element of the array and
the latitude is carried in the second element. The dtc_ptr argument is that which is returned by
CS_drcesu.

ERRORS

Should a system error occur during the conversion (e.g. a physical I/O error or insufficient memory)
CS dtevtreturns a negative non-zero value and sets cs_Error to indicate the cause of the failure.

Conversion failures caused by a lack of data covering the specific coordinate to be converted are
handled as indicated by the blk_err element of the cs_Dtcprm_ structure pointed to by the dtc_ptr
argument. The blk_err element is set by CS dltcsuto the value of its blk_err argument prior to
returning dtc_ptr. Referto CS_dfcsu for a detailed description of how such errors are handled.

In all cases, the null conversion is always performed before any other processing is attempted.

EXAMPLE

This function, and its companion CS_dfcsu have been designed such that the following sequence of
code is all that is necessary to perform a complete coordinate conversion, including a datum
conversion (error handling omitted):

#define XX 0

#define YY 1

struct cs_Csprm *src_cs, *dest_cs;
struct cs_Dtcprm_ *dtc_ptr;

double src_xy [2], 11 [2], dest xy [2];

érc_cs = CS_csloc (src_name);
dest_cs CS_csloc (dest_name);
dtc_ptr CS_dtcsu (src_cs,dest_cs,cs DTCFLG_DAT_F,cs DTCDLG_BLK 1);

whille (TRUE)
{

src_xy [XX] ??7?;

src_xy [YY] ??7?;

CS_cs2ll (src_cs,ll,src_xy);
CS_dtcvt (dtc_ptr,I1,11);
CS_I112cs (dest_cs,dest _xy,Il);

118 CS-MAP User's Guide User's Guide

??7?
???

dest_xy [XX];
dest_xy [YY];

CS_free (src_cs);
CS_free (dest_cs);
CS_dtcls (dtc_ptr);

Notice, that adding the datum conversion to a simple cartographic conversion requires only the

insertion of three lines of code (error handling aside) to the simple High Performance Interface
described elsewhere in this manual.

CS_dtdef DaTum DEFinition locator

struct cs_Dtdef_*CS_dtdef (Const char *key nm);

CS dtdef will return a pointer to a malloced cs_Dtdef _ structure which contains the definition of the
datum indicated by key_nm. Key_nm must point to an array that contains the null terminated key
name of the desired datum definition. The memory allocated for the datum definition should be
released by using CS_free when no longer needed.

ERRORS

CS dtdefwill return a NULL pointer and set cs_Error if any of the following conditions are detected:

cs_DTDICT The Datum Dictionary file could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Datum
Dictionary file.

cs_DT_BAD_MAGIC The file accessed under the assumption that it was a Datum
Dictionary wasn't a Datum Dictionary after al; it had aninvalid
magic number on the front end.

cs_DT_NOT_FND A datum definition with the name given by key_nm was not
found in the Datum Dictionary.

¢s_NO_MEM Insufficient dynamic memory was available to alocate space
for the cs_Dtdef _ structure.

CS_dtdel DaTum definition DELete

int CS_dtdel (struct cs Dtdef_ *dtdef);
CS dtde/will delete from the Datum Dictionary the definition of the Datum pointed to by dtdef.

The delete is accomplished by creating a new Datum Dictionary file and copying all but the referenced
datum definition from the existing dictionary to the new one. This implies that sufficient disk space
must be available to perform this copy. A zero is returned if the delete was successfully completed, a -
1 if a problem occurred. An attempt to delete a non-existent datum definition is NOT considered a

Chapter 3 Chatper 4 -- Library Functions

problem.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_dtde/will not delete
a datum definition which is marked as being a distribution datum definition (i.e. cs_Dtdef_ .protect
== 1). Ifthe value of cs_Protect is greater than zero, it is interpreted as the number of days after
which a user defined datum is protected. For example, is cs_Protect is 60, a user-defined datum

becomes protected 60 days after it is last modified.

ERRORS

CS dtde/will return a -1 and set cs_Error appropriately if any of the following conditions are

encountered:
¢s_DTDICT The Datum Dictionary could not be found or otherwise opened.
(See CS_altdr)
cs_IOERR A physical /O error occurred in copying the Datum Dictionary

to the new file.

cs_DT_BAD_MAGIC

The file assumed to be the Datum Dictionary by virtue of its
name and location was not a Datum Dictionary; it had an invalid
magic number.

cs_TMP_CRT

The attempt to create a new file, to that the modified Datum
Dictionary was to be copied, failed.

cs_DISK_FULL

Insufficient disk space was available to accommodate the
copying of the Datum Dictionary to the new file.

¢cs_UNLINK The request to remove the old copy of the Datum Dictionary
failed.

¢s_RENAME The request to rename the new Datum Dictionary file from its
temporary name to DATUMS failed.

cs_DT_PROT The datum definition to be updated is a distribution datum
definition and may not be deleted.

cs_DT_UPROT The datum is a user-defined datum which has not been modified

for 60 days and is therefore protected.

CS_dtdflt DaTum DeFauLT

char *CS_dtdflt (Const char *new_dflt);

Use CS_dtdfitto control the status of the "defaultable” datum reference feature of CS-MAP. New_dflt
must be either a valid datum key name, a pointer to the null string, or the NULL pointer. In the case
where new_dflt is a pointer to a valid datum definition key name, CS_dtdfit causes the default datum

120 CS-MAP User's Guide User's Guide

feature to be active, using the datum key name provided as the default value. When new_dflt is a
pointer to the null string, CS_dtdfit disables the default datum feature. When new_dfit is the NULL
pointer, the status of the default feature remains unchanged.

In all cases, CS_dtdfit returns the previous status (or in the case of new_dflt == NULL, the current
status) in the form of a pointer to a static character array which shall contain the name of the previous
default datum. Should the returned pointer point to a null string, the indicated status is disabled.

ERRORS

CS_drdfit will return the NULL pointer if the key name provided is not that of a valid datum. In this
event, the status of the default datum feature remains unchanged.

CS_dtloc DaTum LOCate

struct cs_Datum_ *CS_dtloc (Const char *key nm);
struct cs_Datum_ *Csdtlocl (Const struct cs_Dtdef *dtPtr);
struct cs_Datum_ *Csdtloc2 (Const struct cs_Dtdef_ *dtPtr,Const struct

cs_Eldef_ *elPtr);

CS dltloc will return a pointer to a malloced cs_Datum__ structure which contains the definition of the
datum indicated by key_nm along with the ellipsoid information referenced by the datum definition.
Key_nm must point to an array that contains the key name of the desired datum. The memory
allocated for the datum definition should be released using CS_free when no longer needed.

CSdtloc1 and CSdtloc2 are alternatives to CS_dt/oc that enable alternative sources for datum and
ellipsoid definitions. These have been provided for applications that may, for example, store the
datum, and/or ellipsoid, definitions in an application database.

Note that while CSdt/oc1 will not need to access the Datum Dictionary, it will need to access the
Ellipsoid Dictionary to resolve the ellipsoid reference in the datum definition provided. CSdtloc2is
completely independent of both dictionaries.

ERRORS

CS_dltloc, Csdtloc, and CSdtloc2 will return a NULL pointer and set cs_Error if any of the following
conditions are detected:

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for the cs_Datum_ structure.

CS dtlocuses CS dtdefand CS_eldefto obtain definition records from the Datum and Ellipsoid
Dictionaries. Therefore, all of the error conditions detected by these functions apply to this function as
well.

CSdltloc1 uses CS_eldefto obtain definition records from the Ellipsoid Dictionary. Therefore, all of the
error conditions detected by this function apply to this function as well.

CS_dtupd DaTum dictionary UPDate

int CS dtupd (struct cs Dtdef_ *dt_def,int crypt);

Chapter 3 Chatper 4 -- Library Functions 121

CS dtupdwill cause the datum definition pointed to by dt_def to be added to the Datum Dictionary. If
a datum with the same key name exists, it is replaced by the definition provided. If no such definition
exists, the new definition is added to the dictionary. If crypt is non-zero, the datum entry is encrypted
before being written.

In the event that the indicated datum already existed, CS_dtupd will return a 1 to indicate a successful
update. In the event that the provided datum definition had to be added to the Datum Dictionary, a
zero is returned. A -1 is returned if the update failed for any reason.

Please note that the addition of a new datum definition requires the sorting of the Datum Dictionary file.
This may take a few seconds to complete, depending upon the size of the Datum Dictionary.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_dtupd will not
change a datum definition which is marked as being a distribution datum definition (i.e.

cs_Dtdef ._protect == 1). If the value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined datum is protected. For example, is cs_Protect is 60,
a user-defined datum becomes protected 60 days after it is last modified.

Additionally, if the value of the global character variable cs_Unique is not the null character, CS_dtupd
will not add a datum definition if its key name does not contain the character indicated. For example, if
cs_Unique is set to the colon character, CS_dtupd will not add a datum definition whose key name
does not contain a colon character.

ERRORS

CS dtupdwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_DTDICT The Datum Dictionary file could not be opened. (See CS_altar)
cs_IOERR A physical I/O error occurred during the update process.
cs_DT_BAD_MAGIC The file which, by virtue of its name and location, was assumed

to be a Datum Dictionary wasn't a Datum Dictionary; its magic
number was invalid.

Cs_DISK_FULL There was insufficient disk space available to add the datum
definition to the Datum Dictionary.

Cs_DT_PROT The datum definition to be updated is a distribution datum
definition and may not be updated.

cs_DT_UPROT The datum is a user-defined datum that has not been modified
for 60 days and is therefore protected.

cs_UNIQUE The datum provided does not already exist and would need to
be added; but the key name does not contain the unique
character.

122 CS-MAP User's Guide User's Guide

CS_eldef ELlipsoid DEFinition locator

struct cs_Eldef_ *CS eldef (Const char *key nm);
CS_eldefwill return a pointer to a malloced cs_Eldef _ structure which contains the definition of the
ellipsoid indicated by key_nm. Key_nm must point to an array that contains the null terminated key
name of the desired ellipsoid definition. The memory allocated for the ellipsoid definition should be
released using CS free when no longer needed.

ERRORS

CS_eldefwill return a NULL pointer and set cs_Error if any of the following conditions are detected:

cs_ELDICT The Ellipsoid Dictionary file could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Ellipsoid
Dictionary file.

cs_EL_BAD_MAGIC The file accessed under the assumption that it was an Ellipsoid
Dictionary wasn't an Ellipsoid Dictionary after al; it had an
invalid magic number on the front end.

cs_EL_NOT_FND A ellipsoid definition with the name given by key_nm was not
found in the Ellipsoid Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for thecs_Eldef_ structure

CS_eldel ELlipsoid definition DELete

int CS_eldel (struct cs Eldef_ *eldef);
CS elde/will delete from the Ellipsoid Dictionary the definition of the Ellipsoid pointed to by eldef.

The delete is accomplished by creating a new Ellipsoid Dictionary file and copying all but the
referenced ellipsoid definition from the existing dictionary to the new one. This implies that sufficient
disk space must be available to perform this copy. A zero is returned if the delete was successfully
completed, a -1 if a problem occurred. An attempt to delete a non-existent ellipsoid definition is NOT
considered a problem.

If the value of the global variable cs_Protect is greater than or equal to zero, CS_elde/will not delete
an ellipsoid definition which is marked as being a distribution ellipsoid definition (i.e.

cs_Eldef _protect == 1). Ifthe value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined ellipsoid is protected. For example, is cs_Protect is
60, a user-defined ellipsoid becomes protected 60 days after it is last modified.

ERRORS

Chapter 3 Chatper 4 -- Library Functions

123

CS elde/will return a -1 and set cs_Error appropriately if any of the following conditions are

encountered:
cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise
opened. (See CS_altdr)
c¢s_IOERR A physical I/O error occurred in copying the Ellipsoid

Dictionary to the new file.

cs_EL_BAD_MAGIC

The file assumed to be the Ellipsoid Dictionary by virtue of its
name and location was not an Ellipsoid Dictionary; it had an
invalid magic number.

cs_TMP_CRT

The attempt to create a new file, to which the modified
Ellipsoid Dictionary wasto be copied, failed.

cs_DISK_FULL

Insufficient disk space was available to accommodate the
copying of the Ellipsoid Dictionary to the new file.

¢cs_UNLINK The request to remove the old copy of the Ellipsoid Dictionary
failed.

cs_RENAME The request to rename the new Ellipsoid Dictionary file from
its temporary name to ELIPSOID failed.

c¢s_EL_PROT The ellipsoid definition to be updated is a distribution ellipsoid
definition and may not be deleted.

cs_EL_UPROT The elipsoid is a user-defined ellipsoid which has not been

modified for 60 days and is therefore protected.

CS_eldflt ELlipsoid DeFauLT

char *CS_eldlt (Const char *new_dflt);

Use CS_eldfitto control the status of the "defaultable” ellipsoid reference feature of CS-MAP.

New_dflt must be either a pointer to a valid ellipsoid key name, a pointer to the null string, or the NULL

pointer. In the case where new_dflt is a pointer to a valid ellipsoid definition key name, CS_eldfit
causes the default ellipsoid feature to be activated, using the ellipsoid key name provided as the,

possibly new, default value. When new_dflt is a pointer to the null string, CS_eldfit disables the
default ellipsoid feature. When new_dflt is the NULL pointer, the status of the default feature remains

unchanged.

In all cases, CS _eldfitreturns the previous status (or in the case of new_dflt == NULL, the current
status) in the form of a pointer to a static character array that shall contain the name of the previous
default ellipsoid. Should the returned pointer point to a null string, the indicated status is disabled.

124 CS-MAP User's Guide User's Guide

ERRORS

CS eldfitwill return the NULL pointer if the key name provided is not that of a valid ellipsoid. In this
event, the status of the default ellipsoid feature remains unchanged.

CS_elEnum ELlipsoid ENUMerator

int CS_elEnum (int index,char *key name,int size);

CS _elEnumis used to enumerate all ellipsoids in the Ellipsoid Dictionary. CS_elEnum returns in the
memory buffer pointer to by the key_name argument the key name of the index'th entry in the
Ellipsoid Dictionary. CS_elEnum will never write more than size bytes to the indicated location. Index
is a zero based index; the index of the first entry in the Ellipsoid Dictionary is zero.

CS_elEnumreturns a positive 1 to indicate success. If index is too large, a zero is returned.

ERRORS

CS_elEnumwill return a -1 and set cs_Error appropriately if any of the following conditions are

encountered:
cs_ELDICT The Ellipsoid Dictionary could not be found or otherwise opened.
(See CS_altdr)
cs_IOERR A physical /O error occurred in accessing the Ellipsoid
Dictionary.

¢cs_DT_BAD_MAGIC The file assumed to be the Ellipsoid Dictionary by virtue of its
name was not an Ellipsoid Dictionary; it had an invalid magic
number.

cs_INV_INDX The index argument was negative.

CS _elupd ELlipsoid dictionary UPDate

int CS_elupd (struct cs_Eldef_ *el_def,int crypt);

CS elupd will cause the ellipsoid definition pointed to by el_def to be added to the Ellipsoid Dictionary.
If an ellipsoid with the same key name exists, it is replaced by the definition provided. If no such
definition exists, the new definition is added to the dictionary. If crypt is non-zero, the ellipsoid entry is
encrypted before being written.

In the event that the indicated ellipsoid already existed, CS_elupd will return a 1 to indicate a successful
update. In the event that the provided ellipsoid had to be added to the Ellipsoid Dictionary, a zero is
returned. A -1 is returned if the update failed for any reason.

Please note that the addition of a new ellipsoid definition requires the sorting of the Ellipsoid Dictionary
file. This may take a few seconds to complete, depending upon the size of the Ellipsoid Dictionary.

Chapter 3 Chatper 4 -- Library Functions 125

If the value of the global variable cs_Protect is greater than or equal to zero, CS_e/upd will not
change an ellipsoid definition which is marked as being a distribution ellipsoid definition (i.e.
cs_Eldef _protect == 1). Ifthe value of cs_Protect is greater than zero, it is interpreted as
the number of days after which a user defined ellipsoid is protected. For example, is cs_Protect is
60, a user-defined ellipsoid becomes protected 60 days after it is last modified.

Additionally, if the value of the global character variable cs_Unique is not the null character, CS_elupd
will not add an ellipsoid definition if its key name does not contain the character indicated. For
example, if cs_Unique is set to the colon character, CS_e/upd will not add an ellipsoid definition
whose key hame does not contain a colon character.

ERRORS

CS elupdwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

¢cs_ELDICT The Ellipsoid Dictionary file could not be opened. (See
CS_altdn

cs_IOERR A physical I/O error occurred during the update process.

cs_EL_BAD_MAGIC The file which, by virtue of its name and location, was

assumed to be an Ellipsoid Dictionary wasn't an Ellipsoid
Dictionary; its magic number was invalid.

cs_DISK_FULL There was insufficient disk space available to add the ellipsoid
definition to the Ellipsoid Dictionary.

c¢s_EL_PROT The ellipsoid definition to be updated is a distribution ellipsoid
definition and may not be updated.

cs_EL_UPROT The ellipsoid is a user-defined ellipsoid that has not been
modified for 60 days and is therefore protected.

cs_UNIQUE The elipsoid provided does not already exist and would need
to be added; but the key name does not contain the unique
character.

CS_errmsg ERRor MeSsaGe

void CS_errmsg (char msg_bufr,int bufr_size);

CS errmsg returns to the calling function a null terminated string that describes the last error condition
detected by the CS-MAP library. The result is returned in the buffer pointed to by the msg_bufr
argument, which is assumed to be bufr_size bytes long. The message is returned in one character
per byte ANSI code characters.

126 CS-MAP User's Guide User's Guide

CS errmsg will return the null string if called before any error condition is detected.
BUGS

After returning an error message to the user, CS_errmsg should reset itself to the null string preventing
the same error message from being returned a second time. It should, but is doesn't.

CS_lI2cs Latitude/Longitude TO Coordinate System

void CS_112cs (Const struct cs_Csprm_ *csprm,double xy [2],Const double 11
[2D:

Given the definition of the coordinate system, csprm, such as returned by CS csloc, CS_//2cs will
convert the latitude and longitude given by |l to X and Y coordinates, returning the results in xy. The |l
and xy arguments may point to the same array.

In the arrays, the X coordinate and the longitude occupy the first element, the Y coordinate and the
latitude the second element. The latitude and longitude must be given in degrees where negative
values are used to indicate west longitude and south latitude.

CS _llchk Lat/Long limits CHecK

int CS_llchk (Const struct cs_Csprm_ *csprm, int cnt,Const double pnts

[13D:;

CS llchk determines if the points, great circles, and regions defined by the point list provided by the cnt
and pnts arguments are within the mathematical domain and useful range of the coordinate system
provided by the csprm argument. All points in the point list are expected to be geographic
coordinates. Use CS xychkto check a list of cartesian coordinates.

CS llchkreturns cs_CNVRT_OK if all coordinate subject to the determination are both within the
mathematical domain of the coordinate system and the useful range of the coordinate system.

¢cs_ CNVRT_DOMN is returned if one or more coordinates is outside of the mathematical domain of
the coordinate system. ¢s_CNVRT_USFL is returned if all coordinates subject to the determination
are within the mathematical domain of the coordinate system, but one or more coordinates are outside
of the useful range of the coordinate system.

The useful range of a coordinate system may be defined by the user as part of the coordinate system
definition. In the absence of such a definition, the setup function for each projection computes a useful
range based on the parameters for the projection. In some cases, this computed useful range will be
too liberal; in others it may be too conservative. In any case, checking coordinates to be converted
against the useful range is a good way to alert users of a possible problem, such as using the wrong
coordinate system for a set of coordinates.

CS_ludflt Linear Unit DeFauLT

char *CS_ludlt (Const char *new_dflt);

Use CS /udfitto control the status of the "defaultable” linear unit reference feature of CS-MAP.
New_dflt must be either a pointer to a valid linear unit name, a pointer to the null string, or the NULL
pointer. In the case where new_dflt is a pointer to a valid linear unit name, CS_/udfit causes the

Chapter 3 Chatper 4 -- Library Functions 127

default linear unit feature to be activated, using the linear unit name provided as the, possibly new,
default value. When new_dflt is a pointer to the null string, CS_/udfit disables the default linear unit
feature. When new_dflt is the NULL pointer, the status of the linear unit default feature remains
unchanged.

In all cases, CS_/udfitreturns the previous status (or in the case of new_dflt == NULL,, the current
status) in the form of a pointer to a static character array which shall contain the name of the previous
default linear unit. Should the returned pointer point to a null string, the indicated status is disabled.

ERRORS

CS_ludfit will return the NULL pointer if the key name provided is not that of a valid linear unit. In this
event, the status of the default linear unit feature remains unchanged.

CS xychk X and'Y limits CHecK

int CS_xychk (Const struct cs_Csprm_ *csprm, int cnt,Const double pnts

[13D:;

CS xychk determines if the points, line segments, and regions defined by the point list provided by the
cnt and pnts arguments are within the mathematical domain and useful range of the coordinate
system provided by the csprm argument. All points in the point list are expected to be cartesian
coordinates. Use CS /lchkto check a list of geographic coordinates.

CS xychkreturns ¢s_ CNVRT_OK if all coordinate subject to the determination are both within the
mathematical domain of the coordinate system and the useful range of the coordinate system.
¢s_CNVRT_DOMN is returned if one or more coordinates is outside of the mathematical domain of
the coordinate system. ¢s_CNVRT_USFL is returned if all coordinates subject to the determination
are within the mathematical domain of the coordinate system, but one or more coordinates are outside
of the useful range of the coordinate system.

The useful range of a coordinate system may be defined by the user as part of the coordinate system
definition. In the absence of such a definition, the setup function for each projection computes a useful
range based on the parameters for the projection. In some cases, this computed useful range will be
too liberal; in others it may be too conservative. In any case, checking coordinates to be converted
against the useful range is a good way to alert users of a possible problem, such as using the wrong
coordinate system for a set of coordinates.

CS_usrUnitPtr - Units Look Up Hook Function

double CS_usrUnitPtr (short type,Const char *unitName);

128 CS-MAP User's Guide User's Guide

Thisname, CS_usrunitPtr, does not refer to afunction. Rather, it refersto aglobal variable which
is defined as a pointer to afunction which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
unit definitionsin a dynamic manner.

If the global variable CS_usrUnitPtr (defined in Cdata.c) is not null, the indicated function is called
whenever the CS-MAP library is asked to access a specific unit definition. This function, then, can be
used to dynamically supply a unit conversion value which does not exist in the compiled unit table.
Applications can use this to implement their own unit definition table or dynamically generate such a
definition based on the unit name provided.

CS-MAP passes the unitName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired conversion value must be
returned. CS-MAP passed the unit type requested to the hook function using the type argument.

The hook function returns an integer value:

= apositive non-zero value to indicate that a conversion value is being supplied by the hook
function, and the value returned is indeed the conversion value.

= zeroisreturned to indicate that normal CS-MAP unit table accessis to be performed.

= anegative valueis returned to indicate that an error isto be reported. It is expect that the nature of
the error would have aready reported through the use of CS erpt.

CS_unitAdd - ADD UNIT to Table

int CS_unitAdd (struct cs_Unittab_ *unitPtr);

Use this function to add a new unit to the unit table at run time. Essentially, the unit definition pointed
to by the unitPtr argument is copied to a disabled entry in the compiled unit table. Thisfunction does
not check any of the entriesin the provided unit definition, so use this function with great care.

Errors

Chapter 3 Chatper 4 -- Library Functions 129

CS _unitAdd returns a zero value for success. A negative return value indicates afailure. In this case,
one of the following error conditions will have been reported through the use of CS_erpt:

cs UADD_TYP The type of unit specified in the provided definition was
invalid. Must be either cs UTYP LIN or cs UTYP_ANG.

cs UADD_DUP A unit definition with the (singular) name of given in the
provided definition aready existsin the unit table.

cs UADD _FULL All of the disabled dotsin the unit table have been filled; thus
the unit tableis currently full.

CS unitDel -- DELete UNIT from table

int CS_unitDel (short type,Const char *name);

Use this function to disable an entry in the unit table. The specific unit isidentified by the type and
name arguments. Type must be given as either cs_UTYP_LIN or cs_UTYP_ANG. Note that
compiled (i.e. not necessarily added) unit entries can aso be disabled. Thiswill remove them from
subsequent unit enumerations performed by CS_unEnum.

Errors

CS_unitDe/will return a zero for success. A negative 1isreturn to indicate failure. In the event of
failure, one of the following error conditions will have been reported through CS_erpt:

cs_UDEL_NONE The named unit, of the provided type, did not exist in the unit table.

Low Level Interface Functions

Functions which are considered part of the Low Level Interface are described in this section. Severa
of these functions require geographic arguments. Remember that these are required to be:

1. inlongitude, latitude, and height order, and

2. givenin degrees, and

130 CS-MAP User's Guide User's Guide

3. referenced to Greenwich meridian, and

4. where west lonigtude and south latitude are represented by negative values.

Function prototype definitions are given in the C syntax only.

131

CHAPTER 4

Cartographic Projection Funtions
Albers Equal Area Projection (CSalber)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Alber
Equal Area Conic Projection.

CSalberF Forward conversion

int CSalberF (Const struct cs_Alber_ *alber,double xy[2],Const double 11
[2D;

Given a properly initialized cs_Alber_ structure via the alber argument, CSalberF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSalberFnormally returns ¢s_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSalberl Inverse conversion

int CSalberl (Const struct cs_Alber_ *alber,double 1l [2],Const double xy
[2D:

Given a properly initialized cs_Alber_ structure via the alber argument, CSalber! will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSalberl normally returns cs_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSalberK grid scale (K) along parallel
double CSalberK (Const struct cs_Alber_ *alber,Const double 11 [2]);

CSalberK returns the grid scale factor, along a parallel, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the Il array. (The use of the Il array is the
same as described above.)

CSalberH grid scale (H) along meridian
double CSalberH (Const struct cs_Alber_ *alber,Const double 11 [2]);

CSalberH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSalberC Convergence angle
double CSalberC (Const struct cs Alber_ *alber,Const double 11 [2]);

CSalberC returns the convergence angle in degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array.

132

CS-MAP User's Guide User's Guide

CSalberQ definition Quality check

int CSalberQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSalber@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Alber Equal Area Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSalberQ only examines those components specific to the Alber Equal Area
Projection. CSalberQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSalberQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSalberL Latitude/longitude check
int CSalberL (Const struct cs_Alber_ *alber,int cnt,Const double pnts

[13D:;

CSalberl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the alber argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSalbersL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSalberl returns cs_ CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CSalberX Xy coordinate check
int CSalberX (Const struct cs-Alber_ *alber, int cnt,Const double pnts

[13D:;

CSalberX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the alber argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSalbersXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSalber’ returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSalberS Setup
void CSalberS (struct cs_Csprm_ *csprm);

The CSalberS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallels, the origin latitude and longitude,
and other projection parameters are known, there are many calculations that need only be performed
once. CSalberS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the single argument provided to CSalberS serves as the
source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure

Chapter 4 Chatper 4 -- Library Functions

that must be initialized for the Albers projection are:

prj_prml

Latitude, in degrees, of the northern standard parallel. Unlike
other conics, it isimportant to distinguish between the northern
and southern standard parallels for the Albers.

prj_prm2

Latitude, in degrees, of the southern standard parallel. Thisis,
rarely, the same as prj_prml, to obtain a conic with asingle
point of tangency.

org_Ing

The longitude, in degrees, of the origin of the projection.

org_lat

The latitude, in degrees, of the origin of the projection.

Scale

The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off

The false easting to be applied to al X coordinates, selected to
cause al X coordinates within the coordinate system to be
positive values of reasonable size.

y_off

The false northing to be applied to all Y coordinates.

Quad

an integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the

cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.
eccent This value represents the eccentricity of the ellipsoid.
to84 via An integer code that specifies the technique that isto be

used to convert geographic coordinates based on this
datum to WGS84.

cs Alber_ Structure

The results of the one-time calculations are recorded in the alber element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSalberF, CSalberl,

134 CS-MAP User's Guide User's Guide

CSalberK, CSalberH, and CSalberC functions require as their first argument.

American Polyconic Projection (CSplycn)

This set of functions represent the Coordinate System Mapping Package's knowledge of the American
Polyconic Projection.

CSplycenF Forward conversion

int CSplycnF (Const struct cs_Plycn_ *plycn,double xy [2],Const double 11
[21:

Given a properly initialized cs_Plycn_ structure via the plycn argument, CSplycnF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSplycnFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSplycnl Inverse conversion

int CSplycnl (Const struct cs_Plycn_ *plycn,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Plycn__ structure via the plycn argument, CSplycn/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CcSplyenl normally returns ¢s_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the Il and xy arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSplycnK grid scale (K) along parallel
double CSplycnK (Const struct cs Plycn_ *plycn,Const double 11 [2]);

CSplyenK returns the value 1.0 which represents the grid scale along a parallel of any coordinate
system based on this projection at any location.

CSplycnH grid scale (H) along meridian
double CSplycnH (Const struct cs Plycn_ *plycn,Const double 11 [2]);

CSplycnH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSplyenC Convergence angle
double CSplycnC (Const struct cs Plycn_ *plycn,Const double 11 [2]);

CSplyenC returns the convergence angle in degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. At the current
time, definitive formulas for the convergence angle of this projection elude us. The convergence angle
is computed using the CS /lazdd function.

Chapter 4 Chatper 4 -- Library Functions 135

CSplycnQ definition Quality check
int CSplycnQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSplyen@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the American Polyconic Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSplycnQ only examines those components specific to the American Polyconic
Projection. CSplycnQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSplycnQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSplycnL Latitude/longitude check

int CSplycnL (Const struct cs_Plycn_ *plycn,int cnt,Const double pnts
[13D:;

CSplyenL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the plycn argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSplycnslL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSplycnl returns cs_ CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSplycnX Xy coordinate check

int CSplycnX (Const struct cs_Plycn_ *plycn,int cnt,Const double pnts
[103D:

CSplyenX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the plycn argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSplycnsXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSplycnl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSplycnS Setup
void CSplycnS (struct cs_Csprm_ *csprm);

The CSplycnS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSplyenS performs these calculations and saves the results in the cs_Csprm__ structure provided by its
argument, csprm. Thus, the single argument provided to CSplycnS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;

136

CS-MAP User's Guide User's Guide

but can be provided by the application at run time. The specific elements of the cs_Csdef _ structure
that must be initialized for the American Polyconic projection are:

prj_prml Longitude, in degrees, of the central meridian.
org_lat The latitude, in degrees, of the origin of the projection.
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 _via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Plyen_ Structure

The results of the one-time calculations are recorded in the plycn element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSplycnF, CSplycnl,
CSplyenK, CSplycnH, and CSplycnC functions require as their first argument.

Azimuthal Equal Area Projection (CSazmea)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Lambert
Azimuthal Equal Area Projection.

CsazmeaF Forward conversion
int CSazmeaF (Const struct cs_Azmea *azmea,double xy [2],Const double 11

Chapter 4 Chatper 4 -- Library Functions 137

[2D:;

Given a properly initialized cs_Azmea__ structure via the azmea argument, CSazmeaf will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSazmeaf normally returns ¢cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSazmeal Inverse conversion
int CSazmeal (Const struct cs_Azmea *azmea,double 1l [2],Const double xy

[2D:;

Given a properly initialized cs_Azmea__ structure via the azmea argument, CSazmeal will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSazmeal normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CsazmeaK grid scale (K) normal
double CSazmeaK (Const struct cs Azmea_ *azmea,Const double 11 [2]);

CSazmeaK returns the grid scale factor normal to the radial at the geodetic location specified by the |
argument. In the case of the ellipsoidal form of this projection, analytical formulas for this value have
not been located and the result is arrived at using the CS_/lazdd function.

CSazmeaH grid scale (H) radial
double CSazmeaH (Const struct cs Azmea_ *azmea,Const double 11 [2]);

CSazmeaH returns the grid scale factor along a radial line from the coordinate system origin to the point
provided. Since this projection is authalic (i.e. equal area), the value returned is the reciprocal of that
returned by CSazmeakK.

CSazmeaC Convergence angle
double CSazmeaC (Const struct cs_Azmea_ *azmea,Const double 11 [2]);

CSazmeacC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS /lazdd function.

CSazmeaQ definition Quality check

int CSazmeaQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSazmea@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Azimuthal Equal Area Projection. CS cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSazmeaQ only examines those components specific to the Azimuthal Equal
Area Projection. CSazmea@ returns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description
of the various error codes and their meaning. CSazmea@ may be called with the NULL pointer and/or a

138

CS-MAP User's Guide User's Guide

zero for the err_list and list_sz arguments respectively.

CSazmeal Latitude/longitude check
int CSazmeaL (Const struct cs_Azmea_ *azmea, int cnt,Const double pnts

[13D:;

CSazmeal determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the azmea argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSazmeasL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSazmeal returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSazmeaX Xy coordinate check
int CSazmeaX (Const struct cs_Azmea_*azmea, int cnt,Const double pnts

[13D;

CSazmeaX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the azmea argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSazmeasX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSazmeal returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSazmea$ Setup
void CSazmeaS (struct cs_Csprm_ *csprm);

The CSazmeaS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, and other projection
parameters are known, there are many calculations that need only be performed once. CSazmeaS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the argument provided to CSazmeas serves as the source for input and the
repository for the results as described below

Coordinate System Definition
The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

The following parameters must be set:

Chapter 4 Chatper 4 -- Library Functions

139

prj_prml

The azimuth, in degrees east of north, of the positive Y -axis of
the coordinate system.

org_Ing

The longitude, in degrees, of the origin of the projection.

org_lat

The latitude, in degrees, of the origin of the projection.

scale

The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off

The false easting to be applied to al X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off

The false northing to be applied to all Y coordinates. Thisisthe
Y coordinate of the coordinate system origin.

quad

an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the

cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc

function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.
eccent This value represents the eccentricity of the ellipsoid.
to84 via An integer code that specifies the technique that isto be

used to convert geographic coordinates based on this
datum to WGS84.

cs Azmea_Structure

The results of the one-time calculations are recorded in the azmea element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSazmeaF, CSazmeal,
CSazmeaK, CSazmeaH, and CSazmeacC functions require as their first argument.

140

CS-MAP User's Guide User's Guide

Azmuthal Equidistant Projection (Csazmed)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Azimuthal
Equidistant Projection.

CSazmedF Forward conversion

int CSazmedF (Const struct cs_Azmed_ *azmed,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Azmed__ structure via the azmed argument, CSazmedF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSazmedF normally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSazmed| Inverse conversion

int CSazmedl (Const struct cs_Azmed_ *azmed,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Azmed__ structure via the azmed argument, CSazmed/ will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSazmed/ normally returns cs_ CNVRT_NRML. It will return ¢s_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSazmedK grid scale (K) normal
double CSazmedK (Const struct cs_Azmed_ *azmed,Const double 11 [2]);

CSazmedK returns the grid scale factor normal to the radial at the geodetic location specified by the Il
argument. In the case of the ellipsoidal form of this projection, analytical formulas for this value have
not been located and the result is arrived at using the CS_/lazdd function.

CSazmedH grid scale (H) radial
double CSazmedH (Const struct cs_Azmed_ *azmed,Const double 11 [2]);

CSazmedH returns the value 1.0; the scale at any point in the direction of a line emanating from the
origin and passing through the any point of any coordinate system based on this projection. (This is
what makes this projection an Equidistant Projection.)

CSazmedC Convergence angle
double CSazmedC (Const struct cs Azmed_ *azmed,Const double 11 [2]);

CSazmedC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS /lazdd function.

CSazmedQ definition Quality check

int CSazmedQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSazmedQ determines if the coordinate system definition provided by the csdef argument is consistent

Chapter 4 Chatper 4 -- Library Functions 141

with the requirements of the Azimuthal Equidistant Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSazmedQ only examines those components specific to the Azimuthal
Equidistant Projection. CSazmedQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a
description of the various error codes and their meaning. CSazmed@ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSazmedL Latitude/longitude check
int CSazmedL (Const struct cs_Azmed_ *azmed, int cnt,Const double pnts

[13D;

CSazmedL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the azmed argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSazmedsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSazmedL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSazmedX Xy coordinate check
int CSazmedX (Const struct cs_Azmed_ *azmed, int cnt,Const double pnts

[13D;

CSazmedX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the azmed argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSazmedsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSazmedl
returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSazmedsS Setup
void CSazmedS (struct cs Csprm_ *csprm);

The CSazmeds function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, and other projection
parameters are known, there are many calculations that need only be performed once. CSazmedS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the first argument provided to CSazmeds serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm__ structure.
Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction; but can be
provided by the application at run time. There are two variations to this projection:

142 CS-MAP User's Guide User's Guide

= Lambert Azimuthal Equidistant (cs PRICOD_AZMED)
= Lambert Azimuthal Equidistant, Elevated Ellipsoid (cs PRJICOD_AZEDE)

The following parameters are common to both variations:

org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to al Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Lambert Azimuthal Equidistant Projection

This is the traditional variation of the Lambert Azimuthal Equidistant projection. Note that it differs
slightly from many other implementations in that it accepts a parameter value for the azimuth of the Y
axis relative to true north. This provides support for local/company coordinate system. Even better
local/company coordinate system support is provided by the Lambert Azimuthal Equidistant, Elevated
Ellipsoid variation.

The parameter must be specified in degrees east of north. An azimuth west of north would be
specified with a negative value.

The following parameters must be set:

prj_prm1l The azimuth, in degrees east of north, of the positive
Y -axis of the coordinate system.

Lambert Azimuthal Equidistant, Elevated Ellipsoid
(cs_PRJCOD AZEDE)

This variation of the Lambert Azimuthal Equidistant projection accepts an average elevation parameter
which is added to the equatiorial radii of the ellipsoid. This better enbales CS-MAP to emulate a
local/company coordinate system.

Chapter 4 Chatper 4 -- Library Functions 143

The parameter must be specified in system units. That is, if the coordinate system unit is, say, FEET;
the average elevation must also be specified in feet.

The following parameters must be set:

prj_prml The azimuth, in degrees east of north, of the positive
Y -axis of the coordinate system.

prj_prm2 The average elevation in the region of the system,
expressed in coordinate system units.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
¢cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Azmed_ Structure

The results of the one-time calculations are recorded in the azmed element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSazmedF, CSazmedl,
CSazmedK, CSazmedH, and CSazmedC functions require as their first argument.

Bonne Projection Projection (CSbonne)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Bonne
Projection. Setting the standard parallel equal to the equator produces a Sinusoidal Projection.
Setting the standard parallel to either pole produces the Werner Projection.

CSbonneF Forward conversion

int CSbonneF (Const struct cs_Bonne_ *bonne,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Bonne__ structure via the bonne argument, CSbonneF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSbonneF normally returns ¢s_CNVRT_NRML. I[f Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSbonnel Inverse conversion
int CSbonnel (Const struct cs_Bonne_ *bonne,double 11 [2],Const double xy

144

CS-MAP User's Guide User's Guide

[2D:;

Given a properly initialized cs_Bonne__ structure via the bonne argument, CSbonnel will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSbonnel normally returns ¢s_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CShonneK parallel scale (K)
double CSbonneK (Const struct cs Bonne_ *bonne,Const double 11 [2]);

CSbonneK returns the value 1.0 which is the grid scale factor, along any parallel, of the coordinate
system at the specific geodetic location defined by the latitude and longitude provided in the Il array.

CSbonneH meridian scale (H)
double CSbonneH (Const struct cs Bonne_ *bonne,Const double 11 [2]);

CSbonneK returns the grid scale, along a meridian, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the Il array. Analytical formulas for this value
have not been located and the result is arrived at using the CS /lazdd function.

CSbonneC Convergence angle
double CSbonneC (Const struct cs_Bonne_ *bonne,Const double 11 [2]);

CSbonneC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the Il array. Analytical formulas for this value have not
been located and the result is arrived at using the CS_/lazdd function.

CSbonneQ definition Quality check

int CSbonneQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSbonne@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Boone Projection. CS_cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CSbonne only examines those components specific to the Bonne Projection. CSbonneQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerptfor a description of the various error codes and
their meaning. CSbonne@ may be called with the NULL pointer and/or a zero for the err_list and
list_sz arguments respectively.

CShonnelL Latitude/longitude check
int CSbonneL (Const struct cs_Bonne_ *bonne, int cnt,Const double pnts

[13D:;

CSbonnel determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the bonne argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSbonnesL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus

Chapter 4 Chatper 4 -- Library Functions 145

defined. CSbonnel returns ¢cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CShonneX Xy coordinate check
int CSbonneX (Const struct cs_Bonne_ *bonne, int cnt,Const double pnts

[13D:;

CSbonneX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the bonne argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSbonnesX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSbonnel returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSbonneS Setup
void CSbonneS (struct cs_Csprm_ *csprm);

The CSbonneS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallel, the origin longitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSbonneS performs these calculations and saves the results in the cs_Csprm__ structure provided by
its argument, csprm. Thus, the single argument provided to CSbonneS serves as the source for input
and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef _ structure
that must be initialized for the Bonne Projection are:

146 CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees, of the central meridian of the
projection.

org_lat The latitude, in degrees, of the standard parallel of the
projection.

scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes areto
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via Aninteger code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Bonne_Structure

The results of the one-time calculations are recorded in the bonne element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSbonneF, CSbonnel,
CSbonneK, CSbonneH, and CSbonneC functions require as their first argument.

Bipolar Oblique Conformal Conic Projection (CSbpcnc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Bipolar
Oblique Conformal Conic Projection. This projection was developed, by O. M. Miller (of Miller
Cylindrical fame), specifically for mapping both the North American and South American continents on
the same conformal map. This projection is supported for the sphere only. The equatorial radius of

Chapter 4 Chatper 4 -- Library Functions 147

the referenced ellipsoid is used as the radius of the sphere.

CSbpcencF Forward conversion

int CSbpcncF (Const struct cs_Bpcnc_ *bpcnc,double xy [2],Const double 11
[2D;

Given a properly initialized cs_Bpcnc_ structure via the bpenec argument, CSbpcncF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSbpcncFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSbpcncl Inverse conversion

int CSbpcncl (Const struct cs_Bpcnc_ *bpcnc,double 11 [2],Const double xy
[2D;

Given a properly initialized cs_Bpcnc__ structure via the bpcnec argument, CSbpcnc/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CcSbpcencl normally returns c¢s_CNVRT_NRML. 1t will return ¢s_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSbpcncK parallel scale (K)
double CSbpcncK (Const struct cs Bpcnc_ *bpcnc,Const double 11 [2]);

CSbpcncK returns the grid scale factor, as measured along a parallel, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. Since this is a
conformal projection, there is no H function as the scale along a meridian equals the scale along a
parallel.

CSbpcncC Convergence angle
double CSbpcncC (Const struct cs Bpcnc_ *bpcnc,Const double 11 [2]);

CSbpcncC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the Il array. At the current time, formulas that
analytically define the convergence angle for this projection elude us. Thus, the convergence angle is
determined empirically through the use of the CS /lazdd function.

CSbpcncQ definition Quality check
int CSbpcncQ (Const struct cs_Csdef *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSbpcnc@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Bi-Polar Conformal Conic Projection. CS cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSbpcncQ only examines those components specific to the Bi-Polar Conformal
Conic Projection. CSbpcncQreturns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description
of the various error codes and their meaning. CSbpcncQ may be called with the NULL pointer and/or a
zero for the err_list and list_sz arguments respectively.

148

CS-MAP User's Guide User's Guide

CSbpcncL Latitude/longitude check
int CSbpcncL (Const struct cs_Bpcnc_ *bpcnc, int cnt,Const double pnts

[13D;

CSbpcncl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the bpcnc argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSbpcncsL's return
value will apply to all coordinates, coordinates on the great circles, and all coordinates within the
regions thus defined. CSbpcncl returns cs_CNVRT_OK if all subject coordinates are within the
mathematical domain the coordinate system. ¢s_ CNVRT_DOMN is returned if one or more of the
subject geographic coordinates are outside of the mathematical domain of the coordinate system.

CSbpceneX Xy coordinate check

int CSbpcncX (Const struct cs_Bpcnc_ *bpcnc, int cnt,Const double pnts
[03D:

CSbpcncX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the bpcnc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSbpcrcsXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSbpcncl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSbpcencS Setup
void CSbpcncS (struct cs _Csprm_ *csprm);

The CSbpcncS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the poles, the standard parallels, and other projection
parameters are known, there are many calculations that need only be performed once. CSbpcncS
performs these calculations and saves the results in the cs_Csprm__ structure provided by its
argument, csprm. Thus, the single argument provided to CSbpcncS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. As far as we know, this projection is usually used
only for the specific coordinate system for which it was invented. However, to remain consistent with
the rest of CS-MAP, the following parameters can be specified. These parameters specify the location
of the two poles upon which the projection is based. The first is always specified by latitude and
longitude. The latitude of the second pole must always be specified. However, the longitude of the
second pole can be specified either directly (prj_prm3) or as an angular distance from the first pole
(pri_prmb5). If pri_prmb is greater than zero, the second method is used. In the listing of parameters
given below, the values used for the specific map for which this projection was developed are given.
The specific elements of the cs_Csdef _ structure that must be initialized for the Bipolar Oblique
Conformal Projection are:

Chapter 4 Chatper 4 -- Library Functions 149

prj_prml Longitude, in degrees, of the first pole (usually the southwest). [-
110.0]

prj_prm2 Latitude, in degrees, of the first pole. [-20.0]

prj_prm3 Longitude, in degrees, of the second pole (usually the northeast).
[-19.99333333333]

prj_prm4 Latitude, in degrees, of the second pole. [+45.0]

prj_prm5 If greater than zero, this value is considered to be the angular

distance, in degrees, from the first pole to the second pole and
the longitude of the second pole is computed as such. If this
valueislessthan or equal to zero, the value provided in
pri_prm3 is considered the longitude of the second pole.
[+104.0]

prj_prm6 Angular distance, in degrees, from either poleto the first of two
standard paraléels. [+31.0]

prj_prm7 Angular distance, in degrees, from either pole to the second of
two standard parallels. [+73.0]

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied. [1.0]

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. [0.0]

y_off The false northing to be applied to al Y coordinates. [0.0]

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes areto
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS _dftloc function, but may be supplied by the application at run time. Specifically, the required
element is:

150

CS-MAP User's Guide User's Guide

e rad Theradius of the earth, as a sphere, in meters.

cs Bpenc_Structure

The results of the one-time calculations are recorded in the bpcnc element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSbpcncF, CSbpcncl,
CSbpcncK, CSbpcencH, CSbpcncC, and CSbpcncB functions require as their first argument.

Cassini Projection (CScsini)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Cassini
Projection

CScsiniF Forward
int CScsiniF (Const struct cs_Csini_ *csini,double xy [2],Const double 11

2D:;

Given a properly initialized cs_Csini_ structure via the csini argument, CScsini/ will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CScsiniFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CScsinil Inverse
int CScsinil (Const struct cs_Csini_ *csini,double 1l [2],Const double xy

2D:;

Given a properly initialized cs_Csini__ structure via the csini argument, CScsin// will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CScsinif normally returns cs_ CNVRT_NRML. It will return ¢s_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CScsiniK parallel scale (K)
double CScsiniK (Const struct cs_Csini_ *csini,Const double 11 [2]);

CScsiniK returns the grid scale factor along a line normal to the central meridian of the coordinate
system at the geographic location defined by the latitude and longitude provided in the Il array. Itis a
specific feature of this projection that this scale factor is unity.

CScsiniH meridian scale (H)
double CScsiniH (Const struct cs Csini_ *csini,Const double 11 [2]);

CScsiniH returns the grid scale factor along a line parallel to the central meridian of the coordinate
system at the geographic location defined by the latitude and longitude provided in the Il array.

CScsiniC Convergence angle
double CScsiniC (Const struct cs Csini_ *csini,Const double 11 [2]);

Chapter 4 Chatper 4 -- Library Functions 151

CScsiniC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. As analytical
formulas for this quantity have not yet been located, the result is arrived at empirically using CS_aslldd.

CScsiniQ definition Quality check
int CScsiniQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CScsiniQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Cassini Projection. CS_cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CScsiniQ only examines those components specific to the Cassini Projection. CScsiniQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CScsiniQ may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

CScsiniL Latitude/longitude check
int CScsiniL (Const struct cs_Csini_ *csini,int cnt,Const double pnts

[13D;

CScsinil determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the csini argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CScsinisL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CScsinil returns cs_CNVRT_OK if all subject coordinates are within the mathematical domain
the coordinate system. cs_ CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CScsiniX Xy coordinate check
int CScsiniX (Const struct cs_Csini_ *csini,int cnt,Const double pnts

[13D;

CScsiniX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the csini argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CScsinisX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CScsinil returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CScsiniS Setup
void CScsiniS (struct cs Csprm_ *csprm);

The CScsiniS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CScsiniS performs these calculations and saves the results in the cs_Csprm__ structure provided by its
argument, csprm. Thus, the single argument provided to CScsiniS serves as the source for input and
the repository for the results as described below.

152 CS-MAP User's Guide User's Guide

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csde¥f _ structure
that must be initialized for the Cassini projection are:

prj_prml Longitude, in degrees, of the central meridian.
org_lat The latitude, in degrees, of the origin of the projection.
Scae The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units,
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Quad an integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Csini_ Structure

The results of the one-time calculations are recorded in the csini element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CScsiniF, CScsinil,
CScsiniK, CScsiniH, and CScsiniC functions require as their first argument.

Chapter 4 Chatper 4 -- Library Functions 153

Danish System 34 (CSsys34)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Danish
System 34 Projection. This projection is supported in ellipsoid form only; and most ordinary
parameters are hard coded and selected via the ‘region’ (prj_prm1) parameter.

CSsys34C Convergence angle
double CSsys34C (Const struct cs Sys34_ *sys34,Const double 11 [2]);

CSsys34Creturns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_az/ld function.

CSsys34F Forward conversion

int CSsys34F (Const struct cs_Sys34 *sys34,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Sys34_ structure via the sys34 argument, CSsys34F will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSsys34Fnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSsys34l Inverse conversion
int CSsys341 (Const struct cs_Sys34 *sys34,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Sys34_ structure via the sys34 argument, CSsys34/will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSsys34/normally returns ¢s_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSsys34K parallel scale (K)
double CSsys34K (Const struct cs Sys34_ *sys34,Const double 11 [2]);

CSsys34K returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of the CS /lazdd function.

CSsys34H meridian scale (H)
double CSsys34H (Const struct cs Sys34_ *sys34,Const double 11 [2]);

CSsys34H returns the grid scale factor along a meridian at the geodetic location specified by the I
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of the CS_llazdd function.

CSsys34L Latitude/longitude check

int CSsys34L (Const struct cs_Sys34 *sys34,int cnt,Const double pnts
[13D:

154

CS-MAP User's Guide User's Guide

CSsys34L determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the sys34 argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSsys34sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSsys34L returns cs_ CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSsys34Q definition Quality check
int CSsys34Q (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSsys34Q determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Danish System 34 Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSsys34Q only examines those components specific to the Danish System 34
Projection. CSsys34Q returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSsys34Q may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSsys34X Xy coordinate check

int CSsys34X (Const struct cs_Sys34 *sys34,int cnt,Const double pnts
[103D:

CSsys34X determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the sys34 argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSsys34sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSsys34L returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSsys34S Setup (general)
void CSsys34S (struct cs Csprm_ *csprm);

The CSsys34S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the zone and other projection parameters are known,
there are many calculations that need only be performed once. CSsys34S performs these calculations
and saves the results in the cs_Csprm__ structure provided by its argument, csprm. Thus, the
argument provided to CSsys34S serves as the source for input and the repository for the results as
described below.

Coordinate System Definition
The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

The following parameters must be set:

Chapter 4 Chatper 4 -- Library Functions 155

prj_prmil Indicates which of the three regionsisto apply:
1.0 ==>jylland;
2.0 ==> gadland,

3.0 ==> bornholm.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to be
swapped after the coordinates have been placed in the indicated
quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
¢cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Sys34 Structure

The results of the one-time calculations are recorded in the sys34 element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSsys344F, CSsys3441,
CSsys344K, CSsys344H, and CSsys34C functions require as their first argument.

Equidistant Conic Projection (CSedcnc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Equidistant Conic Projection, also known as the Simple Conic Projection.

CSedcncF Forward conversion

int CSedcncF (Const struct cs_Edcnc_ *edcnc,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Edcnc__ structure via the edenc argument, CSedcncF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSedcncFnormally returns ¢s_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSedcncl Inverse conversion

int CSedcncl (Const struct cs_Edcnc_ *edcnc,double 11 [2],Const double xy
[21:

Given a properly initialized cs_Edcnc__ structure via the edenc argument, CSedcnc/ will convert the X

156

CS-MAP User's Guide User's Guide

and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSedcnc/ normally returns ¢s_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSedcncK parallel scale (K)
double CSedcncK (Const struct cs _Edcnc_ *edcnc,Const double 11 [2]);

CSedcncK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSedcncH meridian scale (H)
double CSedcncH (Const struct cs Edcnc_ *edcnc,Const double 11 [2]);

CSedcncH returns the value of 1.0 that represents the grid scale, along a meridian, of the coordinate
system at the specific geodetic location defined by the latitude and longitude provided in the Il array.
That is, all distances meaured along a meridian of this projection are true to scale, the essence of this
projection.

CSedcncC Convergence angle
double CSedcncC (Const struct cs_Edcnc_ *edcnc,Const double 11 [2]);

CSedcncC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the Il array.

CSedcncQ definition Quality check
int CSedcncQ (Const struct cs_Csdef *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSedcnc@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Equidistant Conic Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSedcncQ only examines those components specific to the Equidistant Conic
Projection. CSedcnc@Qreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSedcncQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSedcnclL Latitude/longitude check
int CSedcncL (Const struct cs_Edcnc_ *edcnc, int cnt,Const double pnts

[13D:;

CSedcncl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the edcnc argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSedcncsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSedcncL returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject

Chapter 4 Chatper 4 -- Library Functions 157

geographic coordinates are outside of the mathematical domain of the coordinate system.

CSedcncX Xy coordinate check
int CSedcncX (Const struct cs_Edcnc_ *edcnc, int cnt,Const double pnts

[13D:;

CSedcncX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the edcnc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSedcncsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSedcncl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSedcncsS Setup
void CSedcncS (struct cs Csprm_ *csprm);

The CSedcncS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallels, the origin latitude and longitude,
and other projection parameters are known, there are many calculations that need only be performed
once. CSedcncS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the single argument provided to CSedcncS serves as the
source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef _ structure
that must be initialized for the Equidistant Conic projection are:

158

CS-MAP User's Guide User's Guide

prj_prml Latitude, in degrees, of thefirst standard parallel, usually the
northernmost (it makes no difference).

prj_prm2 Latitude, in degrees, of the second standard parallel, usualy the
southernmost. Thisis, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency (i.e. asingle standard
parallel).

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the coordinate

system, 1 thru 4. A negative value indicates that the axes areto
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dltloc

function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.
eccent This value represents the eccentricity of the ellipsoid.
to84 via Aninteger code that specifies the technique that isto be

used to convert geographic coordinates based on this
datum to WGS84.

The results of the one-time calculations are recorded in the edcnc element of the prj_prms union of

¢cs Edenc_ Structure

the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSedcncF, CSedcncl,
CSedcncK, CSedcncH, and CSedcncC functions require as their first argument.

Chapter 4 Chatper 4 -- Library Functions 159

Equidistant Cylindrical Projection (CSedcyl)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Equidistant Cylindrical Projection. This projection is supported in spherical form only. The equatorial
radius of the supplied ellipsoid is used as the radius of the sphere. This projection is also known as the
Equirectangular or Rectangular projection. When the reference latitude of this projection is set to zero
(i.e. the equator) the result is equivalent to what is known as the Plate Carrée or Simple Cylindrical
projection. When the reference latitude is set to 45? (north or south), a Gall Isographic projection
results.

CSedcylF Forward conversion

int CSedcylF (Const struct cs_Edcyl *edcyl,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Edcyl__ structure via the edcyl argument, CSedcy/Fwill convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSedcy/Fnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSedcyll Inverse conversion

int CSedcyll (Const struct cs_Edcyl *edcyl,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Edcyl _ structure via the edcyl argument, CSedcy/l will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CcSedcyll normally returns ¢s_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSedcylK parallel scale (K)
double CSedcylK (Const struct cs Edcyl *edcyl,Const double 11 [2]);

CSedcylK returns the grid scale factor along a parallel at the geodetic location specified by the |l
argument.

CSedcylH meridional scale (H)
double CSedcylH (Const struct cs Edcyl_ *edcyl,Const double 11 [2]);

CSedcylH returns the grid scale factor along a meridian at the geodetic location specified by the Il
argument.

CSedcylC Convergence angle

double CSedcylC (Const struct cs_Edcyl_ *edcyl,Const double 11 [2]);

CSedcy/Creturns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_azsphrfunction.

CSedcylQ definition Quality check
int CSedcylQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

160

CS-MAP User's Guide User's Guide

int *err_list [],int list _sz);

CSedcylQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Equidistant Cylindrical Projection. CS_cschk examines those definition
components that are common to all coordinates system (datum or ellipsoid reference, map scale, and
units) and, therefore, CSedcy/Q only examines those components specific to the Equidistant Cylindrical
Projection. CSedcy/Qreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSedcy/Q may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSedcylL Latitude/longitude check

int CSedcylL (Const struct cs_Edcyl *edcyl, int cnt,Const double pnts
[103D:

CSedcyll determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the edcyl argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSedcy/sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSedcyil returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSedcylX Xy coordinate check

int CSedcylX (Const struct cs_Edcyl *edcyl,int cnt,Const double pnts
[03D:

CSedcylX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the edcyl argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (ent == 2), or a closed region (cnt > 3). CSedcy/sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSedcyiL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSedcylS Setup
void CSedcylS (struct cs Csprm_ *csprm);

The CSedcy/S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the reference parallel, origin longitude, and other
projection parameters are known, there are many calculations which need only be performed once.
CSedcylS performs these calculations and saves the results in the cs_Csprm__ structure provided by its
argument, csprm. Thus, the argument provided to CSedcy/S serves as the source for input and the
repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The following parameters are used:

Chapter 4 Chatper 4 -- Library Functions 161

prj_prml The latitude, in degrees, of the reference parallel.
org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to al Y coordinates. Thisis
the 'Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e rad The radius of the earth, as a sphere, in meters.

cs Edcyl_ Structure

The results of the one-time calculations are recorded in the edcyl element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSedcylF, CSedcyll,
CSedcylK, CsedcylH, and CSedcyl/C functions require as their first argument.

Eckert IV Projection (CSekrt4)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Eckert IV
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSekrt4F Forward conversion

int CSekrt4F (Const struct cs_Ekrt4 *ekrt4,double xy [2],Const double 11
[2D:

162

CS-MAP User's Guide User's Guide

Given a properly initialized cs_Ekrt4_ structure via the ekrt4 argument, CSekrt4F will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSekrt4F normally returns ¢s_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSekrt4l Inverse conversion

int CSekrt4l (Const struct cs_Ekrt4 *ekrt4,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Ekrt4 _ structure via the ekrt4 argument, CSekrt4/ will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSekrt4/ normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSekrt4K parallel scale (K)
double CSekrt4K (Const struct cs _Ekrt4_ *ekrt4,Const double 11 [2]);

CSekrt4K returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSekrt4H meridian scale (H)
double CSekrt4H (Const struct cs Ekrt4_ *ekrt4,Const double 11 [2]);

CSekrt4H returns the grid scale factor along a meridian at the geodetic location specified by the Il
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSekrt4C Convergence angle
double CSekrt4C (Const struct cs_Ekrt4_ *ekrt4,Const double 11 [2]);

CSekrt4Creturns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CSekrt4Q definition Quality check
int CSekrt4Q (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSekrt4Q determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Eckert IV Projection. CS cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CSekrt4Q only examines those components specific to the Eckert IV Projection. CSekrt4Q
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerptfor a description of the various error codes and
their meaning. CSekrt4Q may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

Chapter 4 Chatper 4 -- Library Functions 163

CSekrt4L Latitude/longitude check

int CSekrt4L (Const struct cs_Ekrt4 *ekrt4,int cnt,Const double pnts
[103D:

CSekrt4L determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ekrt4 argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSekrt4sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSekrt4L returns ¢s_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s CNVRT _DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSekrt4X Xy coordinate check

int CSekrt4X (Const struct cs_Ekrt4 *ekrt4,int cnt,Const double pnts
[03D:

CSekrt4X determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ekrt4 argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSekrt4sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSekrt4L returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSekrt4S Setup (general)
void CSekrt4S (struct cs Csprm_ *csprm);

The CSekrt4S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations that need only be performed once. CSekrt4S performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm. Thus,
the argument provided to CSekrt4S serves as the source for input and the repository for the results as
described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The following parameters are used:

164 CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees, of the origin of the projection
(central meridian).

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS _dltloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e rad The radius of the earth, as a sphere, in meters.

cs Ekrt4 Structure

The results of the one-time calculations are recorded in the ekrt4 element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSekrt4F, CSekrt4l,
CSekrtdK, CSekrtdH, and CSekrt4C functions require as their first argument.

Eckert VI Projection (CSekrt6)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Eckert VI
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSekrt6F Forward conversion

int CSekrt6F (Const struct cs_Ekrt6_ *ekrt6,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Ekrt6_ structure via the ekrt6é argument, CSekrt6F will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSekrt6f normally returns ¢cs_CNVRT_NRML. If Il is not within the domain of the coordinate

Chapter 4 Chatper 4 -- Library Functions 165

system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSekrt6l Inverse conversion
int CSekrt6l (Const struct cs_Ekrt6_ *ekrt6,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Ekrt6_ structure via the ekrt6 argument, CSekrt6/ will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CcSekrt6/ normally returns ¢s_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSekrt6K parallel scale (K)
double CSekrt6K (Const struct cs_Ekrt6_ *ekrt6,Const double 11 [2]);

CSekrt6K returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSekrt6H meridian scale (H)
double CSekrt6H (Const struct cs Ekrt6_ *ekrt6,Const double 11 [2]);

CSekrt6H returns the grid scale factor along a meridian at the geodetic location specified by the Il
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSekrt6C Convergence angle
double CSekrt6C (Const struct cs Ekrt6_ *ekrt6,Const double 11 [2]);

CSekrt6C returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CSekrt6Q definition Quality check
int Csekrt6Q (Const struct cs_Csdef_*csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSekrt6Q determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Eckert VI Projection. CS cschk examines those definition components that
are common to all coordinates system (datum or ellipsoid reference, map scale, and units) and,
therefore, CSekrt6Q only examines those components specific to the Eckert VI Projection. CSekrt6Q
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerptfor a description of the various error codes and
their meaning. CSekrt6Q may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

CSekrt6L Latitude/longitude check

int Csekrt6L (Const struct cs_Ekrt6_ *ekrt4,int cnt,Const double pnts
[103D:

166

CS-MAP User's Guide User's Guide

CSekrt6L determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ekrt6 argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSekrt6sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSekrt6L returns ¢s_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSekrt6X Xy coordinate check

int Csekrt6X (Const struct cs_Ekrt6_ *ekrt4,int cnt,Const double pnts
[103D:

CSekrt6X determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ekrt6 argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSekrt6sX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSekrt6L returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSekrt6S Setup (general)
void CSekrt6S (struct cs_Csprm_ *csprm);

The CSekrt6S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations which need only be performed once. CSekrt6S performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm. Thus,
the argument provided to CSekrt6S serves as the source for input and the repository for the results as
described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The following parameters are used:

Chapter 4 Chatper 4 -- Library Functions 167

org_Ing The longitude, in degrees, of the origin of the projection (central
meridian).
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. Thisisthe X coordinate
of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisisthe
Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS _dltloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e rad The radius of the earth, as a sphere, in meters.

cs Ekrt6_ Structure

The results of the one-time calculations are recorded in the ekrt6 element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSekrt6F, CSekrt6l,
CSekrt6K, CSekrt6H, and CSekrt6C functions require as their first argument.

Gnomonic Projection (CSgnomc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Gnomonic
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

The Gnomonic projection cannot process locations that are 90 degrees or more away from the
projection origin. Coordinates that exceed this limit are adjusted to fall on the great circle that defines
this limit.

CsgnomcF Forward conversion

int CSgnomcF (Const struct cs_Gnomc_ *gnomc,double xy [2],Const double 11

168

CS-MAP User's Guide User's Guide

[2D:;

Given a properly initialized cs_Gnomc__ structure via the gnomc argument, CSgnomcF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSgnomcFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

Csgnomcl Inverse conversion

int CSgnomcl (Const struct cs_Gnomc_ *gnomc,double 1l [2],Const double xy
[2D;

Given a properly initialized cs_Gnomc__ structure via the gnome argument, CSgrnomc/ will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSgnomec/ normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CsgnomcK grid scale (K) normal to radial
double CSgnomcK (Const struct cs _Gnomc_ *gnomc,Const double 11 [2]);

CSgnomcK returns the grid scale factor normal to the radial at the geodetic location specified by the |
argument.

CsgnomcH grid scale (H) along radial
double CSgnomcH (Const struct cs _Gnomc_ *gnomc,Const double 11 [2]);

CSgnomcH returns the grid scale factor along a radial from the coordinate system origin to (and at) the
geodetic location specified by the Il argument.

CsgnomcC Convergence angle
double CSgnomcC (Const struct cs _Gnomc_ *gnomc,Const double 11 [2]);

CSgnomcC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CsgnomclL Latitude/longitude check
int CSgnomcL (Const struct cs_Gnomc_ *gnomc, int cnt,Const double pnts

[13D:;

CSgnomclL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the gnomc argument. The pnts and cnt arguments can define a
single coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSgromcsL's return
value will apply to all coordinates, coordinates on the great circles, and all coordinates within the
regions thus defined. CSgromcL returns cs_CNVRT_OK if all subject coordinates are within the
mathematical domain the coordinate system. ¢s_ CNVRT_DOMN is returned if one or more of the
subject geographic coordinates are outside of the mathematical domain of the coordinate system.

CSgnomcQ definition Quality check
int CSgnomcQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

Chapter 4 Chatper 4 -- Library Functions 169

int *err_list [],int list _sz);

CSgnomcQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Gnomonic Projection. CS_cschk examines those definition components
that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSgnomcQ only examines those components specific to the Gnomonic Projection.
CcSgnomcQreturns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the various
error codes and their meaning. CSgnomc@ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CsgnomcX Xy coordinate check
int CSgnomcX (Const struct cs_Gnomc_ *gnomc, int cnt,Const double pnts

[13D:;

CSgnomcX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the gnomc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSgnomcsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSgnomcL
returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSgnomcS Setup
void CSgnomcS (struct cs Csprm_ *csprm);

The CSgnomcS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude and other projection
parameters are known, there are many calculations that need only be performed once. CSgrnomcS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the argument provided to CSgnomcS serves as the source for input and the
repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The following parameters are used:

170 CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
elementis:

e rad Theradius of the earth, as a sphere, in meters.

¢s_Gnomc_ Structure

The results of the one-time calculations are recorded in the gnomc element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSgnomcF, CSgnomcl,
CSgnomcK, CSgnomcH, and CSgnomcC functions require as their first argument.

Goode Homolosine Projection (CShmlsn)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Goode
Homolosine Projection. This projection is supported in spherical form only. The equatorial radius of
the supplied ellipsoid is used as the radius of the sphere.

CShmlsnF Forward conversion

int CShmlsnF (Const struct cs_Hmlsn_ *hmlsn,double xy [2],Const double 11
[2D;

Given a properly initialized cs_Hmlsn__ structure via the hmlsn argument, CShm/snFwill convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy

Chapter 4 Chatper 4 -- Library Functions 171

array. CShmisnFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CShmisnl Inverse conversion

int CShmlsnl (Const struct cs_Hmlsn_ *hmlsn,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Hmlsn_ structure via the hmlsn argument, CSAm/sn/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CcShmisn/ normally returns ¢s_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CShmisnK parallel scale (K)
double CShmlsnK (Const struct cs _Hmlsn_ *hmlsn,Const double 11 [2]);

CShmisnK returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CShmisnH meridian scale (H)
double CShmlsnH (Const struct cs Hmlsn_ *hmlsn,Const double 11 [2]);

CShmisnH returns the grid scale factor along a meridian at the geodetic location specified by the I
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CShmlsnC Convergence angle
double CShmlIsnC (Const struct cs_Hmlsn_ *hmlsn,Const double 11 [2]);

CShmisnC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CShmlsnQ definition Quality check
int CShmlsnQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CShmlsn@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Goode Homolosine Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CShmisn@ only examines those components specific to the Goode Homolosine
Projection. CShmlisnQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CShmisn@ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CShmlsnL Latitude/longitude check
int CShmlsnL (Const struct cs_Hmlsn_ *hmlsn, int cnt,Const double pnts

172

CS-MAP User's Guide User's Guide

[13D;

CShmisnL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the hmlsn argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CShAmisnsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CShmisnL returns ¢s_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CShmlsnX Xy coordinate check
int CShmlsnX (Const struct cs_Hmlsn_ *hmlsn, int cnt,Const double pnts

[3D:;

CShmisnX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the hmlsn argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CShmlsnsXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSAmi/snL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CShmlsnsS Setup (general)
void CShmlsnS (struct cs _Csprm_ *csprm);

The CShmlsnS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations which need only be performed once. CShm/snS performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm.
Thus, the argument provided to CShmisnS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The following parameters are used:

Chapter 4 Chatper 4 -- Library Functions 173

org_Ing The longitude, in degrees, of the origin of the projection
(central meridian).

prj_prml-24 The interrupted form of the Goode Homolosine Projection is
fully supported. cs_Csdef_ elements prj_prml thru
prj_prm24 can be used to specify the extents of the different
zones. See CS zones for information on how to encode
ZOnes.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usually
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
elementis:

e rad The radius of the earth, as a sphere, in meters.

cs Hmlsn_ Structure

The results of the one-time calculations are recorded in the hmlsn element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CShmisnF, CShmlsnl,
CShmisnK, CShmlsnH, and CShmisnC functions require as their first argument.

Hotine Oblique Mercator Projection (CSoblgm)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Hotine
Oblique Mercator Projection. Since this projection is conformal, the K and H scale factors are the
same and there is no H function. Six variations of this projection are supported.

174

CS-MAP User's Guide User's Guide

CSoblgmF Forward conversion

int CSoblgmF (Const struct cs_Oblgm_ *oblgm,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Oblgm__ structure via the oblgm argument, CSob/lgm#F will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSoblgmF normally returns cs_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSoblgml Inverse conversion

int CSoblgml (Const struct cs_Oblgm_ *oblgm,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Oblgm_ structure via the oblgm argument, CSob/gm/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSoblgm/ normally returns ¢s_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSoblgmK scale (K)
double CSoblgmK (Const struct cs _Oblgm_ *oblgm,Const double 11 [2]);

CSoblgmK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array. This is calculated using
CS llazdd as we have been unable to locate definitive formulas for the grid scale factor for this
projection.

CSoblgmC Convergence angle
double CSoblgmC (Const struct cs Oblgm_ *oblgm,Const double 11 [2]);

CSoblgmC returns the convergence angle is degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. This is
calculated using CS /lazdd as we have been unable to locate definitive formulas for the convergence
angle for this projection.

CSoblgmQ definition Quality check
int CSoblgmQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSoblgm@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Oblique Mercator (Hotine) Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSoblgmQ only examines those components specific to the Oblique Mercator
(Hotine) Projection. CSoblgmQreturns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a
description of the various error codes and their meaning. CSoblgm@ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

Chapter 4 Chatper 4 -- Library Functions 175

CSoblgmL Latitude/longitude check

int CSoblgmL (Const struct cs_Oblgm_ *oblgm, int cnt,Const double pnts
[103D:

CSoblgmL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the oblgm argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSoblgmsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSoblgmL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSoblgmX Xy coordinate check

int CSoblgmX (Const struct cs _Oblgm_ *oblgm, int cnt,Const double pnts
[103D:

CSoblgmX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the oblgm argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSoblgmsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSoblgmL
returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSoblgms Setup
void CSoblgmS (struct cs Csprm_ *csprm);

The CSoblgmsS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central great circle, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSoblgmS performs these calculations and saves the results in the ¢s_Csprm_ structure provided by
the csprm argument. Thus, this one argument provides CSob/lgmsS its input data and the repository for
the results as described below.

CSoblgmS examines the prj_code element of the cs_Csprm_ structure to determine which of the six
variations of this projection is to be setup. In most cases, the variations require different usage of the
parameters in the cs_Csdef _ structure as defined below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_cs/deffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Oblique Mercator projection are dependent upon the variation being
implemented.

The following parameters apply to all six variations of the projection:

176 CS-MAP User's Guide User's Guide

scl_red The scale reduction that is to be applied.

Scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Single Point, Unrectified Hotine Oblique Mercator
(cs_PRJCOD_HOM1UV)

This variation produces unrectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere”. Rarely, if ever used; retained primarily for historical

urposes.

prj_prml Longitude, in degrees, of the central point of the projection.
prj_prm2 Latitude, in degrees, of the central point of the projection.
prj_prm3 The azimuth of the central great circle, in degrees east of north.

Two Point, Unrectified Hotine Oblique Mercator
(cs_PRJCOD HOM2UV)

This variation produces unrectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere." Rarely, if ever used; retained primarily for historical
purposes.

Chapter 4 Chatper 4 -- Library Functions 177

prj_prml Longitude, in degrees, of the first point on the central geodesic.

prj_prm2 Latitude, in degrees, of thefirst point on the central geodesic.

prj_prm3 Longitude, in degrees, of the second point on the central
geodesic.

prj_prm4 Latitude, in degrees, of the second point on the central
geodesic.

org_lat The latitude, in degrees, of the center of the coordinate system
being defined. That is, the point on the central geodesic that
has this latitude is the natural origin of the projection.

Alaska Variation, Hotine Oblique Mercator (cs_PRJCOD HOMI1XY)

This variation produces rectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere”. The rectification technique is specific to Zone 1 of the
Alaska State Plane Coordinate System. It is possible that this variation should also be used for the

Great Lakes Survey, but this has not been verified as of this writing.

prj_prml Longitude, in degrees, of the central point of the projection.
prj_prm2 Latitude, in degrees, of the central point of the projection.
prj_prm3 The azimuth of the central great circle, in degrees east of north.

Two Point, Rectified Hotine Oblique Mercator (cs_ PRJCOD HOM2XY)

This variation produces rectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere”. Rarely, if ever used; retained primarily for historical
purposes. To remain consistent with prior releases of CS-MAP, this variation uses the same
rectification technique as the Alaska variation described immediately above.

178 CS-MAP User's Guide User's Guide

prj_prml Longitude, in degrees, of the first point on the central geodesic.

prj_prm2 Latitude, in degrees, of thefirst point on the central geodesic.

prj_prm3 Longitude, in degrees, of the second point on the central
geodesic.

prj_prm4 Latitude, in degrees, of the second point on the central geodesic.

org_lat The latitude, in degrees, of the center of the coordinate system
being defined. That is, the point on the central geodesic that has
thislatitude is the natural origin of the projection.

Rectified Skew Orthomorphic (cs_PRJCOD RSKEW)

This variation produces rectified cartesian coordinates whose origin is the intersection of the central
geodesic and the equator of the "aposphere". The rectification technique is that commonly used in
laces other than Alaska.

prj_prml Longitude, in degrees, of the central point of the projection.
prj_prm2 Latitude, in degrees, of the central point of the projection.
prj_prm3 The azimuth of the central great circle, in degrees east of north.

Rectified Skew Orthomorphic Centered (cs PRJCOD RSKEWC)

This variation produces rectified cartesian coordinates, the origin of which is at the single defining
oint. The rectification technique is that commonly used in places other than Alaska.

prj_prml Longitude, in degrees, of the central point of the projection.
prj_prm2 Latitude, in degrees, of the central point of the projection.
prj_prm3 The azimuth of the central great circle, in degrees east of north.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

Chapter 4 Chatper 4 -- Library Functions 179

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Oblgm_ Structure

The results of the one-time calculations are recorded in the oblgm element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSoblgmF, CSoblgml,
CSoblgmK, and CSoblgmC functions require as their first argument.

Krovak Oblique Conformal Conic

This set of functions represent the Coordinate System Mapping Package's knowledge of the Krovak
Obligue Conformal Conic Projection. This projection isused in what used to be Czechoslovokia, and
is now the Czech Republic and the Slovak Republic. Since this projection is conformal, the K and H
scale factors are the same and thereis no H function. Two variations of this projection are supported.

Thefirst variation is the traditional projection as used since the 1920's. The second includes the affine
transformation devised for use with the 1995 adjustment.

Please note that traditional Krovak X coordinates increase to the west. WHen such coordinates are
used in the traditional CAD environment, the resuling images are mirrored and are (for most folks
anyway) useless. Therefore, thisimplementation is such that what would normally be positive X
coordinates are actually negative coordinates, and the magnitude of the values will be correct. In this
way, the absolute value of the coordinate will be what is expected to see, but the coordinates will
actually increase to the east, thus making AutoCAD, MicroStation, and other CAD type systems happy
campers.

CSkrovkF Forward Conversion

int CSkrovkF (Const struct cs_Krovk *krovk,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Krovk__ structure via the krovk argument, CSkrovkF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSkrovkFnormally returns cs_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

The xy and Il arrays may be the same array. The X coordinate and the longitude are the first elements
in these arrays, the Y coordinate and the latitude are the second element. The latitude and longitude
values are in degrees where negative values are used to represent west longitude and south latitude.

CSkrovkl Inverse conversion

int CSkrovkl (Const struct cs_Krovk *krovk,double 11 [2],Const double xy
[21:

180

CS-MAP User's Guide User's Guide

Given a properly initialized cs_Krovk__ structure via the krovk argument, CSkrovk/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSkrovkl normally returns cs_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

The xy and Il arrays may be the same array. The X coordinate and the longitude are the first elements
in these arrays, the Y coordinate and the latitude are the second element. The latitude and longitude
values are in degrees where negative values are used to represent west longitude and south latitude.

CSkrovkK scale (K)
double CSkrovkK (Const struct cs_Krovk_ *krovk,Const double 11 [2]);

CSkrovkK returns the grid scale factor of the coordinate system at the specific geodetic location defined
by the latitude and longitude provided in the Il array. The value cs_Scl Inf (defined to be 9,999.00 is
Cdata.c) isreturned if the Il provided is the oblique pole.

CSkrovkC Convergence angle
double CSkrovkC (Const struct cs Krovk *krovk,Const double 11 [2]);

CSkrovkC returns the convergence angle in degrees east of north of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array.

CSkrovkQ definition Quality check
int CSkrovkQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSkrovk@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Krovak Oblique Conformal Conic Projection. CS_cschk examines those
definition components that are common to all coordinates systems (datum or ellipsoid reference, map
scale, and units) and, therefore, CSkrovakQ only examines those components specific to the Krovak
Obligue Conformal Conic Projection. CSkrovkQreturns in err_list an integer code value for each error
condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerptfor a description of the various error codes and their meaning. CSkrovkQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

Bugs

In the original implementation of this projection, all parameters were hard coded and no checking was
necessary. For release 10, this projection was rewritten to accept user defined parameters, but this
Quiailty check function was never updated. Therefore, at the current time, there is no parameter
checking performed for this projection.

CSkrovkL Latitude/longitude check

int CSoblgmL (Const struct cs_Oblgm_ *oblgm, int cnt,Const double pnts
[03D:

CSoblgmL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the

Chapter 4 Chatper 4 -- Library Functions 181

coordinate system provided by the oblgm argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSoblgmsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSoblgmL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSkrovkX Xy coordinate check

int CSoblgmX (Const struct cs_Oblgm_ *oblgm, int cnt,Const double pnts
[103D:

At the current time, CSoblgmX returns cs_CNVRT_OK without performing any checks. The arguments
are currently ignored. Again, thisis dueto the unusual legacy of this projection, and the fact that
normal coordinates used in the Czech Repulic increase to the west rather than the east.

CSkrovksS Setup
void CSkrovkS (struct cs Csprm_ *csprm);

The CSkrovksS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude, origin latitude, oblique pole location,
and other projection parameters are known, there are many calculations that need only be performed
once. CSkrovkS performs these calculations and saves the results in the ¢s_Csprm_ structure provided
by the csprm argument. Thus, this one argument provides CSkrovkS its input data and the repository
for the results as described below.

CSkrovkS examines the prj_code element of the cs_Csprm__ structure to determine which of the two
variations of this projection is to be setup. The projection code, therefore, simply determines if the
1995 adjustment transformation is applied to the resulting cartesian coordinates. The parameters for
the affine tranformation are (currently) hard coded.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_cs/deffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Krovak Obliqgue Conformal Conic Projection are dependent upon the
variation being implemented.

The following parameters apply to both variations of the projection:

182

CS-MAP User's Guide User's Guide

org_Ing Longitude, in degrees, of the origin of the projection. Asis
commonly used in the Czech Repoublic, thisis usualy the
prime meridian of Ferro.

org_lat Latitude, in degrees, of the origin of the projection.

prj_prml Longitude, in degrees, of the location of the pole of the oblique
cone.

prj_prm2 Latitude, in degrees, of the location of the pole of the oblique
cone.

prj_prm3 Latitude, in degrees on the oblique gaussian surface, of the

single standard parallel of the conic projection surface.

scl_red The scale reduction that is to be applied.

Scae The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed

in the indicated quadrant.

Krovak Oblique Conformal Conic, Czechoslovokia (cs PRJCOD

This variation produces the traditional (i.e. unadjusted) Krovak coordinates used in Czechoslovakia
since the 1920's. There are no special parameter requirements. Specifying this variation simply turns
off the application of the 1995 adjustment.

Krovak Oblique Conformal Conic/95 Adjustment

This variation causes an affine transformation to be applied to the traditional coordinates, thus
producing coordinates appropriate for the 1995 adjustment. There are no special parameter
requirements (at this time). Specifiying this variation simply turns on the affine transformation, the
coefficients of which are hard coded.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

Chapter 4 Chatper 4 -- Library Functions 183

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Krovk_ Structure

The results of the one-time calculations are recorded in the oblgm element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSkrovkF, CSkrovkl,
CSkrovkK, and CSkrovkC functions require as their first argument.

Lambert Conformal Conic Projection (CSImbrt)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Lambert
Conformal Conic Projection. Since this projection is a conformal projection, the K and H scale factors
are the same and there is no H function. Five variations of this projection are supported.

CSImbrtF Forward conversion

int CSImbrtF (Const struct cs_Lmbrt_ *Imbrt,double xy [2],Const double 11
[2D;

Given a properly initialized cs_Lmbrt_ structure via the Imbrt argument, CS/imbrtF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CS/ImbrtFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSImbrtl Inverse conversion

int CSImbrtl (Const struct cs_Lmbrt_ *Imbrt,double 1l [2],Const double xy
[2D;

Given a properly initialized cs_Lmbrt_ structure via the Imbrt argument, CS/mbrt/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSimbrt! normally returns cs_CNVRT_NRML. It will return c¢s_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSImbrtK scale (K)
double CSImbrtkK (Const struct cs Lmbrt_ *Imbrt,Const double 11 [2]);

CSImbrtK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

184

CS-MAP User's Guide User's Guide

CSImbrtC Convergence angle
double CSImbrtC (Const struct cs_Lmbrt_ *Imbrt,Const double 11 [2]);

CSImbrtC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the Il array.

CSImbrtQ definition Quality check
int CSImbrtQ (Const struct cs_Csdef_*csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSImbrtQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Lambert Conformal Conic Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CS/ImbrtQ only examines those components specific to the Lambert Conformal
Conic Projection. CS/ImbrtQreturns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description
of the various error codes and their meaning. CS/mbrtQ may be called with the NULL pointer and/or a
zero for the err_list and list_sz arguments respectively.

CSImbrtL Latitude/longitude check

int CSImbrtL (Const struct cs_Lmbrt_ *Imbrt,int cnt,Const double pnts
[13D:;

CSImbrtl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the Imbrt argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CS/mbrtsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSImbrtL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSImbrtX Xy coordinate check

int CSImbrtX (Const struct cs_Lmbrt_ *Imbrt,int cnt,Const double pnts
[103D:

CSImbrtX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the Imbrt argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CS/ImbrtsXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CS/imbrtL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSImbrtS Setup
void CSImbrtS (struct cs_Csprm_ *csprm);

The CSImbrtS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallels, the origin latitude and longitude,
and other projection parameters are known, there are many calculations that need only be performed
once. CSImbrtS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the single argument provided to CS/mbrtS serves as the

Chapter 4 Chatper 4 -- Library Functions 185

source for input and the repository for the results as described below.
Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

Five variations of this projection are supported. CS/mbrtS determines which variation is to be setup by
examining the prj_code element of the cs_Csprm_ structure. The actual use of parameters in the
cs_Csdef _ structure (an element of the cs_Csprm__ structure) is dependent on the variation being
setup.

The following elements of the cs_Csdef structure apply to all five variations:

Scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Parameter use specific to the five variations is:
Two Standard Parallels (cs_PRJCOD LMBRT) :

This is the traditional version of this projection. The degree of scale reduction to reduce and distribute
scale distorion is specified by two standard parallels:

prj_prml Latitude, in degrees, of thefirst standard parallel, usually the
northernmost. For this projection, thereis no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard parallel, usualy the
southernmost. Thisis, rarely, the same as prj_prm1, to obtain a
conic with a single point of tangency.

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

186 CS-MAP User's Guide User's Guide

Single Standard Parallel (cs_PRJCOD LMI1SP) :

This variation is commonly used outside of North America. It is, mathematically, virtually identical to
what CS-MAP has long referred to as the Lambert Tangential. The degree of scale reduction to
reduce and distribute scale distortion is specified by the scale reduction factor:

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale of the projection at the origin defined by org_Ing and
org_lat.

Belgian Variation (cs_PRJCOD LMBLGN) :

This is a minor variation to the traditional Two Standard Parallel version of the projection. This
variation will produce the results required by some Belgian coordinate systems:

prj_prm1l Latitude, in degrees, of the first standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard paralel, usually the
southernmost. Thisis, rarely, the same as prj_prml, to obtain a
conic with a single point of tangency.

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Wisconsin Variation (cs_PRJCOD WCCSL) :

This is a minor variation to the traditional Two Standard Parallel version of the projection. This
variation supports the Wisconsin County Coordinate System group of coordinate systems. This
variation uses a parallel ellipsoid technique to adjust horizontal coordinates for average elevation of the
region being mapped:

Chapter 4 Chatper 4 -- Library Functions 187

prj_prml Latitude, in degrees, of thefirst standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard paralels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard parallel, usually the
southernmost. Thisis, rarely, the same as prj_prml, to obtain a
conic with a single point of tangency.

prj_prm3 Average geoid separation, in meters, of the region being
mapped.

prj_prm4 Average elevation above the geoid (i.e. orthometric height), in
system units, of the region being mapped.

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Minnesota Variation (cs_PRJCOD MNDOTL) :

This is a minor variation to the traditional Two Standard Parallel version of the projection. This
variation supports the county coordinate systems developed by the Minnesota Department of
Transportation. This variation uses a parallel ellipsoid technique (different from that used in Wisconsin,
of course) to adjust horizontal coordinates for average elevation of the region being mapped:

prj_prm1l Latitude, in degrees, of the first standard parallel, usually the
northernmost. For this projection, there is no distinction
between the northern and southern standard parallels (i.e. they
can be switched with no affect).

prj_prm2 Latitude, in degrees, of the second standard paralel, usually the
southernmost. Thisis, rarely, the same as prj_prml, to obtain a
conic with asingle point of tangency.

prj_prm3 Average height above the élipsoid, in system units, of the region
being mapped.

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc

188

CS-MAP User's Guide User's Guide

function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Lmbrt_ Structure

The results of the one-time calculations are recorded in the Imbrt element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSimbrtF, CSimbrtl,
CSImbrtK, and CSImbrtC functions require as their first argument.

Lambert Tangential Projection (CSImtan)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Lambert
Tangential Projection as used by the National Geographic Institute of France. Please note that the
current implementation of this projection does not support the spherical form of the projection. With the
addition of the single standard parallel variation of the Lambert Conformal Conic, these functions are
now redundant; and will be removed in a future release.

CSImtanF Forward conversion

int CSImtanF (Const struct cs_Lmtan_ *Imtan,double xy [2],Const double 11
[2D;

Given a properly initialized cs_Lmtan__ structure via the Imtan argument, CS/mtanF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CS/mtanFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and c¢s_ CNVRT_RNG is returned.

CSImtanl Inverse conversion

int CSImtanl (Const struct cs_Lmtan_ *Imtan,double 1l [2],Const double xy
[2D;

Given a properly initialized cs_Lmtan__ structure via the Imtan argument, CS/mtan/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSimtan/ normally returns c¢s_CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSImtanK parallel scale (K)
double CSImtanK (Const struct cs Lmtan_ *Imtan,Const double 11 [2]);

CSimtanK returns the grid scale factor, along a parallel, of the coordinate system at the geodetic

Chapter 4 Chatper 4 -- Library Functions 189

location given by the Il argument. Formulas for this calculation have not been located, therefore the
result is obtained using the CS /lazdd function.

CSImtanH meridian scale (H)
double CSImtanH (Const struct cs Lmtan_ *Imtan,Const double 11 [2]);

CSImtanH returns the grid scale factor, along a meridian, of the coordinate system at the geodetic
location given by the Il argument. Formulas for this calculation have not been located, therefore the
result is obtained from the use of the CS /lazdd function.

CSImtanC Convergence angle
double CSImtanC (Const struct cs_Lmtan_ *Imtan,Const double 11 [2]);

CSImtancC returns the convergence angle in degrees east of north of the coordinate system at the
geodetic location given by the Il argument. Formulas for this calculation have not been located,
therefore the result is obtained using the CS /lazdd function.

CSImtanL Latitude/longitude check
int CSImtanL (Const struct cs_Lmtan_ *Imtan, int cnt,Const double pnts

[3D:;

CSImtanL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the Imtan argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CS/mtansL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSimtanL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSImtanQ definition Quality check
int CSImtanQ (Const struct cs_Csdef_ *csdef,iunsigned short prj_code,
int *err_list [],int list_sz);

CSImtan@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Lambert Tangential Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CS/imtanQ only examines those components specific to the Lambert Tangential
Projection. CS/mtan@returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CS/mtan@ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CSImtanX Xy coordinate check
int CSImtanX (Const struct cs_Lmtan_ *Imtan, int cnt,Const double pnts

[13D:;

CSImtanX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the Imtan argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CS/mtansXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CS/mtanL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate

190

CS-MAP User's Guide User's Guide

system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSImtanS Setup
void CSImtanS (struct cs Csprm_ *csprm);

The CSImtans function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, the scale reduction
factor, and other projection parameters are known, there are many calculations that need only be
performed once. CS/mtanS performs these calculations and saves the results in the cs_Csprm_
structure provided by its argument, csprm. Thus, the single argument provided to CS/mtanS serves as
the source for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef _ structure
that must be initialized for the Lambert Tangential projection are:

org_Ing The longitude, in degrees, of the origin of the projection relative
to Greenwich.

org_lat The latitude, in degrees, of the origin of the projection relative
to the equator.

scl_red The scale reduction factor that is to be applied to the projection.

scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. Thisvalueisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. This
valueisthe Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

Chapter 4 Chatper 4 -- Library Functions 191

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs_ Lmtan_ Structure

The results of the one-time calculations are recorded in the Imtan element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSimtanF, CSimtanl,
CSImtanK, CSIimtanH, and CSIimtanC functions require as their first argument.

Mercator Projection (CSmrcat)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Mercator
Projection. Since this projection is conformal, the K and H grid scales are the same and there is no H
function.

CSmrcatF Forward conversion

int CSmrcatF (Const struct cs_Mrcat_ *mrcat,double xy [2],Const double 11
[2D;

Given a properly initialized cs_Mrcat__ structure via the mrcat argument, CSmrcatF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSmrcatFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSmrcatl Inverse conversion
int CSmrcatl (Const struct cs_Mrcat_ *mrcat,double Il [2],Const double xy

[2D:;

Given a properly initialized ¢s Mrcat structure via the mrcat argument, CSmrcat/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSmrcat/ normally returns ¢s_CNVRT_NRML. It will return ¢s_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmrcatK scale (K) along a parallel
double CSmrcatK (Const struct cs_Mrcat_ *mrcat,Const double 11 [2]);

CSmrcatK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSmrcatC Convergence angle
double CSmrcatC (Const struct cs_Mrcat_ *mrcat,Const double 11 [2]);

192

CS-MAP User's Guide User's Guide

CSmrcatCreturns the value 0.0 which represents the convergence in degrees east of north of nay
coordinate system based on this projection at any latitude and longitude.

CSmrcatQ definition Quality check
int CSmrcatQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSmrcatQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Mercator Projection. CS_cschk examines those definition components that
are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSmrcatQ only examines those components specific to the Mercator Projection. CSmrcatQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerpt for a description of the various error codes and
their meaning. CSmrcat@ may be called with the NULL pointer and/or a zero for the err_list and
list_sz arguments respectively.

CSmrcatL Latitude/longitude check
int CSmrcatL (Const struct cs_Mrcat_ *mrcat, int cnt,Const double pnts

[13D:;

CSmrcatl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the mrcat argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmrcatsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmrcatl returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmrcatX Xy coordinate check
int CSmrcatX (Const struct cs_Mrcat_ *mrcat, int cnt,Const double pnts

[13D;

CSmrcatX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the mrcat argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSmrcatsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSmrcatl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmrcatS Setup
void CSmrcatS (struct cs_Csprm_ *csprm);

The CSmrrcatS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard parallel, the origin longitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSmrcatS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CSmrcatS serves as the source for input
and the repository for the results as described below.

Chapter 4 Chatper 4 -- Library Functions 193

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the ¢s_Csdef structure
which must be initialized for the Mercator Projection are:

prj_prm1l Longitude, in degrees, of the central meridian of the
coordinate system (or map).

prj_prm2 Latitude, in degrees, of the standard parallel, usually zero
indicating the equator. Using a non-zero value has an affect
similar to that of the scale reduction factor of other cylindrical
projections.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Mrcat_ Structure

The results of the one-time calculations are recorded in the mrcat element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSmircatF, CSmrcatl,

194

CS-MAP User's Guide User's Guide

CSmrcatK, and CSmrcatC functions require as their first argument.

Miller Projection (CSmillr)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Miller
Projection. This projection is only used in the spherical form. Thus, all functions assume a sphere with
a radius equal to the equatorial radius of the ellipsoid provided.

CSmillrF Forward conversion

int CSmillrF (Const struct cs _Millr_ *millr,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Mi Ll r_ structure via the millr argument, CSmil/rF~will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSmiflrFnormally returns ¢s_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSmillrl Inverse conversion

int CSmillrl (Const struct cs _Millr_ *millr,double 1l [2],Const double xy
[2D:

Given a properly initialized cs_Mi Il r__structure via the millr argument, CSmillrf will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSmiflr normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmillrK scale (K) along a parallel
double CSmillrK (Const struct cs Millr_ *millr,Const double 11 [2]);

cSmifllrK returns the grid scale factor, along a parallel, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the Il array.

CSmillrH scale (H) along a meridian
double CSmillrH (Const struct cs Millr_ *millr,Const double 11 [2]);

cSmiflrH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSmillrC Convergence angle
double CSmillrC (Const struct cs Millr_ *millr,Const double 11 [2]);

cSmiflrC returns the value 0.0 which represents the convergence angle in degrees east of north of any
coordinate system based on this projection at any latitude and longitude.

CSmillrL Latitude/longitude check
int CSmillrL (Const struct cs Millr_ *millr,int cnt,Const double pnts

[13D:;

cSmiflrl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the millr argument. The pnts and cnt arguments can define a single

Chapter 4 Chatper 4 -- Library Functions 195

coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmillrsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmilirL returns ¢s_CNVRT_OK if all subject coordinates are within the mathematical domain
the coordinate system. cs_ CNVRT_DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSmillrQ definition Quality check
int CSmillrQ (Const struct cs_Csdef_*csdef,unsigned short prj_code,
int *err_list [],int list_sz);

cSmifllrQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Miller Cylindrical Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSmillrQ only examines those components specific to the Miller Cylindrical
Projection. CSmillrQ returns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSmiflrQ may be called with the NULL pointer and/or a zero for
the err_list and list_sz arguments respectively.

CSmillrX Xy coordinate check
int CSmillrX (Const struct cs Millr_ *millr,int cnt,Const double pnts

[13D;

cSmiflrX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the millr argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSmillrsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSmillrL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmillrS Setup
void CSmillrS (struct cs Csprm_ *csprm);

The CSmillrS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations that need only be performed once. CSmillrS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CSmillrS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Miller Projection are:

196 CS-MAP User's Guide User's Guide

prj_prml Longitude, in degrees, of the central meridian of the coordinate
system (or map).
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad an integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e rad The radius of the earth, as a sphere, in meters.

cs Millr_Structure

The results of the one-time calculations are recorded in the mi 1 I'r element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmillrF, CSmillrl, CSmillrK;
CSmifllrH, and CSmillrC functions require as their first argument.

Modified Polyconic Projection (CSmodpc)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Modified
Polyconic Projection. That is, the projection developed by Lallemand of France and adopted by the
International Map Committee (IMC) in London as the basis for the 1:1,000,000 scale International Map
of the World (IMW) series in 1909.

CSmodpcF Forward conversion

int CSmodpcF (Const struct cs_Modpc_ *modpc,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Modpc__ structure via the modpc argument, CSmoajpcF will convert the
latitude and longitude provided in the a array to X and Y coordinates, returning the result in the xy
array. CSmodpcFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

Chapter 4 Chatper 4 -- Library Functions 197

CSmodpcl Inverse conversion

int CSmodpcl (Const struct cs_Modpc_ *modpc,double 1l [2],Const double xy
[2D;

Given a properly initialized cs_Modpc__ structure via the modpc argument, CSmodjpc/ will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSmodpc/ normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmodpcK grid scale (K), along parallel
double CSmodpcK (Const struct cs Modpc_ *modpc,Const double 11 [2]);

CSmodpcK returns the grid scale factor, as measured along a parallel, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. (The use of the
Il array is the same as described above.) At the current time, formulas that analytically produce the
grid scale factor for this projection elude us. Thus, the grid scale factor is determined using the

CS llazdd function.

CSmodpcH grid scale (H), along meridian
double CSmodpcH (Const struct cs Modpc_ *modpc,Const double 11 [2]);

CSmodlpcH returns the grid scale factor, as measured along a meridian, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. At the current
time, formulas that analytically produce the grid scale factor for this projection elude us. Thus, the grid
scale factor is determined using the CS_/lazdd function.

CSmodpcC Convergence angle
double CSmodpcC (Const struct cs_Modpc_ *modpc,Const double 11 [2]);

CSmodjpcC returns the convergence angle of the coordinate system at the specific geodetic location
defined by the latitude and longitude provided in the Il array. At the current time, formulas that
analytically produce the convergence angle for this projection elude us. Thus, the grid scale factor is
determined using the CS /lazdd function.

CSmodpcB Basic calculations

double CSmodpcB (Const struct cs_Modpc_ *modpc,Const double 11 [2],double
Xy [2],double *their_yc);

Inverse calculations for this projection are performed using an iterative algorithm calling the forward
function. CSmoadpcB converts geographic coordinates to cartesian coordinates in a form that can be
used by both CSmoapcFand CSmodpcl, thus eliminating duplicate code in these modules. The
their_yc argument provides for the return to the calling function of an additional intermediary result
that is required for the inverse calculation.

CSmodpcQ definition Quality check
int CSmodpcQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

198

CS-MAP User's Guide User's Guide

CSmodpcQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Modified Polyconic Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSmoajpcQ only examines those components specific to the Modified Polyconic
Projection. CSmoapc@ returns in err_list an integer code value for each error condition detected,
being careful not to exceed the size of err_list as indicated by the list_sz argument. The number of
errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description
of the various error codes and their meaning. CSmodpc@ may be called with the NULL pointer and/or a
zero for the err_list and list_sz arguments respectively.

CSmodpcL Latitude/longitude check

int CSmodpcL (Const struct cs_Modpc_ *modpc, int cnt,Const double pnts
[103D:

CSmodjpcl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the modpc argument. The pnts and cnt arguments can define a
single coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmodjpcsL's return
value will apply to all coordinates, coordinates on the great circles, and all coordinates within the
regions thus defined. CSmodjpcl returns cs_ CNVRT_OK if all subject coordinates are within the
mathematical domain the coordinate system. ¢s_ CNVRT_DOMN is returned if one or more of the
subject geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmodpcX Xy coordinate check

int CSmodpcX (Const struct cs_Modpc_ *modpc, int cnt,Const double pnts
[3D:

CSmodpcX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the modpc argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSmoapcsX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSmodlpcL
returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmodpcS Setup
void CSmodpcS (struct cs Csprm_ *csprm);

The CSmodpcS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the standard meridians, the standard parallels, and other
projection parameters are known, there are many calculations that need only be performed once.
CSmodjpcS performs these calculations and saves the results in the cs_Csprm__ structure provided by
its argument, csprm. Thus, the single argument provided to CSmoadpcS serves as the source for input
and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csde¥f _ structure
that must be initialized for the Modified Polyconic projection are:

Chapter 4 Chatper 4 -- Library Functions 199

prj_prml Longitude, in degrees, of the central meridian.

prj_prm2 Longitude, in degrees, of the Eastern meridian. The Western
meridian is assumed to be west of the Central Meridian by the
same amount that the Eastern Meridian is east of the Central
Meridian. The Eastern meridian must be east of the central
meridian, and not more than 15 degrees of longitude from the
central meridian.

prj_prm3 Latitude, in degrees, of the Northern Standard Parallel.
prj_prm4 Latitude, in degrees, of the Southern Standard Parallel.
scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Neither standard parallel may be a pole, nor can the two standard parallels be the same as is
supported in other projections. In addition, the Northern Standard Parallel must be the northernmost of
the two standard parallels. Finally, the two standard parallels must be within 15 degrees of each other.
Note that the projection was designed for maps whose extents are 6 degrees of longitude and 4
degrees of latitude.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

200

CS-MAP User's Guide User's Guide

cs Modpc_ Structure

The results of the one-time calculations are recorded in the modpc element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSmodpcF, CSmodpcl,
CSmodpcK, CSmoapcH, CSmodpcC, and CSmodpcB functions require as their first argument.

BUGS

As is true with all other projections in CS-MAP, values submitted for conversion are not checked for
validity before conversion for performance reasons. In every other case, this does not appear to be a
problem. However, experience has show that values which are more than 50% outside the area
covered by the projection parameters can produce errors which get reported through matherr.
Checking of input values does need to be added to the functions of this projection.

Mollweide Projection (CSmolwd)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Mollweide
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSmolwdF Forward conversion

int CSmolwdF (Const struct cs_Molwd_ *molwd,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Molwd__ structure via the molwd argument, CSmo/wdF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSmo/wdF normally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSmolwdl Inverse conversion

int CSmolwdl (Const struct cs_Molwd_ *molwd,double 1l [2],Const double xy
[2D:

Given a properly initialized cs_Molwd__ structure via the molwd argument, CSmo/wd/ will convert the
X and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSmolwd/ normally returns ¢s_CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmolwdK parallel scale (K)
double CSmolwdK (Const struct cs Molwd_ *molwd,Const double 11 [2]);

cSmolwadK returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSmolwdH meridian scale (H)
double CSmolwdH (Const struct cs Molwd_ *molwd,Const double 11 [2]);

Chapter 4 Chatper 4 -- Library Functions 201

CcSmolwdH returns the grid scale factor along a meridian at the geodetic location specified by the I
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSmolwdC Convergence angle
double CSmolwdC (Const struct cs Molwd_ *molwd,Const double 11 [2]);

CSmolwdC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CSmolwdQ definition Quality check
int CSmolwdQ (Const struct cs_Csdef_ *csdef,unsgined short prj_code,
int *err_list [],int list _sz);

CSmolwdQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Mollweide Projection. CS cschk examines those definition components
that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSmolwdQ only examines those components specific to the Mollweide Projection.
cSmolwd@Qreturns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the various
error codes and their meaning. CSmolwd@ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSmolwdL Latitude/longitude check
int CSmolwdL (Const struct cs Molwd_ *molwd, int cnt,Const double pnts

[13D;

cSmolwdl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the molwd argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmo/wdsL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmolwadl returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmolwdX Xy coordinate check
int CSmolwdX (Const struct cs_Molwd_ *molwd, int cnt,Const double pnts

[13D:;

CcSmolwdX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the molwd argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSmolwdsXs return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSmolwalL
returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmolwdsS Setup (general)
void CSmolwdS (struct cs Csprm_ *csprm);

202 CS-MAP User's Guide User's Guide

The CSmol/wdS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations that need only be performed once. CSmo/wdS performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm.

Thus, the argument provided to CSmo/wds serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The following parameters are used:

org_Ing The longitude, in degrees, of the origin of the projection
(central meridian).

prj_prml-24 The interrupted form of the Mollweide Projection isfully
supported. cs Csdef elements prj_prml thru prj_prm24 can
be used to specify the extents of the different zones. See

CS _zones for information on how to encode zones.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
elementis:

e rad The radius of the earth, as a sphere, in meters.

Chapter 4 Chatper 4 -- Library Functions 203

cs Molwd_ Structure

The results of the one-time calculations are recorded in the molwd element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmo/wdF, CSmolwdl,
CcSmolwak, CSmolwdH, and CSmo/wdC functions require as their first argument.

Modified Stereographic Projection (CSmstro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Modified
Stereographic Projection. Since the Modified Stereographic Projection is a conformal projection, the K
(grid scale along a parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H
function for this projection.

CSmstroF Forward

int CSmstroF (Const struct cs_Mstro_ *mstro,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Mstro__ structure via the mstro argument, CSmstroF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSmstroFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSmstrol Inverse

int CSmstrol (Const struct cs_Mstro_ *mstro,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Mstro__ structure via the mstro argument, CSmstro/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSmstro/ normally returns ¢s_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSmstroK scale (K)
double CSmstroK (Const struct cs Mstro_ *mstro,Const double 11 [2]);

CcSmstroK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSmstroC Convergence angle
double CSmstroC (Const struct cs _Mstro_ *mstro,Const double 11 [2]);

CSmstroCreturns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. Analytical
formulas to compute the convergence angle for this projection to not exist; CS_/lazddis used to
empirically calculate the convergence angle.

CSmstroQ definition Quality check
int CSmstroQ (Const struct cs_Csdef_ *csdef,unsgined short prj_code,
int *err_list [],int list _sz);

204 CS-MAP User's Guide User's Guide

CSmstroQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Modified Stereographic Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSmstroQ only examines those components specific to the Modified
Stereographic Projection. CSmstroQ returns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a
description of the various error codes and their meaning. CSmstroQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSmstroL Latitude/longitude check
int CSmstroL (Const struct cs _Mstro_ *mstro, int cnt,Const double pnts

[13D:;

CcSmstrol determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the mstro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSmstrosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSmstrol returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSmstroX Xy coordinate check
int CSmstroX (struct cs_Mstro_ *mstro, int cnt,Const double pnts []1[3]);

CSmstroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the mstro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSmstrosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSmstrol returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSmstroS Setup
void CSmstroS (struct cs Csprm_ *csprm);

The CSmstroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSmstroS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CSmstroS serves as the source for input
and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Modified Stereographic projection are:

Chapter 4 Chatper 4 -- Library Functions 205

prj_prml thru prj_prm24 | Use these elements to specify the power series coefficients. Odd
and even number pairs, e.g. prj_prml and prj_prm2, are used to
specify the real and imaginary components of the coefficients
respectively. All other prj_prm'sthat represent unused
coefficients must be set to zero. CSmstroS will determine the
order of the series by looking for zero coefficients. Thus, orders
as high as twelve are supported. Orders higher than twelve are

not supported.
org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
scl_red This element must be set to 1.0.
Scae The scale of the coordinate system. This one factor must include

the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to al Y coordinates.

quad Aninteger that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
¢cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.
eccent This value represents the eccentricity of the ellipsoid.
to84 via An integer code that specifies the technique that isto be

used to convert geographic coordinates based on this
datum to WGS84.

206

CS-MAP User's Guide User's Guide

cs Mstro_Structure

The results of the one-time calculations are recorded in the mstro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSmstroF, CSmstrol,
CSmstroK, and CSmstroC functions require as their first argument.

New Zealand National Grid System (CSnzlnd)

This set of functions represent the Coordinate System Mapping Package's knowledge of the New
Zealand National Grid System. Since this projection is a conformal projection, the K (grid scale along a
parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H function for this
projection.

CSnzIndF Forward

int CSnzIndF (Const struct cs _NzInd_ *nzlnd,double xy [2],Const double 11
[21:

Given a properly initialized cs_NzInd__ structure via the nzlnd argument, CSnz/ndF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSnzindFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSnzIndl Inverse

int CSnzIndl (Const struct cs_NzInd_ *nzlInd,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Nz Ind__ structure via the nzlnd argument, CSnz/nd/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSnzind/ normally returns ¢s_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSnzindK grid scale (K)
double CSnzIndK (Const struct cs NzInd_ *nzlnd,Const double 11 [2]);

CSnzindK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array. While analytical
formulas for the grid scale factor for this projection have been located, they have not yet been coded.
The grid scale factor returned by CSnzindK is determined empirically using CS /lazdd.

CSnzIndC Convergence angle
double CSnzIndC (Const struct cs _NzInd_ *nzlnd,Const double 11 [2]);

CSnzindC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array. While analytical
formulas for the convergence for this projection have been located, they have not yet been coded. The
convergence angle returned by CSnzindCis determined empirically using CS /llazdd.

CSnzIndQ definition Quality check
int CSnzIndQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

Chapter 4 Chatper 4 -- Library Functions 207

CSnzind@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the New Zealand National Grid System Projection. CS_cschk examines those
definition components that are common to all coordinates systems (datum or ellipsoid reference, map
scale, and units) and, therefore, CSnz/indQ only examines those components specific to the New
Zealand National Grid System Projection. CSnz/nd@ returns in err_list an integer code value for each
error condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerptfor a description of the various error codes and their meaning. CSnz/nd@ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

CSnzIndL Latitude/longitude check

int CSnzIndL (Const struct cs _NzInd_ *nzInd, int cnt,Const double pnts
[03D:

CcSnzindL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the nzlnd argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSnz/indslL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSnzindlL returns cs_CNVRT_OK if all subject coordinates are within the mathematicall
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSnzIndX Xy coordinate check
int CSnzIndX (Const struct cs_NzInd_ *nzInd, int cnt,Const double pnts

[13D:;

CSnzindX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the nzInd argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSnzindsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSnz/indl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSnzIndS Setup
void CSnzIndS (struct cs_Csprm_ *csprm);

The CSnzindS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CSnzindS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CSnz/indS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. Note that the coefficients of the complex power
series upon which this projection is based are hard coded into the CSnz/ndS module and cannot be
changed by the user. The specific elements of the cs_Csdef _ structure that must be initialized for the
New Zealand National Grid System are:

208 CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
scl_red This value must be set to 1.0.

scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units,
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usually
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs NzInd_ Structure

The results of the one-time calculations are recorded in the nzInd element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSnz/naF, CSnzindl,
CSnzindk, and CSnzindC functions require as their first argument.

Non-Earth Coordinate System (CSnerth)

This set of functions represent the Coordinate System Mapping Package's knowledge of Non-Earth
Coordinate Systems. A non-earth coordinate system is a MaplInfo invention (we believe). What this
consists of is a coordinate system which CS-MAP does very little with other than apply a translation
and, optionally, a units conversion. With the introduction of this coordinate system, the products of

Chapter 4 Chatper 4 -- Library Functions 209

several of our clients can now perform these rudimentary operations on a large variety of different data
formats with a minimal amount of extra code. Perhaps more importantly, with a minimal amount of
additional user interface. This is probably why Maplinfo invented these things.

Thus, this"projection™ is not really aprojection. It isyet another pseudo projection. In order for this
projection to function within the CS-MAP framework, there is a simple but necessary rule:

Y ou can only convert a non-earth coordinate system to another non-earth coordinate system.

This rule enables the "non-earth” business to co-exist with all the other stuff in CS-MAP without major
conflict. CS-MAP cannot enforce this explicitly. Y our application must enforce this.

To enforce thisruleimplicity, the intermediary coordinates which are generated by the Forward
function and which are accepted by the Inverse function are incredibly small numbers. So small, that
doing anything with these numbers other than passing them to another "non-earth" function will
produce obvioudly ridiculous results (i.e. all zeros).

CSnerthF - Forward Conversion

int CSnerthF (Const struct cs_Nerth_ *nerth,double xy [2],Const double
inter [2]);

Given a properly initialized cs_Berth_ structure via the nerth argument, CSnerthF will convert the
intermediary coordinates provided in the inter array to X and Y coordinates, returning the result in the
Xy array. CSnerthF always returns ¢s_ CNVRT_NRML.

The xy and inter arrays may be the same array. The X coordinate is carried in the first element in the
xy array, the Y coordinate in the second element. The intermediary coordinates are designed to be
very small numbers on the order of 1.0E-50 to make sure they are never confused with latitude and
longitude.

CSnerthl

int CSnerthl (Const struct cs_Millr_ *nerth,double inter [2],Const double
xy [2D);

Given a properly initialized cs_Nerth_ structure via the nerth argument, CSnerth/ will convert the X
and Y coordinates given in the xy array to intermediary coordinates and return the result in the inter
array. CSnerthl always returns cs_CNVRT_NRML.

The xy and inter arrays may be the same array. The X coordinate is carried in the first element of the
xy array, the Y coordinate. Intermediary coordinate are designed to be exceedingly small number so
that they will never be confused with longitude and latitude.

CSnerthK scale (K) along a parallel
double CSnerthK (Const struct cs_Nerth_ *nerth,Const double 11 [2]);

CSnerthKignores the Il argument and returns 1.0.
CSnerthC Convergence angle
double CSnerthC (Const struct cs Nerth_ *nerth,Const double 11 [2]);

CSnerthCignores the Il argument and returns zero.

CSnerthQ definition Quality check
int CSnerthQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

210

CS-MAP User's Guide User's Guide

int *err_list [],int list _sz);

CSnerthQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Non-Earth Coordinates Pseudo Projection. CS_cschk examines those
definition components that are common to all coordinates systems (datum or ellipsoid reference, map
scale, and units) and, therefore, CSnerthQ only examines those components specific to the Non-Earth
Coordinates Pseudo Projection. CSnerthQ returns in err_list an integer code value for each error
condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerptfor a description of the various error codes and their meaning. CSnerthQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

Currently, Non-Earth coordinate systems are required to be cartographically referenced as all
coordinate systems must be referenced to something and cartographiclly referencing a Non-Earth
system seems like a helpful way to make sure this pseudo projection is not used erroneously.
CSnerthQ only checks to see that the coordinate system is referenced to an ellipsoid.

CSnerthL

int CSnerthL (Const struct cs_Nerth_ *nerth,int cnt,Const double pnts
[13D:

By design, "nerth" coordinates are very small numbers, on the order of 1.0E-50. CSnerthl determines
if the intermediary coordinates, great circles, and/or regions defined by the coordinate list provided by
the pnts and cnt arguments are less than annother small (but not so small) number. If so, the
coordinates are considered to be within the domain of the "nerth" system.

The pnts and cnt arguments can define a single coordinate (cnt == 1), agreat circle (cnt == 2), or a
closed region (cnt > 3). CSnerthl's return value will apply to all coordinates, coordinates on the great
circles, and all coordinates within the regions thus defined. CSnerthL returns cs_ CNVRT_OK if all
subject coordinates are within the "domain”. ¢s_ CNVRT_DOMN isreturned if one or more of the
subject intermediary coordinates are outside of the "domain” of the coordinate system.

CSnerthX Xy coordinate check

int CSnerthX (Const struct cs_Nerth_ *nerth,int cnt,Const double pnts
[103D:

By design, "nerth" coordinates are very small numbers, on the order of 1.0E-50. It isthe nature of the
small numbers which enables CS-MAP to insure that "nerth" conversions are not mistakenly used by
other components of the system. CSnerthX, therefore, determinesif the coordinates, great circles,
and/or regions defined by the coordinate list provided by the pnts and cnt arguments are sufficiently
large so as not to be considered "nerth” intermediary coordinates and |less than alarge number
(1.0E+0Q7 at this writing) which represents a reasonable upper bound on "nerth" coordinates. If the
coordinates meet these two criteria, the coordinates are considered to be within the domain of the
"nerth" system.

The pnts and cnt arguments can define a single coordinate (cnt == 1), agreat circle (cnt == 2), or a
closed region (cnt > 3). CSnerthXsreturn value will apply to al coordinates, coordinates on the great
circles, and all coordinates within the regions thus defined. CSnerthX returns cs_CNVRT_OK if all
subject coordinates are within the "domain”. ¢s_ CNVRT_DOMN isreturned if one or more of the
subject cartesian coordinates are outside of the "domain" of the coordinate system.

CSnerthS Setup
void CSnerthS (struct cs_Csprm_ *csprm);

Chapter 4 Chatper 4 -- Library Functions 211

The CSnerthS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. For the Non-Earth pseudo projection, there is very little to do.
However, the factor which is used to make "nerth" intermediary coordinates very small is hard coded in
this function. CSnerthS saves the results in the cs_Csprm_ structure provided by its argument,
csprm. Thus, the argument provided to CSmo/wdS serves as the source for input and the repository
for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The following parameters are used:

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

While a datum definition reference is required to remain consistent with the remainder of the system
(i.e. itisincluded in the cs_Csprm_ structure), this pseudo projection ignores the contents of it.

cs Nerth_ Structure

The results of the one-time calculations are recorded in the nerth element of the prj_prms union of
the cs_Csprm_ structure. It isapointer to thisinitialized structure that the CSnerthF, CSnerthl,
CSnerthk, and CSnerthC functions require as their first argument.

Normal Aspect Authalic Cylindrical Projection (CSnacyl)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Normal
Aspect of the Equal Area (Authalic) Cylindrical projection.

CSnacylF Forward conversion

int CSnacylF (Const struct cs_Nacyl *nacyl,double xy [2],Const double 11
[2D;

212

CS-MAP User's Guide User's Guide

Given a properly initialized cs_Nacyl _ structure via the nacyl argument, CSnacy/F will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSnacylFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSnacyll Inverse conversion

int CSnacyll (Const struct cs_Nacyl *nacyl,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Nacyl_ structure via the nacyl argument, CSnacy/l will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSnacy/l normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system.

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSnacylK parallel scale (K)
double CSnacylK (Const struct cs Nacyl *nacyl,Const double 11 [2]);

CSnacylK returns the grid scale factor, along a parallel, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSnacylH meridian scale (H)
double CSnacylH (Const struct cs Nacyl *nacyl,Const double 11 [2]);

CSnacylH returns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array.

CSnacylC Convergence angle
double CSnacyIC (Const struct cs Nacyl *nacyl,Const double 11 [2]);

CSnacyl/C returns the value 0.0 which is the convergence angle in degrees east of north of any
coordinate system based on this projection at the latitude and longitude provided by the Il argument.

CSnacylQ definition Quality check
int CSnacylQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSnacylQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Normal Aspect of the Equal Area Cylindrical Projection. CS_cschk
examines those definition components which are common to all coordinates systems (datum or
ellipsoid reference, map scale, and units) and, therefore, CSnacy/Q only examines those components
specific to the Normal Aspect of the Equal Area Cylindrical Projection. CSnacy/Qreturns in err_list an
integer code value for each error condition detected, being careful not to exceed the size of err_list as
indicated by the list_sz argument. The number of errors detected, regardless of the size of err_list, is
always returned. Refer to CSerptfor a description of the various error codes and their meaning.
CSnacylQ may be called with the NULL pointer and/or a zero for the err_list and list_sz arguments
respectively.

CSnacylL Latitude/longitude check
int CSnacylL (Const struct cs_Nacyl “*nacyl,int cnt,Const double pnts

[13D:;

Chapter 4 Chatper 4 -- Library Functions 213

CSnacyll determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the nacyl argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSnacy/sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSnacyil returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSnacylX Xy coordinate check
int CSnacylX (Const struct cs Nacyl *nacyl,int cnt,Const double pnts

[13D;

CSnacylX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the nacyl argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (ent == 2), or a closed region (cnt > 3). CSnacy/sXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSnacyi/L returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSnacylS Setup
void CSnacylS (struct cs Csprm_ *csprm);

The CSnacylS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude, and other projection parameters are
known, there are many calculations which need only be performed once. CSnacyl/S performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CSnacyl/S serves as the source for input and the repository for
the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csdef_ structure
that must be initialized for the Normal Aspect of the Equidistant Cylindrical Projection are:

214

CS-MAP User's Guide User's Guide

org_Ing Longitude, in degrees, of the central meridian of the coordinate
system (or map).
prj_prml Latitude, in degrees, of the standard parallel, usually zero

indicating the equator. Using a non-zero value has an affect
similar to that of the scale reduction factor of other cylindrical
projections.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to al Y coordinates.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Nacyl_ Structure
The results of the one-time calculations are recorded in the nacyl element of the prj_prms union of

the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSnacylF, CSnacyll,
CSnacylK, and CSnacy/C functions require as their first argument.

Oblique Cylindrical Projection (CSswiss)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Oblique
Cylindrical Projection. Both spherical and ellipsoidal forms are supported. Since this projection is a

Chapter 4 Chatper 4 -- Library Functions 215

conformal projection, the K (grid scale along a parallel) and H (grid scale along a meridian) are the
same. Therefore, there is no H function for this projection.

A specialized version of this projection was originally developed. It needed to be generalized in order
to support coordinate systems in Hungary. However, the original name, CSswiss?, is retained in the
code.

CSswissF Forward conversion
int CSswissF (Const struct cs_Swiss_ *swiss,double xy [2],Const double 11

2D:

Given a properly initialized cs_Swiss__ structure via the swiss argument, CSswissFwill convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSswissFnormally returns cs_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSswissl Inverse conversion
int CSswissl (Const struct cs_Swiss_ *swiss,Il,Const double xy [2]);

Given a properly initialized cs_Swiss_ structure via the swiss argument, CSswiss/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSswiss/ normally returns cs_CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSswisskK parallel scale (K)
double CSswissK (Const struct cs Swiss_ *swiss,Const double 11 [2]);

CSswissK returns the grid scale factor along a parallel at the geodetic location specified by the Il
argument. Since the Swiss Oblique Cylindrical projection is conformal, the returned value is also valid
as the grid scale factor along a meridian.

CSswissC Convergence angle
double CSswissC (Const struct cs_Swiss_ *swiss,Const double 11 [2]);

CSswissC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS /lazdd function.

CSswissQ definition Quality check
int CSswissQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSswiss@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Swiss Oblique Cylindrical Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSswissQ only examines those components specific to the Swiss Oblique
Cylindrical Projection. CSswissQreturns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The

216

CS-MAP User's Guide User's Guide

number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a
description of the various error codes and their meaning. CSswissQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSswissL Latitude/longitude check
int CSswissL (Const struct cs_Swiss_ *swiss, int cnt,Const double pnts

[3D:;

CSswissL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the swiss argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSswisssL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSswissL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSswissX Xy coordinate check
int CSswissX (Const struct cs_Swiss_ *swiss, int cnt,Const double pnts

[13D:;

CSswissX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the swiss argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSswisssX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSswissL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSswissS Setup
void CSswissS (struct cs_Csprm_ *csprm);

The CSswissS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude and other projection
parameters are known, there are many calculations which need only be performed once. CSswissS
performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CSswissS serves as the source for input and
the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

Two variations of this projection are supported. The first variation described is the more general
variation, the second variation being a simple special case of the first. This may be considered
strange, but the simple special case was implemented first, and the more general case developed at a
later date.

The following elements of the cs_CsdeT _ structure that must be initialized for boith variations the
Obligue Cylindrical Projection are as follows:

Chapter 4 Chatper 4 -- Library Functions 217

The longitude of the origin of the projection, in degrees,
where positive indicates east longitude. Thisisthe longitude
of the central point of the projection. Thislongitude isalso
considered the X origin of the projection.

org_Ing

org_lat The latitude of the origin of the projection, in degrees, where
positive indicates north latitude. Thisisthe latitude of the
central point of the projection. Thislatitude is also
considered the Y origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system
units and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the projection origin specified by the org_Ing
parameter.

y_off The false northing to be applied to all Y coordinates, usually
selected to cause al Y coordinates within the coordinate
system to be positive values of reasonable size. ThisistheY
coordinate of the projection origin specified by the org_lat
parameter.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Oblique Cylindrical Projection, Generalized (cs_PRJCOD OBQCYL)
This variation represents the generalized version of the Oblique Cylindrical projection.

The following elements of the cs_Csdef structure are specific to this variation of the projection:

scl red The factor by which the cylindrical projection surface is shrunk
- into the gaussian sphere before the actual projection process
begins.
prj_prml The latitude at which the radius of the gaussian sphereis
calculated.

218 CS-MAP User's Guide User's Guide

Oblique Cylindrical Projection, Switzerland (cs_PRJCOD SWISS)

This variation represents the specialized version of the Oblique Cylindrical projection that was originally
implemented for use in Switzerland. There are no specific parameters required. The generalized
scale reduction parameter is hard coded to 1.0 for this variation, and the latitude at which the gaussian
sphere is calculated is hard coded to be equal to the origin latitude.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Swiss_Structure

The results of the one-time calculations are recorded in the swiss element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSswissF, CSswissl,
CSswissK, and CSswissC functions require as their first argument.

Oblique Stereographic Projection (CSostro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Oblique
Stereographic Projection. Several other forms of the St6ereographic projection are also supported.
The algorithms implemented in this projection are those commonly in use. They are different from
those presented by Snyder in Map Projections - A Working Manual.

CSostroF Forward conversion

int CSostroF (Const struct cs_Ostro_ *ostro,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Ostro__ structure via the ostro argument, CSostroF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSostroFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

The xy and Il arrays may be the same array. The X coordinate and the longitude are carried in the first
element in these arrays, the Y coordinate and the latitude in the second element. The latitude and
longitude values are in degrees where negative values are used to represent west longitude and south
latitude.

CSostrol Inverse conversion

int CSostrol (Const struct cs_Ostro_ *ostro,double 1l [2],Const double xy
[21:

Given a properly initialized cs_Ostro__ structure via the ostro argument, CSostro/ will convert the X

Chapter 4 Chatper 4 -- Library Functions 219

and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSostro/ normally returns ¢s_ CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

The xy and Il arrays may be the same array. The X coordinate and the longitude are carried in the first
element in these arrays, the Y coordinate and the latitude in the second element. The latitude and
longitude values are in degrees where negative values are used to represent west longitude and south
latitude.

CSostroK grid scale (K) normal to radial
double CSostroK (Const struct cs_Ostro_ *ostro,Const double 11 [2]);

CSostroK returns the grid scale factor normal to the radial at the geodetic location specified by the Il
argument. As the Oblique Stereographic projection is conformal, the H scale factor is the same as the
K scale factor. Therefore, there is no CSostroH function.

CSostroC Convergence angle
double CSostroC (Const struct cs Ostro_ *ostro,Const double 11 [2]);

CSostroC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_/lazdd function.

CSostroQ definition Quality check
int CSostroQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSostroQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Stereographic Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSostroQ only examines those components specific to the Oblique Stereographic
Projection. CSostroQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSostroQ may be called with the NULL pointer and/or a zero for
the err_list and list_sz arguments respectively.

CSostroL Latitude/longitude check
int CSostroL (Const struct cs_Ostro_ *ostro, int cnt,Const double pnts

[13D:;

CSostrol determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ostro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSostrosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSostrol returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSostroX Xy coordinate check
int CSostroX (Const struct cs_Ostro_ *ostro, int cnt,Const double pnts

[13D;

220

CS-MAP User's Guide User's Guide

CSostroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ostro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSostrosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSostrol returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSostroS Setup
void CSostroS (struct cs_Csprm_ *csprm);

The CSostroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSostroS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the first argument provided to CSostroS serves as the source
for input and the repository for the results as described below.

Coordinate System Definition
The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

The following parameters must be set:

Chapter 4 Chatper 4 -- Library Functions 221

org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
Scae The scale of the coordinate system. This one factor must include

the conversion from meters to coordinate system units, the scale
reduction factor, and the mapping scale that is to be applied.

scl_red The scale reduction factor, independent of all other scaling, is
obtained from this element and is necessary for correct
computation of the grid scale factor in some cases.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. Thisisthe X coordinate
of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisisthe
Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via Aninteger code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Ostro_ Structure

The results of the one-time calculations are recorded in the ostro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSostroF, CSostrol,
CSostroK, and CSostroC functions require as their first argument.

222

CS-MAP User's Guide User's Guide

Orthographic Projection (CSortho)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Orthographic Projection. This projection is supported in spherical form only. The equatorial radius of
the supplied ellipsoid is used as the radius of the sphere.

CSorthoF Forward conversion

int CSorthoF (Const struct cs_Ortho_ *ortho,double xy [2],Const double 11
[2D;

Given a properly initialized ¢s_Ortho structure via the ortho argument, CSorthoF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSorthoFnormally returns ¢cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSorthol Inverse conversion

int CSorthol (Const struct cs_Ortho_ *ortho,double 11 [2],Const double xy
[2D:

Given a properly initialized ¢s Ortho _ structure via the ortho argument, CSortho/ will convert the X and
Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSorthol/ normally returns ¢cs_CNVRT_NRML. It will return ¢s_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSorthoK grid scale (K) normal to radial
double CSorthoK (Const struct cs Ortho_ *ortho,Const double 11 [2]);

CSorthoK returns the value 1.0 which is the grid scale factor normal to the radial at the geodetic
location specified by the Il argument.

CSorthoH grid scale (H) along radial
double CSorthoH (Const struct cs Ortho_ *ortho,Const double 11 [2]);

CSorthoH returns the grid scale factor along a radial from the coordinate system origin to (and at) the
geodetic location specified by the Il argument.

CSorthoC Convergence angle
double CSorthoC (Const struct cs Ortho_ *ortho,Const double 11 [2]);

CSorthoCreturns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_azsphrfunction.

CSorthoQ definition Quality check
int CSorthoQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSorthoQ determines if the coordinate system definition provided by the csdef argument is consistent

Chapter 4 Chatper 4 -- Library Functions 223

with the requirements of the Orthographic Projection. CS cschk examines those definition components
which are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSorthoQ only examines those components specific to the Orthographic Projection.
CSorthoQreturns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the various
error codes and their meaning. CSorthoQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSortholL Latitude/longitude check

int CSorthoL (Const struct cs _Ortho_ *ortho, int cnt,Const double pnts
[103D:

CSorthol determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the ortho argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSorthosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSorthol returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSorthoX Xy coordinate check

int CSorthoX (Const struct cs _Ortho_ *ortho, int cnt,Const double pnts
[103D:

CSorthoX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the ortho argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSorthosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSorthol returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSorthoS Setup (general)
void CSorthoS (struct cs Csprm_ *csprm);

The CSorthoS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSorthoS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the argument provided to CSorthoS serves as the source for
input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The following parameters are used:

224 CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees, of the origin of the projection.
org_lat The latitude, in degrees, of the origin of the projection.
Scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to al Y coordinates. Thisisthe
Y coordinate of the coordinate system origin.

Quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that the
axes are to be swapped after the coordinates have been placed
in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
elementis:

e rad Theradius of the earth, as a sphere, in meters.

cs Ortho_ Structure

The results of the one-time calculations are recorded in the ortho element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSorthoF, CSorthol,
CSorthoK, CSorthoH, and CSorthoC functions require as their first argument.

Polar Stereographic Projection (CSpstro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Polar
Stereographic Projection. There exist several other forms of the Stereographic projection.

CSpstroF Forward conversion

int CSpstroF (Const struct cs_Pstro_ *pstro,double xy [2],Const double 11
[2D;

Given a properly initialized cs_Pstro__ structure via the pstro argument, CSpstroF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSpstroF normally returns cs_ CNVRT_NRML. If Il is not within the domain of the coordinate

Chapter 4 Chatper 4 -- Library Functions 225

system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSpstrol Inverse conversion

int CSpstrol (Const struct cs_Pstro_ *pstro,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Pstro__ structure via the pstro argument, CSpstrol will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cSpstrol/ normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSpstroK grid scale (K) normal to radial
double CSpstroK (Const struct cs Pstro_ *pstro,Const double 11 [2]);

CSpstroK returns the grid scale factor normal to the radial at the geodetic location specified by the Il
argument. As the Polar Stereographic projection is conformal, the H scale factor is the same as the K
scale factor. Therefore, there is no CSpstroH function.

CSpstroC Convergence angle
double CSpstroC (Const struct cs Pstro_ *pstro,Const double 11 [2]);

CSpstroCreturns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_/lazdd function.

CSpstroQ definition Quality check
int CSpstroQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSpstro@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Polar Stereographic Projection. CS cschk examines those definition
components which are common to all coordinates systems (datum or ellipsoid reference, map scale,
and units) and, therefore, CSpstroQ only examines those components specific to the Polar
Stereographic Projection. CSpstroQreturns in err_list an integer code value for each error condition
detected, being careful not to exceed the size of err_list as indicated by the list_sz argument. The
number of errors detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a
description of the various error codes and their meaning. CSpstroQ may be called with the NULL
pointer and/or a zero for the err_list and list_sz arguments respectively.

CSpstroL Latitude/longitude check
int CSpstroL (Const struct cs_Pstro_ *pstro, int cnt,Const double pnts

[13D;

CSpstrol determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the pstro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSpstrosL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSpstrol returns c¢s_CNVRT_OK if all subject coordinates are within the mathematical

226

CS-MAP User's Guide User's Guide

domain the coordinate system. ¢s CNVRT _DOMN is returned if one or more of the subject geographic
coordinates are outside of the mathematical domain of the coordinate system.

CSpstroX Xy coordinate check
int CSpstroX (Const struct cs_Pstro_ *pstro, int cnt,Const double pnts

[13D:;

CSpstroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the pstro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSpstrosX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSpstrol returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSpstroS Setup
void CSpstroS (struct cs Csprm_ *csprm);

The CSpstroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSpstroS performs these calculations and saves the results in the cs_Csprm_ structure
provided by its argument, csprm. Thus, the first argument provided to CSpstroS serves as the source
for input and the repository for the results as described below.

Coordinate System Definition
The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

The following parameters must be set:

Chapter 4 Chatper 4 -- Library Functions 227

org_Ing The longitude, in degrees, of the origin of the projection.

org_lat The latitude, in degrees, of the origin of the projection. Must
be either 90 degrees north (i.e. positive), or 90 degrees south
(negative).

Scale The scale of the coordinate system. This one factor must

include the conversion from meters to coordinate system units,
the scale reduction factor, and the mapping scale that is to be

applied.

scl_red The scale reduction factor, independent of all other scaling, is
obtained from this element and is necessary for correct
computation of the grid scale factor in some cases.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
¢cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via Aninteger code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Pstro_Structure

The results of the one-time calculations are recorded in the pstro element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSpstroF, CSpstrol,

228

CS-MAP User's Guide User's Guide

CSpstroK, and CSpstroC functions require as their first argument.

Robinson Projection (CSrobin)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Robinson
Projection. This projection is supported in spherical form only. The equatorial radius of the supplied
ellipsoid is used as the radius of the sphere.

CSrobinF Forward conversion

int CSrobinF (Const struct cs_Robin_ *robin,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Robin_ structure via the robin argument, CSrobinF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSrobinFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSrobinl Inverse conversion

int CSrobinl (Const struct cs_Robin_ *robin,double 1l [2],Const double xy
[2D:

Given a properly initialized cs_Robin_ structure via the robin argument, CSrobin/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSrobin/ normally returns cs_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSrobinK grid scale (K) normal to radial
double CSrobinK (Const struct cs_Robin_ *robin,Const double 11 [2]);

CSrobinK returns the grid scale factor along a parallel of any coordinate system based on this
projection at any location. Analytical formulas for this value have not been located and the result is
arrived at empirically the use of spherical trigonometry.

CSrobinH grid scale (H) along radial
double CSrobinH (Const struct cs Robin_ *robin,Const double 11 [2]);

CSrobinH returns the grid scale factor along a meridian at the geodetic location specified by the Il
argument. Analytical formulas for this value have not been located and the result is arrived at
empirically the use of spherical trigonometry.

CSrobinC Convergence angle
double CSrobinC (Const struct cs_Robin_ *robin,Const double 11 [2]);

CSrobinC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CSrobinQ definition Quality check
int CSrobinQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,

Chapter 4 Chatper 4 -- Library Functions 229

int *err_list [],int list _sz);

CSrobinQ determines if the coordinate system definition provided by the csdef argument is
consistent with the requirements of the Robinson Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSrobinQ only examines those components specific to the Robinson Projection.
CSrobinQreturns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the various
error codes and their meaning. CSrobin@ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSrobinL Latitude/longitude check
int CSrobinL (Const struct cs_Robin_ *robin,int cnt,Const double pnts

[13D:;

CSrobinl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the robin argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSrobinsl's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSrobinL returns ¢s_CNVRT_OK if all subject coordinates are within the mathematicall
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates is outside of the mathematical domain of the coordinate system.

CSrobinX Xy coordinate check
int CSrobinX (Const struct cs_Robin_ *robin,int cnt,Const double pnts

[13D:;

CSrobinX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the robin argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSrobinsX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSrobinL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s CNVRT _DOMNis returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSrobinS Setup (general)
void CSrobinS (struct cs_Csprm_ *csprm);

The CSrobinS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin longitude and other projection parameters are
known, there are many calculations that need only be performed once. CSrobinS performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm.
Thus, the argument provided to CSrobinS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The following parameters are used:

230

CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
elementis:

e rad Theradius of the earth, as a sphere, in meters.

¢s Robin_ Structure

The results of the one-time calculations are recorded in the robin element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSrobinF, CSrobinl,
CSrobinK, CSrobinH, and CSrobinC functions require as their first argument.

Sinusoidal Projection (CSsinus)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Sinusoidal
Projection. Both spherical and ellipsoidal forms are supported.

CSsinusF Forward conversion
int CSsinuskF (Const struct cs_Sinus_ *sinus,double xy [2],Const double 11

2D:;

Given a properly initialized cs_Sinus__ structure via the sinus argument, CSsinusF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSsinusFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

Chapter 4 Chatper 4 -- Library Functions 231

CSsinusl Inverse conversion
int CSsinusl (Const struct cs_Sinus_ *sinus,ll,Const double xy [2]);

Given a properly initialized cs_Sinus__ structure via the sinus argument, CSsinus/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSsinus/ normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSsinusK parallel scale (K)
double CSsinusk (Const struct cs_Sinus_ *sinus,Const double 11 [2]);

CSsinusK returns the grid scale factor along a parallel at the geodetic location specified by the |l
argument. For the Sinusoidal Projection, this value is always 1.0.

CSsinusH meridian scale (H)
double CSsinusH (Const struct cs _Sinus_ *sinus,Const double 11 [2]);

CSsinusH returns the grid scale factor along a meridian at the geodetic location specified by the Il
argument. For the sphere, specific formulas are used to compute this value. For the ellipsoid, specific
formulas could not be located and the result is arrived at using the CS_/lazdd function.

CSsinusC Convergence angle
double CSsinusC (Const struct cs_Sinus_ *sinus,Const double 11 [2]);

CSsinusC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS /lazdd function.

CSsinusQ definition Quality check
int CSsinusQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CSsinus@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Sinusoidal Projection. CS_cschk examines those definition components
that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSsinusQ only examines those components specific to the Sinusoidal Projection. CSsinusQ
returns in err_list an integer code value for each error condition detected, being careful not to exceed
the size of err_list as indicated by the list_sz argument. The number of errors detected, regardless of
the size of err_list, is always returned. Refer to CSerptfor a description of the various error codes and
their meaning. CSsinus@ may be called with the NULL pointer and/or a zero for the err_list and list_sz
arguments respectively.

CSsinusL Latitude/longitude check
int CSsinusL (Const struct cs_Sinus_ *sinus, int cnt,Const double pnts

[13D:;

CSsinusL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the

232

CS-MAP User's Guide User's Guide

coordinate system provided by the sinus argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSsinussL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSsinusL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSsinusX Xy coordinate check
int CSsinusX (Const struct cs_Sinus_ *sinus, int cnt,Const double pnts

[13D;

CSsinusX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the sinus argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSsinussX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSs/inusL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSsinussS Setup
void CSsinusS (struct cs_Csprm_ *csprm);

The CSsinusS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations which need only be performed once. CSsinusS performs these
calculations and saves the results in the cs_Csprm_ structure provided by its argument, csprm.
Thus, the single argument provided to CSsinusS serves as the source for input and the repository for
the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

The specific elements of the cs_Csdef _ structure that must be initialized for the Sinusoidal Projection
are as follows:

Chapter 4 Chatper 4 -- Library Functions 233

org_Ing The longitude of the central meridian of the projection, in
degrees, where positive indicates east longitude. Itisthisline
of longitude that is straight and true to scale. Thislongitudeis
also considered the X origin of the projection. The Y origin of
the projection is always the equator.

prj_prml-24 These 24 doubles can be used in groups of three to specify the
zones of an interrupted Sinusoidal projection. See
CS_zones(4CS) for more information on how to encode a
specific zone or zones. Leave all values set to zero for a
standard single zone projection based on the origin longitude
specified in the org_Ing element.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units,
the scale reduction factor, and the mapping scale that is to be

applied.

x_off The false easting to be applied to all X coordinates, usually
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.
eccent This value represents the eccentricity of the ellipsoid.
to84 via An integer code that specifies the technique that isto be

used to convert geographic coordinates based on this
datum to WGS84.

234 CS-MAP User's Guide User's Guide

cs Sinus_Structure

The results of the one-time calculations are recorded in the sinus element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSsinusF, CSsinusl,
CSsinusK, CSsinusH, and CSsinusC functions require as their first argument. Note that the cs_Sinus__
structure includes an array of eight cs_Zone__ structures in order to support an interrupted sinusoidal
projection with up to eight zones.

Oblique Stereographic ala Snyder (CSsstro)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Oblique
Stereographic Projection. Several other forms of the Stereographic projection are also supported. The
algorithms implemented in this specific projection are those presented by John Parr Snyder in Map
Projections - A Working Manual. These fomulations are not widely used, and certainly not those used
in the maritime provinces of Canada, the Netherlands, amd Romania.

CSsstroF Forward conversion

int CSsstroF (Const struct cs_Sstro_ *sstro,double xy [2],Const double 11
[2D:

Given a properly initialized cs_Sstro__ structure via the sstro argument, CSsstroF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSsstroFnormally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_CNVRT_RNG is returned.

CSsstrol Inverse conversion

int CSsstrol (Const struct cs_Sstro_ *sstro,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Sstro__ structure via the sstro argument, CSsstro/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSsstrol normally returns cs_CNVRT_NRML. It will return ¢cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CSsstroK grid scale (K) normal to radial
double CSsstroK (Const struct cs_Sstro_ *sstro,Const double 11 [2]);

CSsstroK returns the grid scale factor normal to the radial at the geodetic location specified by the Il
argument. As Snyder's development of the Oblique Stereographic projection is conformal, the H scale
factor is the same as the K scale factor. Therefore, there is no CSsstroH function.

CSsstroC Convergence angle
double CSsstroC (Const struct cs_Sstro_ *sstro,Const double 11 [2]);

CSsstroCreturns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
using the CS_/lazdd function.

Chapter 4 Chatper 4 -- Library Functions 235

CSsstroQ definition Quality check
int CSsstroQ (Const struct cs_Csdef *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSsstero@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Stereographic Projection. CS cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSsstroQ only examines those components specific to Snyder's development of
the Oblique Stereographic Projection. CSsstroQreturns in err_list an integer code value for each error
condition detected, being careful not to exceed the size of err_list as indicated by the list_sz
argument. The number of errors detected, regardless of the size of err_list, is always returned. Refer
to CSerptfor a description of the various error codes and their meaning. CSsstroQ may be called with
the NULL pointer and/or a zero for the err_list and list_sz arguments respectively.

CSsstroL Latitude/longitude check
int CSsstroL (Const struct cs_Sstro_ *sstro, int cnt,Const double pnts

[13D;

CSssterol determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the sstro argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSssterosl's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSssterol returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSsstroX Xy coordinate check
int CSsstroX (Const struct cs_Sstro_ *sstro, int cnt,Const double pnts

[13D:;

CSssteroX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the sstro argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSssterosX's return value will apply to all
coordinates, coordinates on the lines, and all coordinates within the regions thus defined. CSssterol
returns ¢s_ CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSsstroS Setup
void CSsstroS (struct cs_Csprm_ *csprm);

The CSssteroS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the origin latitude and longitude, scale reduction, and
other projection parameters are known, there are many calculations which need only be performed
once. CSssteroS performs these calculations and saves the results in the cs_Csprm__ structure
provided by its argument, csprm. Thus, the first argument provided to CSssteroS serves as the source
for input and the repository for the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;

236

CS-MAP User's Guide User's Guide

but can be provided by the application at run time.

The following parameters must be set:

prj_prml

The azimuth, in degrees east of north, of the positive Y -axis
of the coordinate system.

org_Ing

The longitude, in degrees, of the origin of the projection.

org_lat

The latitude, in degrees, of the origin of the projection.

scale

The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system
units, the scale reduction factor, and the mapping scale that
isto be applied.

scl_red

The scale reduction factor, independent of all other scaling,
is obtained from this element and is necessary for correct
computation of the grid scale factor in some cases.

x_off

The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size. Thisisthe X
coordinate of the coordinate system origin.

y_off

The false northing to be applied to all Y coordinates. Thisis
the Y coordinate of the coordinate system origin.

quad

An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
¢cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.
eccent This value represents the eccentricity of the ellipsoid.
to84 via An integer code that specifies the technique that isto be

used to convert geographic coordinates based on this
datum to WGS84.

Chapter 4 Chatper 4 -- Library Functions 237

cs Sstro_ Structure

The results of the one-time calculations are recorded in the sstro element of the prj_prms union of
the cs_Csprm_ structure. Itis a pointer to this initialized structure that the CSssterof, CSssterol,
CSssteroK, and CSssteroC functions require as their first argument.

Transverse Authalic Cylindrical Projection (CStacyl)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Transverse Aspect of the Equal Area (Authalic) Cylindrical projection.

CStacylF Forward conversion

int CStacylF (Const struct cs_Tacyl *tacyl,double xy [2],Const double 11
[21:

Given a properly initialized cs_Tacyl__ structure via the tacyl argument, CStacy/Fwill convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CStacy/Fnormally returns cs_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CStacyll Inverse conversion

int CStacyll (Const struct cs_Tacyl *tacyl,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Tacyl__ structure via the tacyl argument, CStacy/l will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CStacy/l normally returns ¢s_ CNVRT_NRML. It will return cs_CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CStacylK parallel scale (K)
double CStacylK (Const struct cs Tacyl *tacyl,Const double 11 [2]);

CStacylK returns the grid scale factor, along a parallel, of the coordinate system at the specific geodetic
location defined by the latitude and longitude provided in the Il array. As analytical formulas for this
value had not been located as yet, this value is arrived at empirically using CS_/lazdd.

CStacylH meridian scale (K)
double CStacylH (Const struct cs Tacyl *tacyl,Const double 11 [2]);

CStacylHreturns the grid scale factor, along a meridian, of the coordinate system at the specific
geodetic location defined by the latitude and longitude provided in the Il array. As analytical formulas
for this value had not been located as yet, this value is arrived at empirically using CS /llazdd.

CStacylC Convergence angle
double CStacyIlC (Const struct cs Tacyl_ *tacyl,Const double 11 [2]);

CStacyl/C returns the convergence angle in degrees east of north of any coordinate system based on
this projection at the latitude and longitude provided by the Il argument. As analytical formulas for this

238

CS-MAP User's Guide User's Guide

value had not yet been located, this value is arrived at empirically using CS /llazdd.

CStacylQ definition Quality check
int CStacylQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CStacylQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Transverse Aspect of the Equal Area Cylindrical Projection. CS_cschk
examines those definition components that are common to all coordinates systems (datum or ellipsoid
reference, map scale, and units) and, therefore, CStacy/Q only examines those components specific to
the Transverse Aspect of the Equal Area Cylindrical Projection. CStacy/Qreturns in err_list an integer
code value for each error condition detected, being careful not to exceed the size of err_list as
indicated by the list_sz argument. The number of errors detected, regardless of the size of err_list, is
always returned. Refer to CSerptfor a description of the various error codes and their meaning.
CStacylQ may be called with the NULL pointer and/or a zero for the err_list and list_sz arguments
respectively.

CStacylL Latitude/longitude check

int CStacylL (Const struct cs_Tacyl *tacyl,int cnt,Const double pnts
[3D:

CStacyll determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the tacyl argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CStacyl/sL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CStacyiL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CStacylIX Xy coordinate check

int CStacylX (Const struct cs_Tacyl *tacyl,int cnt,Const double pnts
[13D:;

CStacylX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the tacyl argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CStacyl/sx's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CStacyiL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CStacylS Setup
void CStacylS (struct cs Csprm_ *csprm);

The CStacy/S function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations that need only be performed once. CStacy/S performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm.
Thus, the single argument provided to CStacy/S serves as the source for input and the repository for
the results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_

Chapter 4 Chatper 4 -- Library Functions 239

structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The specific elements of the cs_Csde¥f _ structure
that must be initialized for the Transverse Aspect of the Equal Area Cylindrical Projection are:

org_Ing Longitude, in degrees, of the central meridian of the coordinate
system (or map).

org_lat Latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. Thisisalso referred to asthe

scale of the central meridian.

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS_dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Tacyl Structure

The results of the one-time calculations are recorded in the tacyl element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CStacy/F, CStacyll,
CStacylK, CStacylH, and CStacy/C functions require as their first argument.

240

CS-MAP User's Guide User's Guide

Transverse Mercator, ala Snyder, Projection (CStrmrs)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Transverse Mercator Projection as formulated by John P. Snyder and published in Map Projections - A
Working Manual. Since the Transverse Mercator projection is a conformal projection, the K (grid scale
along a parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H function
for this projection. The standard Transverse Mercator provided elsewhere is a superior formulation,
but certain clients are comforted by obtaining the exact results they are used to. Thus, this projection
is provided largely for historical purposes.

CStrmrsF Forward
int CStrmrskF (Const struct cs_Trmrs_ *trmrs,double xy [2],Const double 11

[2D:;

Given a properly initialized cs_Trmrs__ structure via the trmrs argument, CStrmrsF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CStrmrsFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CStrmrsl Inverse
int CStrmrsl (Const struct cs_Trmrs_ *trmrs,double Il [2],Const double xy

[2D:;

Given a properly initialized cs_Trmrs__ structure via the trmrs argument, CStrmrs/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cStrmrs/ normally returns ¢s_CNVRT_NRML. It will return c¢s_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CStrmrsK parallel scale (K)
double CStrmrskKk (Const struct cs_Trmrs_ *trmrs,Const double 11 [2]);

CStrmrsK returns the grid scale factor of the coordinate system at the specific geographic location
defined by the latitude and longitude provided in the Il array.

CStrmrsC Convergence angle
double CStrmrsC (Const struct cs_Trmrs_ *trmrs,Const double 11 [2]);

CStrmrsCreturns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array.

CStrmrsQ definition Quality check
int CStrmrsQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CStrmrs@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Transverse Mercator Projection. CS _cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CStrmrsQ only examines those components specific to the Transverse Mercator

Chapter 4 Chatper 4 -- Library Functions 241

Projection. CStrmrsQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerpt for a description of the
various error codes and their meaning. CStrmrs@ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

CStrmrsL Latitude/longitude check
int CStrmrsL (Const struct cs_Trmrs_ *trmrs, int cnt,Const double pnts

[13D:;

CStrmrsL determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the trmrs argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CStrmrssL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CStrmrsL returns ¢s_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CStrmrsX Xy coordinate check
int CStrmrsX (Const struct cs_Trmrs_ *trmrs, int cnt,Const double pnts

[13D:;

CStrmrsX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the trmrs argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CStrmrssXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CStrmrsL returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CStrmrsS Snyder, Setup
void CStrmrsS (struct cs Csprm_ *csprm);

The CStrmrsS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CStrmrsS performs these calculations and saves the results in the cs_Csprm_ structure provided by its
argument, csprm. Thus, the single argument provided to CStrmrsS serves as the source for input and
the repository for the results as described below. The prj_code element of this structure is ignored.

Coordinate System Definition
The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time.

The following parameters must be set:

242 CS-MAP User's Guide User's Guide

prj_prml Longitude, in degrees, of the central meridian.
org_lat The latitude, in degrees, of the origin of the projection.
scl_red The scale reduction to be applied. Thisisaso referred to as

the scale of the central meridian.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system units
and the mapping scale that is to be applied.

quad An integer that indicates the cartesian quadrant of the
coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dtloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 via Aninteger code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Trmrs_Structure

The results of the one-time calculations are recorded in the trmrs element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CStrmrsF, CStrmrsl,
CStrmrsK, and CStrmrsC functions require as their first argument.

Transverse Mercator Projection (CStrmer)

This set of functions represent the Coordinate System Mapping Package's knowledge of the
Transverse Mercator Projection. The algorithms used have also been referred to as the Gauss-Kruger
projection. Since the Transverse Mercator projection is a conformal projection, the K (grid scale along

Chapter 4 Chatper 4 -- Library Functions 243

a parallel) and H (grid scale along a meridian) are the same. Therefore, there is no H function for this
projection. Five variations of this projection are supported. The prj_code element of the cs_Csprm_
structure defines which of the eight variations is to be developed.

CStrmerF Forward
int CStrmerF (Const struct cs_Trmer_ *trmer,double xy [2],Const double 11

[2D:;

Given a properly initialized cs_Trmer__ structure via the trmer argument, CStrmer/ will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CStrmerF normally returns cs_CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CStrmerl Inverse
int CStrmerl (Const struct cs_Trmer_ *trmer,double 1l [2],Const double xy

[2D:;

Given a properly initialized cs_Trmer _ structure via the trmer argument, CStrmer/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
cStrmer/ normally returns ¢s_CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are the first elements in these arrays, the Y coordinate and the latitude are the second element. The
latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

CStrmerK parallel scale (K)
double CStrmerK (Const struct cs Trmer_ *trmer,Const double 11 [2]);

CStrmerK returns the grid scale factor of the coordinate system at the specific geographic location
defined by the latitude and longitude provided in the Il array.

CStrmerC Convergence angle
double CStrmerC (Const struct cs Trmer_ *trmer,Const double 11 [2]);

CStrmercC returns the convergence angle, in degrees east of north, of the coordinate system at the
specific geodetic location defined by the latitude and longitude provided in the Il array.

CStrmerQ definition Quality check
int CStrmerQ (Const struct cs_Csdef_*csdef,unsigned short prj_code,
int *err_list [],int list _sz);

CStrmerQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Transverse Mercator Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CStrmerQ only examines those components specific to the Transverse Mercator
Projection. CStrmerQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CStrmerQ may be called with the NULL pointer and/or a zero
for the err_list and list_sz arguments respectively.

244

CS-MAP User's Guide User's Guide

CStrmerL Latitude/longitude check
int CStrmerL (Const struct cs_Trmer_ *trmer,int cnt,Const double pnts

[13D:;

CStrmerl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the trmer argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CStrmerslL's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CStrmerl returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CStrmerX Xy coordinate check
int CStrmerX (Const struct cs_Trmer_ *trmer, int cnt,Const double pnts

[13D:;

CStrmerX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system
provided by the trmer argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CStrmersX's return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CStrmerl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CStrmerS Setup
void CStrmerS (struct cs_Csprm_ *csprm);

The CStrmerS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian, the origin latitude, and other
projection parameters are known, there are many calculations that need only be performed once.
CStrmerS performs these calculations and saves the results in the cs_Csprm_ structure provided by
its argument, csprm. Thus, the single argument provided to CStrmerS serves as the source for input
and the repository for the results as described below. The prj_code element of this structure defines
which of the eight variations is to be setup.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdeffunction;
but can be provided by the application at run time. The use of elements in the cs_Csdef _ structure is
dependent on the specific variation.

The following elements of the cs_CsdeT __ structure are used for all eight variations:

Chapter 4 Chatper 4 -- Library Functions

245

scale The scale of the coordinate system. This one factor must
include the conversion from meters to coordinate system
units and the mapping scale that is to be applied.

quad An integer that indicates the cartesian quadrant of the

coordinate system, 1 thru 4. A negative value indicates that
the axes are to be swapped after the coordinates have been
placed in the indicated quadrant.

Transverse Mercator, aka Gauss Kruger (cs_PRJCOD TRMER)

This variation is the standard development of the Transverse Mercator projection as used throughout

the world.

prj_prm1l Longitude, in degrees, of the central meridian.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. Thisisalso referred to as
the scale of the central meridian.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause al X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to al Y coordinates.

Universal Transverse Mercator (cs_ PRJCOD UTM)

This variation implements the same algorithms as the standard Transverse Mercator described above.
However, the definition parameters are expressly tailored for the definition of zones of the Universal
Transverse Mercator system of coordinate systems.

prj_prml UTM zone number. Note this must be an integer value between
1 and 60, even though it is carried in a variable of the double
type.

prj_prm2 The hemisphere of the zone. Use a positive one for northern

hemisphere, a negative one for the southern hemisphere.

South Oriented Transverse Mercator (cs_ PRJCOD SOTRM)

This variation of the standard development of the Transverse Mercator projection produces results
required by, for example, coordinate systems used in South Africa.

246 CS-MAP User's Guide User's Guide

prj_prml Longitude, in degrees, of the central meridian.
org_lat The latitude, in degrees, of the origin of the projection.
scl_red The scale reduction to be applied. Thisisaso referred to as

the scale of the central meridian.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate
system to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Wisconsin Variation (cs_PRJCOD WCCST)

This is a minor variation of the traditional version of the projection. This variation supports the
Wisconsin County Coordinate System group of coordinate systems. This variation uses a parallel
ellipsoid technique to adjust horizontal coordinates for average elevation of the region being mapped.

prj_prml Longitude, in degrees, of the central meridian.

prj_prm2 Average geoid separation, in meters, of the region being
mapped.

prj_prm3 Average elevation above the geoid (i.e. orthometric height), in
system units, of the region being mapped.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. Thisisaso referred to asthe

scale of the central meridian.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Minnesota Variation (cs_PRJCOD MNDOT) :

This is a minor variation of the traditional version of the projection. This variation supports the county
coordinate systems developed by the Minnesota Department of Transportation. This variation uses a
parallel ellipsoid technique (different from that used in Wisconsin, or course) to adjust horizontal
coordinates for average elevation of the region being mapped.

It should be noted that the original MNDOT implementation of this coordinate system applied the scale
reduction factor in a non-standard way. Thus, using the standard Tranverse Mercator algorithms, even
with the elevated ellipsoid, failed to produce the same coordinate values as the MNDOT

Chapter 4 Chatper 4 -- Library Functions 247

implementation. To overcome this issue, many vendors jiggle the false orign of the coordinate systems
for each county, and theref ore produce a close approximation. The CS-MAP implementation uses the
exact same algorithm as the MNDOT implementation, and thus can use the published flase origin
values and produce the precise values as the MNDOT version.

As a result, the definitions in the CS-MAP dictionary will vary from those in the dictionaries of other
vendors. However, the results produced by CS-MAP, using the official published definitions, match the
MNDOT implementation at the millimeter level.

prj_prm1l Longitude, in degrees, of the central meridian.

prj_prm2 Average elevation above the ellipsoid, in system units, of the
region being mapped.

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. Thisisalso referred to asthe

scale of the central meridian.

X_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size.

y_off The false northing to be applied to all Y coordinates.

Transverse Mercator (Gauss/Kruger) with Affine Post Process
(cs_PRJCOD TRMERAF)

This is variation of the traditional Transverse Mercatoor has been implemented to support the Swedish
Land Survey system. It essentially adds an Affine Transformation post-process to the projection. The
affine post-process is applied as the last item in the calculation, even after the application of the false
origin. The form of the affine transformation is as follows:

A0 + oldX * A1 + oldY * A2
BO + oldX * B1 + oldY * B2

newX
newY

The following parameters are used by this variation (in addition tot he standard ones for this
projection):

248

CS-MAP User's Guide User's Guide

prj_prml Longitude, in degrees, of the central meridian.

prj_prm2 Coefficient AO

prj_prm3 Coefficient BO

prj_prm4 Coefficient A1

prj_prm5 Coefficient A2

prj_prmé6 Coefficient B1

prj_prm7 Coefficient B2

org_lat The latitude, in degrees, of the origin of the projection.

scl_red The scale reduction to be applied. Thisisalso referred to
as the scale of the central meridian.

x_off The false easting to be applied to al X coordinates,
usually selected to cause all X coordinates within the
coordinate system to be positive values of reasonable
size.

y_off The false northing to be applied to all Y coordinates.

Ordnance Survey National Grid Transformation of 1997
(cs_PRJCOD _OSTNS97)

There are two elements which make this variation differdent from the standard Transverse Mercator
(aka Gauss Kruger) projection. First, the basic projection parameters are hard coded to be those of
the standard Ordnance Survey National Grid coordinate system. Thus, this variation really doesn't
have any parameters at all.

Second, after the basic projection calculation is performed, the transformation known as Ordnance
Survey National Transformation of 1997 (OSTN97) is applied. This transformation requires access to
a data file which is expected to be named "OSTN97.txt" and is expected to reside in the primary data
directory.

The end result of this variation is the ability to convert ETRF89 based geographic coordinates to
National Grid coordinates, where the actual National Grid coordinates are the same (for a specific
geographic point) as the 1936 National Grid coordinates.

Yes, this is strange as the datum shift calculation is actually performed on the cartesian coordinates
which result from the application of the projection. That is why this datum shift calculation had to be
performed here in the cartographic code.

Chapter 4 Chatper 4 -- Library Functions 249

As described above, this variation does not require any parameters. (In fact, what is considered a
standard parameter for the Transverse Mercator projection, the Scale Reduction, is also ignored by this
variation. The OSGB value of 0.9996012717 is hard coded in.)

Ordnance Survey National Grid Transformation of 1997
(cs_PRJCOD OSTNO02)

There are two elements which make this variation different from the standard Transverse Mercator
(aka Gauss Kruger) projection. First, the basic projection parameters are hard coded to be those of
the standard Ordnance Survey National Grid coordinate system. Thus, this variation really doesn't
have any parameters at all.

Second, after the basic projection calculation is performed, the transformation known as Ordnance
Survey National Transformation of 2002 (OSTNO02) is applied. This transformation requires access to
a data file which is expected to be named "OSTNO2.txt" and is expected to reside in the primary data
directory.

The end result of this variation is the ability to convert ETRF89 based geographic coordinates to
National Grid coordinates, where the actual National Grid coordinates are the same (for a specific
geographic point) as the 1936 National Grid coordinates.

Yes, this is strange as the datum shift calculation is actually performed on the cartesian coordinates
which result from the application of the projection. That is why this datum shift calculation had to be
performed here in the cartographic code.

As described above, this variation does not require any parameters. (In fact, what is considered a
standard parameter for the Transverse Mercator projection, the Scale Reduction, is also ignored by this
variation. The OSGB value of 0.9996012717 is hard coded in.)

Note that the OSTN97 and OSTNO2 variations are very similar, but do not produce precisely the same
results. Generally, it isassumed that the OSTNO2 values are to be preffered. CS-MAP can be used to
convert data sets which were derived from the OSTN97 transformation to OSTNO2.

Datum Definition

The values of equatorial radius and eccentricity are extracted from the datum element of the
cs_Csprm_ structure. These are normally obtained from the Ellipsoid Dictionary by the CS dltloc
function, but may be supplied by the application at run time. Specifically, the required elements are:

e rad The equatorial radius of the earth in meters.

eccent This value represents the eccentricity of the ellipsoid.

to84 _via An integer code that specifies the technique that isto be
used to convert geographic coordinates based on this
datum to WGS84.

cs Trmer__ Structure

The results of the one-time calculations are recorded in the trmer element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CStrmerfF, CStrmerl,

250

CS-MAP User's Guide User's Guide

CStrmerK, and CStrmerC functions require as their first argument.

Unity Pseudo Projection (CSunity)

These functions implement the pseudo projection referred to as the Unity projection. This projection
enables coordinate systems to be defined in which the coordinates are actually latitude and longitude.
The projection does nothing other than converting latitude and longitude values to/from the internal
representation of degrees based on Greenwich to the form indicated by the coordinate system
definition.

Technically all values are within the domain of this function. However, for the purposes of limit
checking, the domain of this function is considered to consist of latitudes between -90 and +90
inclusive, and longitudes within the user defined range, inclusive of both the upper and lower limit. The
Q function requires that the user definable range must be less than 540 degrees in extent.

CSunityF Forward conversion

int CSunityF (Const struct cs_Unity_ *unity,double xy [2],Const double Il
[2D;

This function simply converts the contents of the Il array from the internal representation of degrees
based on Greenwich to the units and origin indicated by the unity argument and places the results in
the xy array. CSunityFnormally returns ¢s_CNVRT_NRML. If Il is not within the domain of the
coordinate system, xy is set to a "rational” result and cs_ CNVRT_RNG is returned.

The xy and Il arguments may point to the same array.

CSunityl Inverse conversion

int CSunityl (Const struct cs_Unity_ *unity,double Il [2],Const double xy
[2D;

This function expects the contents of xy to contain a latitude and longitude in the units and with the
origin specified by the unity argument. These values are converted to the standard internal form,
degrees based on Greenwich, and returned in Il. CSunity/ normally returns ¢s_CNVRT_NRML. It will
return cs_ CNVRT_RNG if the xy value is not within the domain of the coordinate system.

The Il and xy arguments may point to the same array.

CSunityK scale (K)
double CSunityK (Const struct cs Unity_ *unity,Const double 11 [2]);

This function simply returns a 1.0. Its arguments are ignored. Grid scale factor has no meaning with
regard to latitudes and longitudes. However, since applications are usually unaware of the coordinate
systems involved, this function provides an appropriate value.

CSunityC Covergence angle
double CSunityC (Const struct cs Unity_ *unity,Const double 11 [2]);

This function simply returns a 0.0. Its arguments are ignored.

CSunityQ definition Quality check
int CSunityQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSunity@ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Unity Pseudo Projection. CS cschk examines those definition components

Chapter 4 Chatper 4 -- Library Functions 251

that are common to all coordinates systems (datum or ellipsoid reference, map scale, and units) and,
therefore, CSunityQ only examines those components specific to the Unity Pseudo Projection.
CSunityQreturns in err_list an integer code value for each error condition detected, being careful not
to exceed the size of err_list as indicated by the list_sz argument. The number of errors detected,
regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the various
error codes and their meaning. CSunityQ may be called with the NULL pointer and/or a zero for the
err_list and list_sz arguments respectively.

CSunityL Latitude/longitude check

int CSunityL (Const struct cs_Unity *unity,int cnt,Const double pnts
[03D:

CSunityl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the constraints placed on internal
geographic coordinates, namely (in terms of degrees) longitudes greater than -270 but less than or
equal to +270; and latitudes in the range of -90 and +90, inclusive.

CSunityX Xy coordinate check

int CSunityX (Const struct cs_Unity *unity,int cnt,Const double pnts
[103D:

In this special case, the coordinates provided in the list are indeed geographic coordinates, but
possibly in units other than degrees and possibly referenced to a prime meridian other than Greenwich.
CSunityX essentially converts the geographic coordinates provided to internal form, and then verifies
that all of the resulting coordinates meet internal geographic coordinate requirements. If the converted
list does indeed meet internal requirements (after conversion), cs_CNVRT_OK is returned; otherwise,
¢cs_CNVRT_DOMN is returned.

CSunityS Setup
void CSunityS (struct cs Csprm_ *csprm);

This function sets the projection scale to 1.0, captures the units and origin of the latitude and longitude
system, sets up the user defined range, and sets pointers to CSunityF, CSunityl, CSunityK, and
CSunityCin the appropriate locations of the csprm argument.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS_csdeffunction;
but can be provided by the application at run time. The following parameters are used:

252 CS-MAP User's Guide User's Guide

org_Ing The longitude, in degrees relative to the Greenwich Prime
Meridian, of the prime meridian for this coordinate system.

Scae The scale of the coordinate system. This one factor must
convert degrees to coordinate system units by multiplication.

prj_prml The minimum value of the range of longitude desired for this
coordinate system. Must be specified in user units, and
relative to the user's origin. The range between this value and
prj_prmz2, upon conversion to degrees, must be greater than or
equal to 360 and less than 540. Disable this feature by setting
both prj_prml and prj_prm2 equal to zero.

prj_prm2 The maximum value of the range of longitude desired for this
coordinate system. Must be specified in user units, and
relative to the user's origin. The range between this value and
prj_prm1, upon conversion to degrees, must be greater than or
equal to 360 and less than 540. Disable this feature by setting
both prj_prm2 and prj_prm1 equal to zero.

Van Der Grinten Projection (CSvdgrn)

This set of functions represent the Coordinate System Mapping Package's knowledge of the Van Der
Grinten Projection. This projection is supported in spherical form only. The equatorial radius of the
supplied ellipsoid is used as the radius of the sphere.

CSvdgrnF Forward conversion

int CSvdgrnF (Const struct cs_Vdgrn_ *vdgrn,double xy [2],Const double 11
[21:

Given a properly initialized cs_Vdgrn_ structure via the vdgrn argument, CSvdgrnF will convert the
latitude and longitude provided in the Il array to X and Y coordinates, returning the result in the xy
array. CSvagrnFnormally returns cs_ CNVRT_NRML. If Il is not within the domain of the coordinate
system, Xy is set to a "rational" result and cs_ CNVRT_RNG is returned.

CSvdgrnl Inverse conversion

int CSvdgrnl (Const struct cs_Vdgrn_ *vdgrn,double 11 [2],Const double xy
[2D:

Given a properly initialized cs_Vdgrn_ structure via the vdgrn argument, CSvagrn/ will convert the X
and Y coordinates given in the xy array to latitude and longitude and return the result in the Il array.
CSvdgrn/ normally returns ¢s_CNVRT_NRML. It will return cs_ CNVRT_RNG if the xy value is not
within the domain of the coordinate system, or cs_ CNVRT_INDF if the result is indefinite (e.g.
longitude is not defined at the poles).

In both cases above, the xy and Il arrays may be the same array. The X coordinate and the longitude
are carried in the first element in these arrays, the Y coordinate and the latitude in the second element.
The latitude and longitude values are in degrees where negative values are used to represent west
longitude and south latitude.

Chapter 4 Chatper 4 -- Library Functions 253

CSvdgrnK parallel scale (K)
double CSvdgrnK (Const struct cs Vdgrn_ *vdgrn,Const double 11 [2]);

CSvdgrnK returns the grid scale factor along a parallel at the geodetic location specified by the I
argument. As analytical formulas for this value have not been located, this value is arrived at
empirically using spherical trigonometry.

CSvdgrnH meridian scale (H)
double CSvdgrnH (Const struct cs Vdgrn_ *vdgrn,Const double 11 [2]);

CSvdgrnH returns the grid scale factor along a meridian at the geodetic location specified by the Il
argument. As analytical formulas for this value have not been located, this value is arrived at
empirically using spherical trigonometry.

CSvdgrnC Convergence angle
double CSvdgrnC (Const struct cs _Vdgrn_ *vdgrn,Const double 11 [2]);

CSvdgrnC returns the convergence angle in degrees east of north of the geodetic location specified by
the Il argument. Analytical formulas for this value have not been located and the result is arrived at
through the use of the CS_azsphrfunction.

CSvdgrnQ definition Quality check
int CSvdgrnQ (Const struct cs_Csdef_ *csdef,unsigned short prj_code,
int *err_list [],int list_sz);

CSvdgrnQ determines if the coordinate system definition provided by the csdef argument is consistent
with the requirements of the Van Der Grinten Projection. CS_cschk examines those definition
components that are common to all coordinates systems (datum or ellipsoid reference, map scale, and
units) and, therefore, CSvdgrnQ only examines those components specific to the Van Der Grinten
Projection. CSvdgrnQreturns in err_list an integer code value for each error condition detected, being
careful not to exceed the size of err_list as indicated by the list_sz argument. The number of errors
detected, regardless of the size of err_list, is always returned. Refer to CSerptfor a description of the
various error codes and their meaning. CSvdgrn@ may be called with the NULL pointer and/or a zero
for the err_list and /ist_szarguments respectively.

CSvdgrnL Latitude/longitude check

int CSvdgrnL (Const struct cs_Vdgrn_ *vdgrn, int cnt,Const double pnts
[103D:

CSvdgrnl determines if the geographic coordinates, great circles, and/or regions defined by the
coordinate list provided by the pnts and cnt arguments are within the mathematical domain of the
coordinate system provided by the vdgrn argument. The pnts and cnt arguments can define a single
coordinate (cnt == 1), a great circle (cnt == 2), or a closed region (cnt > 3). CSvadgrnsl's return value
will apply to all coordinates, coordinates on the great circles, and all coordinates within the regions thus
defined. CSvdgrnL returns cs_CNVRT_OK if all subject coordinates are within the mathematical
domain the coordinate system. ¢s_CNVRT_DOMN is returned if one or more of the subject
geographic coordinates are outside of the mathematical domain of the coordinate system.

CSvdgrnX Xy coordinate check

int CSvdgrnX (Const struct cs_Vdgrn_ *vdgrn,int cnt,Const double pnts
[103D:

CSvdgrnX determines if the cartesian coordinates, lines, and/or regions defined by the coordinate list
provided by the pnts and cnt arguments are within the mathematical domain of the coordinate system

254 CS-MAP User's Guide User's Guide

provided by the vdgrn argument. The pnts and cnt arguments can define a single coordinate (cnt ==
1), aline (cnt == 2), or a closed region (cnt > 3). CSvdgrnsXs return value will apply to all coordinates,
coordinates on the lines, and all coordinates within the regions thus defined. CSvagrnl returns
¢s_CNVRT_OK if all subject coordinates are within the mathematical domain of the coordinate
system. ¢s_CNVRT_DOMN is returned if one or more of the subject coordinates is outside of the
mathematical domain of the coordinate system.

CSvdgrnS Setup
void CSvdgrnS (struct cs _Csprm_ *csprm);

The CSvdgrnS function performs all calculations that need only be performed once, given the definition
of a specific coordinate system. That is, once the central meridian and other projection parameters are
known, there are many calculations which need only be performed once. CSvdgrnS performs these
calculations and saves the results in the cs_Csprm__ structure provided by its argument, csprm.
Thus, the argument provided to CSvagrnS serves as the source for input and the repository for the
results as described below.

Coordinate System Definition

The definition of the coordinate system is extracted from the csdef element of the cs_Csprm_
structure. Usually, this is obtained from the Coordinate System Dictionary by the CS csdef function;
but can be provided by the application at run time. The following parameters are used:

org_Ing The longitude, in degrees, of the origin of the projection.

scale The scale of the coordinate system. This one factor must include
the conversion from meters to coordinate system units and the
mapping scale that is to be applied.

x_off The false easting to be applied to al X coordinates, usualy
selected to cause all X coordinates within the coordinate system
to be positive values of reasonable size. Thisisthe X coordinate
of the coordinate system origin.

y_off The false northing to be applied to all Y coordinates. Thisisthe
Y coordinate of the coordinate system origin.

quad An integer that indicates the cartesian quadrant of the coordinate
system, 1 thru 4. A negative value indicates that the axes are to
be swapped after the coordinates have been placed in the
indicated quadrant.

Datum Definition

The value of equatorial radius is extracted from the datum element of the cs_Csprm__ structure and
used as the radius of the sphere. This is normally obtained from the Ellipsoid Dictionary by the

CS dltloc function, but may be supplied by the application at run time. Specifically, the required
element is:

e rad The radius of the earth, as a sphere, in meters.

Chapter 4 Chatper 4 -- Library Functions 255

cs Vdgrn_ Structure

The results of the one-time calculations are recorded in the vdgrn element of the prj_prms union of
the cs_Csprm_ structure. It is a pointer to this initialized structure that the CSvagrnF, CSvdgrnl,
CSvdgrnK, CSvdgrnH, and CSvdgrnC functions require as their first argument.

Geodetic Conversion (Datum) Functions

Functions used in the conversion of geographic coordinates from one datum to another are described in
this section.

Note that for all transformations, functions for both 2D and 3D conversions are provided. Generally,
you should only use the 3D version if you are dealing with athree diemnsional database. That is, a
database which will carry the resulting Z value so when it is time to invert the conversion, you will be
able to supply the Z value to the inverse algorithm.

In the case of a 2D database, you will not be able to supply the Z coordinate when it istime to calculate
the inverse, and thus the reulting horizontal components (X and Y) will not be the same as the oroginal
coordinates.

Three Parameter Transformation

The Three Parameter Transformation implements a datum shift by translating geo-centric coordinates
in three dimensions. The three parameters are the components of the tranglation vector. They are
expressed in meters, and represent the shift from the local reference system (datum) to the WGS84
reference system (datum).

CS_3plnit 3 Parameter INITialize
struct cs Parm3_ *CS_3plnit (Const struct cs Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS 3pinitis essentially a constructor for the cs_Parm3_ structure in C syntax. CS_3p/nit will return a
pointer to a malloced cs_Parm3__ structure which has been initialized for the use of the Three
Parameter transformation technique to convert geodetic coordinates from the datum indicated by the
srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this
is not required.)

The equivalent destructor is the CS_free function.

CS_3pinitreturns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum__ structures provided by the
arguments.

CS_3p3dFowrd 3 Parameter 3D FOrWaRD conversion

int CS_3p3dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3__ structure,
CS_3p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLlI
argument are transformed and the results are returned in the array indicated by the trgLI| argument.

256

CS-MAP User's Guide User's Guide

The conversion is a full three dimensional calculation.

CS 3p3dFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_3p2dFowrd 3 Parameter 2D FOrWaRD conversion

int CS_3p2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3__ structure,
CS_3pZdFowrd calculates the datum transformation. That is, the coordinates provided by the srcLlI
argument are transformed and the results are returned in the array indicated by the trgLI argument.
The conversion is a two dimensional calculation, the third element of srcLl is simply copied to the
trglLl array.

CS 3pZdFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_3p3dinvrs 3 Parameter 3D INVeRSe transformation

int CS_3p3dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3__ structure,

CS 3p3dinvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLlI
argument. However, unlike CS_3p3dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm3__ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm3_ structure was initialized. The conversion is a three dimensional calculation.

CS _3p3dinvrsreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_3p2dinvrs 3 Parameter 2D INVeRSe transformation
int CS_3p2dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm3_ *parm3)

Given a Three Parameter transformation in the form of an initialized cs_Parm3__ structure,
CS_3pZdinvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_3pZdFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm3__ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm3_ structure was initialized. The conversion is a two dimensional calculation, the third
element of the srcLl argument is copied to the third element of the trgLI| argument.

CS 3pZdinvrs returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

Chapter 4 Chatper 4 -- Library Functions 257

Four Parameter Transformation

The original developers of CS-MAP invented this transformation technique, so you may want to
remove it from your distribution. Since are Three, Six, and Seven Parameter Transformationsin
general use, it seemed obvious that there should also exist a Four Parameter Transformation.

The Four Parameter Transformation is arrived at by eliminating the three rotation angles from the
Seven Parameter Transformation. The same result could be achieved by setting the rotation angles of
the Seven Parameter Transformation to zero.

CS_4plinit 4 Parameter INITialize
struct cs_Parm4_ *CS_4plnit (Const struct cs_Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS 4plinitis essentially a constructor for the cs_Parm4_ structure in C syntax. CS_4p/nit will return a
pointer to a malloced cs_Parm4__ structure which has been initialized for the use of the Four
Parameter transformation technique to convert geodetic coordinates from the datum indicated by the
srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this
is not required.)

The equivalent destructor is the CS_free function.

CS_4plinitreturns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum__ structures provided by the
arguments.

CS_4p3dFowrd 4 Parameter 3D FOrWaRD conversion

int CS 4p3dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4__ structure,

CS 4p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLI| argument.
The conversion is a full three dimensional calculation.

CS 4p3dFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_4p2dFowrd 4 Parameter 2D FOrWaRD conversion

int CS_4p2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4__ structure,
CS_4pZdFowrd calculates the datum transformation. That is, the coordinates provided by the srcLlI
argument are transformed and the results are returned in the array indicated by the trgLI| argument.
The conversion is a two dimensional calculation, the third element of srcLl is simply copied to the
trgLl array.

CS 4pZdFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

258

CS-MAP User's Guide User's Guide

CS_4p3dinvrs 4 Parameter 3D INVeRSe transformation

int CS_4p3dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4__ structure,

CS 4p3dinvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLlI
argument. However, unlike CS_4p3dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm4__ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm4_ structure was initialized. The conversion is a three dimensional calculation.

CS 4p3dinvrsreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_4p2dinvrs 4 Parameter 2D INVeRSe transformation

int CS_4p2dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs Parm4_ *parm4)

Given a Four Parameter transformation in the form of an initialized cs_Parm4__ structure,

CS 4pZdinvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLlI
argument. However, unlike CS_4p2dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm4__ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm4__ structure was initialized. The conversion is a two dimensional calculation, the third
element of the srcLl argument is copied to the third element of the trgLI| argument.

CS 4pZdinvrs returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

Six Parameter Transformation

The Six Parameter Transformation is used occassionaly. Itis, essentialy, the Seven Parameter
Transformation with the Scale parameter set to zero. Remember, that the scale parameter is actually
the number of parts per million the true scale factor differs from unity. Thus, a zero scale parameter
actually means a scale factor of unity (1.0).

CS_6plnit 6 Parameter INITialize
struct cs_Parm6_ *CS_6plnit (Const struct cs_Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS 6pinitis essentially a constructor for the cs_Parm6__ structure in C syntax. CS_6p/nit will return a
pointer to a malloced cs_Parm6__ structure which has been initialized for the use of the Six Parameter
transformation technique to convert geodetic coordinates from the datum indicated by the srcDatum
argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this is not
required.)

The equivalent destructor is the CS_free function.
CS_6pinitreturns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc

failure or completely absurd numbers in either of the cs_Datum__ structures provided by the
arguments.

Chapter 4 Chatper 4 -- Library Functions 259

CS_6p3dFowrd 6 Parameter 3D FOrWaRD conversion

int CS 6p3dFowrd (double trgLl [3],Const double srcLl [3],Const struct
cs_Parm6_ *parm6)

Given a Six Parameter transformation in the form of an initialized cs_Parm6__ structure,

CS 6p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLI| argument.
The conversion is a full three dimensional calculation.

CS 6p3dFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_6p2dFowrd 6 Parameter 2D FOrWaRD conversion

int CS _6p2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs Parm6_ *parm6)

Given a Six Parameter transformation in the form of an initialized cs_Parm6__ structure,

CS 6pZdFowrd calculates the datum transformation. That is, the coordinates provided by the srcLl
argument are transformed and the results are returned in the array indicated by the trgLI| argument.
The conversion is a two dimensional calculation, the third element of the srcLl is simply copied to the
trgLl array.

CS _6pZdFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_6p3dinvrs 6 Parameter 3D INVeRSe transformation

int CS 6p3dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm6_ *parm6)

Given a Six Parameter transformation in the form of an initialized cs_Parm6__ structure, CS_6p3d/nvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgL| argument. However,
unlike CS_6p3dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Parm6__ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Parm6__ structure
was initialized. The conversion is a three dimensional calculation.

CS _6p3dinvrsreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_6p2dinvrs 6 Parameter 2D INVeRSe transformation

int CS _6p2dinvrs (double trgLl [3],Const double srcLl [3],Const struct
cs_Parm6_ *parm6)

260

CS-MAP User's Guide User's Guide

Given a Six Parameter transformation in the form of an initialized cs Parm6_ structure, CS_6p2dinvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcL| argument
are transformed and the results are returned in the array indicated by the trgL| argument. However,
unlike CS_6p2dFowrd, this function assumes that the coordinates provided by the srcL| argument are
based on the target datum provided when the provided cs Parm6_ structure was initialized. The results
are based, of course, on the source datum provided when the provided cs_Parm6__ structure was
initialized. The conversion isatwo dimensiona calculation, the third element of the srcL| argument is
copied to the third element of the trgL| argument.

CS _6p2Zdinvrsreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

Seven Parameter Transformation

Thistransformation is the rigorous implementation of the widely used Seven Parameter
Transformation. The seven parameters include:

= the three components of the geocentric trandlation vector expressed in meters, and
= threerotation angles. one for each geocentric axis, expressed in seconds of arc, and

= ascalefactor expressin the deviiation from unit in parts per million.

Note that a negative scale factor parameter indicates a resulting scale factor less than unity.

Please note that this transformation is called the Bursa/Wolf Transformation by many. However, in the
contect of CS-MAP, the term Bursa/Wolf Transformation has a decidely different meaning.

CS_T7plnit 7 Parameter INITialize
struct cs_Parm7_ *CS_7plnit (Const struct cs Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS_7pinitis essentially a constructor for the cs_Parm7__ structure in C syntax. CS_7p/nit will return a
pointer to a malloced cs_Parm7__ structure which has been initialized for the use of the Seven
Parameter transformation technique to convert geodetic coordinates from the datum indicated by the
srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this
is not required.)

The equivalent destructor is the CS_free function.

CS_7plnitreturns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum__ structures provided by the
arguments.

CS_7p3dFowrd 7 Parameter 3D FOrWaRD conversion

int CS_7p3dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7__ structure,
CS_7p3dFowrd calculates the datum transformation. That is, the coordinates provided by the srcLlI
argument are transformed and the results are returned in the array indicated by the trgLl argument.
The conversion is a full three dimensional calculation.

Chapter 4 Chatper 4 -- Library Functions 261

CS 7p3dFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_7p2dFowrd 7 Parameter 2D FOrWaRD conversion

int CS_7p2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7__ structure,
CS_7pZdFowrd calculates the datum transformation. That is, the coordinates provided by the srcLI
argument are transformed and the results are returned in the array indicated by the trgLI argument.
The conversion is a two dimensional calculation, the third element of srcLl is simply copied to the
trglLl array.

CS 7pZdFowrdreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_7p3dinvrs 7 Parameter 3D INVeRSe transformation

int CS_7p3dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm7_ *parm7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7__ structure,
CS_7p3dinvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_7p3dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm7__ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm7__ structure was initialized. The conversion is a three dimensional calculation.

CS _7p3dinvrsreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_7p2dinvrs 7 Parameter 2D INVeRSe transformation
int CS_7p2dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Parm7_ *parm?7)

Given a Seven Parameter transformation in the form of an initialized cs_Parm7__ structure,
CS_7pZdinvrs calculates the inverse datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. However, unlike CS_7p2dFowrd, this function assumes that the coordinates provided by the
srcLl argument are based on the target datum provided when the provided cs_Parm7__ structure was
initialized. The results are based, of course, on the source datum provided when the provided
cs_Parm7__ structure was initialized. The conversion is a two dimensional calculation, the third
element of the srcLIl argument is copied to the third element of the trgLI argument.

CS_7pZdinvrsreturns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

262

CS-MAP User's Guide User's Guide

Bursa/Wolf Transformation

In the context of CS-MAP, the term Bursa/Wolf Transformation refers to an approximation of the
Seven Parameter Transformation. This approximation was widely used prior to 1990 and is included
in CS-MAP so that users can duplicate results prosuced by this approximation.

The approximation is based on three assumptions:

= thesine of asmall angleisequal to the angleitself when expressed in radians; and
= the product of the sine of two small anglesis zero; and

= thecosine of asmall angleis unity (i.e. 1.0).

Taking these assumptions to be true, the calculation of the norma Seven Parameter Transformation is
greatly smplified. Thus, its use was highly popular before PC's became to be used widely in
GIS/Mapping/Geodetic field work. Thisis especialy true as the rotation angle usually used in a Seven
Parameter Transformation are indeed very small (on the order of afew seconds of arc).

The end result asfar as CS-MAP is concerned, therefore, is that the term Seven Parameter
Transformation refers to the rigourous implementation of the transformation technique, while the
Bursa/Wolf refers to the frequently used approximation described above. New work should use the
Seven Parameter Transformation. the Bursa/Wolf should only be used when working with data
previously processed using that transformation.

CS_bwinit Bursa Wolf INITialize
struct cs _Bursa_ *CS_bwlnit (Const struct cs Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS bwinitis essentially a constructor for the cs_Bursa_ structure in C syntax. CS_bwi/nit will return a
pointer to a malloced cs_Bursa__ structure which has been initialized for the use of the Bursa/Wolf
transformation technique to convert geodetic coordinates from the datum indicated by the srcDatum
argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this is not
required.)

The equivalent destructor is the CS_free function.

CS_bwinitreturns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure or completely absurd numbers in either of the cs_Datum__ structures provided by the
arguments.

CS_bw3dFowrd Bursa Wolf 3D FOrWaRD conversion

int CS_bw3dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa__ structure, CS_bw3dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a full three dimensional calculation.

CS_bw3dFowrd returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

Chapter 4 Chatper 4 -- Library Functions 263

CS_bw2dFowrd Bursa Wolf 2D FOrwWaRD conversion

int CS_bw2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa__ structure, CS_bwZ2dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a two dimensional calculation, the third element of srcLl is simply copied to the trgLl array.

CS bwZdFowrd returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_bwadInvrs Bursa Wolf 3D INVeRSe transformation

int CS_bw3dInvrs (double trgLl [3],Const double srcLl [3],
Const struct cs Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa__ structure, CS_bwa3dInvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgL| argument. However,
unlike CS_bw3dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Bursa__ structure was initialized. The
results are, of course, based on the source datum provided when the provided cs_Bursa__ structure
was initialized. The conversion is a three dimensional calculation.

CS _bwa3dInvrs returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

CS_bwa2dinvrs Bursa Wolf 2D INVeRSe transformation
int CS_bw2dInvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Bursa_ *bursa)

Given a Bursa/Wolf transformation in the form of an initialized cs_Bursa__ structure, CS_bwZ2dlnvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgL| argument. However,
unlike CS_bwZ2dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Bursa__ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Bursa__ structure
was initialized. The conversion is a two dimensional calculation, the third element of the srcLI
argument is copied to the third element of the trgLI argument.

CS _bwZdInvrs returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the inverse geocentric calculation to converge.

264

CS-MAP User's Guide User's Guide

DMA Multiple Regression

The DMA Multiple Regression Transformation implements the technique published by the DMA
(Defense Mapping Agency, USA) inis defining document DMA Technical Report 8350.2-B (1
December 1987). In this document, the DMA published polynomial based transformations for
converting from many local reference systemsto WGS84. These transformations were developed
using Multiple Regression techniques.

In the context of CS-MAP, there exists a.mrt file for each such transformation. The .mrt file essentially
carries the coefficients of the transformation. The code described in the following sub-sections builds
atransformation based on the information contained in the .mrt file. All such files are expected to
reside in the main data directory.

Note that .mrt files are produced by the Dictionary Compiler from the datain an ASCI| file named
MREG.ASC. The MREG.ASC file contains a transcription of the data presented in the DMA report and
is, of course, in appropriate form for version control.

CS_dmaMrinit DMA Multiple Regression INITialize
struct cs_dmaMReg_ *CS_dmaMrinit (Const struct cs Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS dmaMirinitis essentially a constructor for the cs_dmaMReg__ structure in C syntax. CS_dmaMrinit
will return a pointer to a malloced cs_dmaMReg__ structure which has been initialized for the use of the
DMA Multiple Regression transformation technique to convert geodetic coordinates from the datum
indicated by the srcDatum argument to the datum indicated by the trgDatum. (trgDatum is usually
WGS84, but this is not required.)

The equivalent destructor is the CS_free function.

CS_dmaMirinit returns NULL in the event of failure. Failure is usually caused by the non-existence or
corruption of an appropriately named multiple regression definition file. Multiple regression definition
files have the same name as the datum key name with the .mrt extension applied.

CS_dmaMr3dFowrd DMA Multiple Regression 3D FOrWaRD conversion

int CS_dmaMr3dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_dmaMReg_ *mreQ)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg__ structure,
CS_dmaMr3dFowrd calculates the datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLl
argument. The conversion is a full three dimensional calculation.

CS dmaMr3dFowrd returns zero to indicate success and +1 to indicate failure. Failure can occur if the
coordinates to be converted are outside of the domain of the multiple regression transformation. Note
that the multiple regression formulas use normalized coordinates for the actual calculation. CS-MAP
assumes that a normalized coordinate greater than 1.4 or less than —1.4 are outside the domain of the
multiple regression definition.

CS_dmaMr2dFowrd DMA Multiple Regression 2D FOrWaRD conversion

int CS_dmaMr2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_dmaMReg_ *mreq)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg__ structure,

Chapter 4 Chatper 4 -- Library Functions 265

CS dmaMr2dFowrd calculates the datum transformation. That is, the coordinates provided by the
srcLl argument are transformed and the results are returned in the array indicated by the trgLlI
argument. The conversion is a two dimensional calculation, the third element of srcLl is simply copied
to the trgLl array.

CS dmaMr2dFowrd returns zero to indicate success and +1 to indicate failure. Failure can occur if the
coordinates to be converted are outside of the domain of the multiple regression transformation. Note
that the multiple regression formulas use normalized coordinates for the actual calculation. CS-MAP
assumes that a normalized coordinate greater than 1.4 or less than —1.4 are outside the domain of the
multiple regression definition.

CS_dmaMr3dinvrs DMA Multiple Regression 3D INVeRSe transformation

int CS_dmaMr3diInvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_dmaMReg_ *mreq)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg__ structure,
CS _dmaMr3dinvrs calculates the inverse datum transformation. That is, the coordinates provided by
the srcLl argument are transformed and the results are returned in the array indicated by the trgLlI
argument. However, unlike CS_dmaMr3dFowrd, this function assumes that the coordinates provided
by the srcLl argument are based on the target datum provided when the provided cs_dmaMReg__
structure was initialized. The results are based, of course, on the source datum provided when the
provided cs_dmaMReg__ structure was initialized. The conversion is a three dimensional calculation.

CS dmaMr3dinvrs returns zero to indicate success and +1 to indicate failure. Failure is caused by a
failure of the iterative forward calculation to converge, or the supplied coordinate being outside the
domain of the multiple regression definition.

CS_dmaMr2dinvrs DMA Multiple Regression 2D INVeRSe transformation

int CS_dmaMr2dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_dmaMReg_ *mreqg)

Given a DMA Multiple Regression transformation in the form of an initialized cs_dmaMReg__ structure,
CS _dmaMr2dinvrs calculates the inverse datum transformation. That is, the coordinates provided by
the srcLl argument are transformed and the results are returned in the array indicated by the trgLlI
argument. However, unlike CS_dmaMrZdFowrd, this function assumes that the coordinates provided
by the srcLl argument are based on the target datum provided when the provided cs_dmaMReg_
structure was initialized. The results are based, of course, on the source datum provided when the
provided cs_dmaMReg__ structure was initialized. The conversion is a two dimensional calculation, the
third element of the srcLIl argument is copied to the third element of the trgLl argument.

CS dmaMr2dinvrs returns zero to indicate success and +1 to indicate failure. Failure is caused by a
failure of the iterative forward calculation to converge, or the supplied coordinate being outside the
domain of the multiple regression definition.

266 CS-MAP User's Guide User's Guide

DMA Molodensky Transformation

The DMA Molodensky (I've seen this spelled in a number of ways, this spelling seems to be popular in
the US) Transformation is simply another mathematical technique for calculating the Three Parameter
Transformation. Thistechniqueis abit faster, and the inverse does not require an iterative technique as
the Three Parameter Transformation does.

Thistransformation is widely used as it was prominently published in DMA TR 8350.2-B which isthe
primary document used by software developers when implementing datum shift software.

While the DMA Molodensky and Three Parameter Transformations accomplish the same thing, since
the mathematical techniques used are quite different, the results do not match precisely.

CS_molnit MOlodensky INITialize
struct cs Molo_ *CS molnit (Const struct cs Datum_* srcDatum,
Const struct cs_Datum_* trgDatum)

CS_molnitis essentially a constructor for the cs_Molo_ structure in C syntax. CS_molnit will return a
pointer to a malloced cs_Molo__ structure which has been initialized for the use of the Molodensky
transformation technique to convert geodetic coordinates from the datum indicated by the srcDatum
argument to the datum indicated by the trgDatum. (trgDatum is usually WGS84, but this is not
required.)

The equivalent destructor is the CS_free function.

CS_molnitreturns NULL in the event of failure. Failure is unlikely and can only be caused by a malloc
failure.

CS_mo3dFowrd MOlodensky 3D FOrWaRD conversion

int CS_mo3dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Molo_ *molo)

Given a Molodensky transformation in the form of an initialized cs_Molo__ structure, CS_mo3dFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a full three dimensional calculation.

CS mo3dFowrdreturns zero to indicate success. Currently, this function is always successful.

CS_mo2dFowrd MOlodensky 2D FOrWaRD conversion

int CS_mo2dFowrd (double trgLl [3],Const double srcLl [3],
Const struct cs_Molo_ *molo)

Given a Molodensky transformation in the form of an initialized cs_Molo__ structure, CS_moZdFowrd
calculates the datum transformation. That is, the coordinates provided by the srcLl argument are
transformed and the results are returned in the array indicated by the trgLl argument. The conversion
is a two dimensional calculation, the third element of srcLl is simply copied to the trgLl array.

CS moZdFowrdreturns zero to indicate success. Currently, this function is always successful.

CS_mo3dinvrs MOlodensky 3D INVeRSe transformation

int CS_mo3dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs_Molo_ *molo)

Chapter 4 Chatper 4 -- Library Functions 267

Given a Molodensky transformation in the form of an initialized cs_Molo__ structure, CS_mo3dinvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgL| argument. However,
unlike CS_mo3dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Molo__ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Molo__ structure
was initialized. The conversion is a three dimensional calculation.

CS _mo3dinvrs returns zero to indicate success. Currently, this function is always successful.

CS_mo2dinvrs MOlodensky 2D INVeRSe transformation
int CS_mo2dinvrs (double trgLl [3],Const double srcLl [3],
Const struct cs Molo_ *molo)

Given a Molodensky transformation in the form of an initialized cs_Molo__ structure, CS_moZdinvrs
calculates the inverse datum transformation. That is, the coordinates provided by the srcLl argument
are transformed and the results are returned in the array indicated by the trgL| argument. However,
unlike CS_moZ2dFowrd, this function assumes that the coordinates provided by the srcLl argument are
based on the target datum provided when the provided cs_Molo__ structure was initialized. The
results are based, of course, on the source datum provided when the provided cs_Molo_ structure
was initialized. The conversion is a two dimensional calculation, the third element of the srcLl
argument is copied to the third element of the trgLI| argument.

CS _moZdinvrs returns zero to indicate success and —1 to indicate failure. Failure can only be caused
by a failure of the iterative inverse calculation to converge.

Geocentric Coordinate Calculation

Geocentric coordinates are the coordinates of a point, often on the surface of the earth, based on a three
dimensional cartesian coordinate system whose origin is the center of the earth. The cartesian
coordinate system is aright handed system where:

= theX /Y plane of the cartesian system is coplanar with the plane of the equator of the earth; and

= the X axisintersects the ellipsoid at the point of zero longitude (Greenwich) and zero latiotude
(equator); and

= theY axisisorthogona to the X axisand isin the plane of the equator (i.e. intersects the ellipsoid
in the Indian Ocean); and

= theZ axis protrudes from the ellipsoid at the north pole.

The functions described here are used extensively in datum shift calculations, and are useful for awide
variety of other purposes. Note that the equatorial radius and eccentricity squared are used to specify
the ellipsoid. Also note that the cartesian coordinates are in (must be in) the same units that are used
to specify the equatoria radius of the ellipsoid.

CS_lIhToXyz LongLatHgt TO XYZ geocentric
void CS_11hToXyz (double xyz [3],Const double 11h [3],double e rad,double
e_sq)

CS llhToXyz converts the geodetic coordinates provided by the llh argument to geocentric form and
returns the result in the array provided by the xyz argument. The e_rad and e_sq arguments must

268

CS-MAP User's Guide User's Guide

indicate the equatorial radius and square of the eccentricity, respectively, for the ellipsoid upon which
the calculation is to be based.

The third element of the Ilh array is considered to be height above the ellipsoid. The equatorial radius,
e_rad, must be specified in the same linear units as used to specify the ellipsoidal height. The results
returned in the xyz array will be based on the same linear unit. Usually, the linear unit involved is
meters.

CS_xyzToLIh XYZ geocentric TO LongLatHgt
int CS xyzToLlIh (double 1l1h [3],Const double xyz [3],double e rad,double
e_sq)

CS xyzTollh converts the geocentric coordinates provided by the xyz argument to geodetic form and
returns the result in the array provided by the Ilh argument. The e_rad and e_sq arguments must
indicate the equatorial radius and square of the eccentricity, respectively, for the ellipsoid upon which
the calculation is to be based.

The equatorial radius, e_rad, must be specified using the same unit as the geocentric coordinates
provided by the xyz argument. The third element of the returned geodetic coordinate is height above
the ellipsoid and is in the same units used to specify the equatorial radius of the ellipsoid. The linear
unit involved is usually meters.

CS xyzTollhreturns a zero to indicate success. A -1 is returned to indicate failure. This calculation
requires an iterative solution to obtain the necessary accuracy. Failure is caused when this iterative
solution does not converge.

Australian Geodetic Datum of 1966

This transformation converts geographic coordinates based on the Australian Geodetic Datum of 1966
to geographic coordinates based on the Geocentric Datum of Australia (1994). The conversion is
based on grid shift files which are in the in the Canadian National Transformation, Version 2, format.
The files which are to be used must be listed in the Geodetic Data Catal og named Agd66ToGdad4.gdc.

Note that AGD66 applies to certain Australian states, while AGD84 appliesto others. CS-MAP uses
the Geodetic Data Catalog feature to select the appropriate file from the list provided. Therefore, to the
end user AGD66 looks like a single entity.

CSagd66Cls Australian Geodetic Datum of 1966 CLoSe
void CSagd66Cls (void)

Use CSagd66CIs to release all resources allocated by a previous call to CSagd66/nit. Obviously,
subsequent calls to the CSagad66ToGda94 or CSgda94ToAgd66 will fail until such time that CSagd66/nit
is called again.

CSagd66init Australian Geodetic Datum of 1966 INITialize
int CSagd66lnit (void)

Use this function to initialize the AGD66GDA94 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Agd66Name global variable.
CSagd66/nitreturns zero on success and —1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSagd66ToGdad4Log
Const char *CSagd66ToGda94Log (Const double 11_66 [2]);

Chapter 4 Chatper 4 -- Library Functions 269

Given a AGD66 based geographic point by the II_66 argument, CSagd66ToGda94Log returns a pointer
to a static string which contains the name of the grid shift file which would be used to convert the point
to GDA94. A null pointer isreturned for any type of error. Errors are usually caused by afailure to
initialize the AGD66 to GDA94 conversion system or if the provided point is not within the coverage
of the AGD66 to GDA94 transformation system.

CS_agd66Name Australian Geodetic Datum of 1966 NAME
void CS_agd66Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Australian Geodetic Datum of 1966 to the name provided by the newName argument.

CSagd66ToGdad4 AGD66 TO GDA94 conversion
int CSagd66ToGda94 (double 11_94 [3],Const double 11 _66 [3])

CSagd66ToGda94 will convert the geographic coordinate provided by the Il_66 argument to the
equivalent GDA94 argument and return the results in the array indicated by the II_94 argument.
CSagd66/nit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSagd66ToGda94 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd66/nit prior to calling CSagd66ToGaa94. A positive 1 is
returned in the case of a soft failure. A soft failure is caused by a AGD66 coordinate that is outside of
the region covered by the data files listed in the Geodetic Data Catalog file used to initialize the
transformation. A positive 2 is returned in the case of a coverage failure where a fallback datum
definition is used to supply approximate results.

CSgda%94ToAgd66 GDA94 TO AGD66 conversion
int CSgda94ToAgd66 (double 11_66 [3],Const double 11 _94 [3])

CSgda94ToAgd66 will convert the geographic coordinate provided by the 1I_94 argument to the
equivalent AGD66 geographic coordinates and return the results in the array indicated by the 1I_66
argument. CSagd66/nit must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSgda94ToAgd66 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd66/nit prior to calling CSgaa94ToAgd66. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a GDA94 coordinate that is outside of
the region covered by the AGD66 GDA94 data files listed in the Geodetic Data Catalog file used to
initialize the AGDG66 system. A positive 2 value is returned if the point to be converted was outside the
coverage of the data files available and the fallback datum was used to calculate approximate results.

270

CS-MAP User's Guide User's Guide

Australian Geodetic Datum of 1984

This transformation converts geographic coordinates based on the Australian Geodetic Datum of 1984
to geographic coordinates based on the Geocentric Datum of Australia (1994). The conversionis
based on grid shift files which are in the in the Canadian National Transformation, Version 2, format.
The files which are to be used must be listed in the Geodetic Data Catal og named Agd84ToGda94.gdc.

Note that AGD84 applies to certain Australian states, while AGD66 appliesto others. CS-MAP uses
the Geodetic Data Catalog feature to select the appropriate file from the list provided. Therefore, to the
end user AGD84 looks like a single entity.

CSagd84Cls Australian Geodetic Datum of 1984 CLoSe
void CSagd84Cls (void)

Use CSagd84Cis to release all resources allocated by a previous call to CSagad84/nit. Obviously,
subsequent calls to the CSagad84ToGda94 or CSgda94ToAgd84 will fail until such time that CSagad84init
is called again.

CSagd84linit Australian Geodetic Datum of 1984 INITialize
int CSagd84init (void)

Use this function to initialize the AGD84GDA94 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_ Agd84Name global variable.
CSagd84init returns zero on success and —1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSagdB84ToGda94Log AGD66 TO GDA94 LOG
Const char *CSagd84ToGda94Log (Const double 11 _84 [2]);

Given a AGD84 based geographic point by the Il_84 argument, CSagd84ToGada94Log returns a pointer
to a static string which contains the name of the grid shift file which would be used to convert the point
to GDA94. A null pointer isreturned for any type of error. Errors are usualy caused by afailure to
initialize the AGD84 to GDA94 conversion system or if the provided point is not within the coverage
of the AGD84 to GDA94 transformation system.

CS_agd84Name Australian Geodetic Datum of 1984 NAME
void CS_agd84Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Australian Geodetic Datum of 1984 to the name provided by the newName argument.

CSagd84ToGda%4 AGD84 TO GDA94 conversion
int CSagd84ToGda94 (double 11 _94 [3],Const double 11 _84 [3])

CSagd84ToGda94 will convert the geographic coordinate provided by the II_84 argument to the
equivalent GDA94 argument and return the results in the array indicated by the Il_94 argument.
CSaga8&4init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSaga84ToGda94 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd84/nit prior to calling CSagd84ToGda94. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by an AGD84 coordinate that is outside
of the region covered by the AGD84 data files listed in the Geodetic Data Catalog file used to initialize

Chapter 4 Chatper 4 -- Library Functions 271

the AGD84 system. A positive 2 is returned if the point provided by the II_84 argument is outside the
coverage of the AGD84 to GDA94 transformation system and the fallback datum was used to produce
approximate results.

CSgda94ToAgd84 GDA94 TO AGD84 conversion
int CSgda94ToAgd84 (double 11_84 [3],Const double 11 94 [3])

CSgda94ToAgad84 will convert the geographic coordinate provided by the 1I_94 argument to the
equivalent AGD84 argument and return the results in the array indicated by the II_84 argument.
CSagad8&4init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSgda94ToAgad84 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSagd84/nit prior to calling CSgaa94ToAgd84. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a GDA94 coordinate that is outside of
the region covered by the AGD84 GDA94 data files listed in the Geodetic Data Catalog file used to
initialize the AGD84 system. A positive 2 is returned if the point provided by the Il_94 argument is
outside the coverage of the AGD84 to GDA94 transformation system and the fallback datum was used
to produce an approximate result.

Average Terrestrial System of 1977 (ATS77)

This transformation converts geographic coordinates based on the Average Terrestrial System of 1977
to geographic coordinates based on the Canadian Spatial Reference System (Nad83/1994). This
transformation is typically used in the maritime provinces of Canada. The conversion is based on grid
shift fileswhich are in the in the Canadian National Transformation, Version 2, format. The files
which are to be used must be listed in the Geodetic Data Catalog named Ats77ToCSRS.gdc.

Note that ATS77 applies only to the maritime provinces of New Brunswick, Nova Scotia, and Prince
Edward Island. CS-MAP uses the Geodetic Data Catal og feature to select the appropriate file from the
list provided. Therefore, to the end user ATS77 looks like asingle entity. Take great carein ordering
the files in the Geodetic Data Catal og, as there is serious overlap, and the results derived from the
different files can differ significantly. Infact, it isrecommended that if aclient is based in one of these
provinces, that they delete (or comment out) the other two files from the Geodetic Data Catalog to
assure that the desired results are obtained.

CSats77Cls Average Terrestial System of 1977 CLoSe
void CSats77Cls (void)

Use CSats77ClIsto release all resources allocated by a previous call to CSats77Init. Obviously,
subsequent calls to the CSats77ToCsrs or CScsrsToAts77 will fail until such time that CSats77/nitis
called again.

CSats77Init Average Terrestial System of 1977 INITialize
int CSats77Init (void)

Use this function to initialize the ATS77CSRS conversion system. The initialization will occur using the
Geodetic Data Catalog file named by the contents of the cs_Ats77Name global variable. CSats77/nit
returns zero on success and —1 on failure. Failure is usually caused by a problem encountered in
processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_ats77Name Average Terrestrial System of 1977 NAME
void CS_ats77Name (Const char *newName)

272

CS-MAP User's Guide User's Guide

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Average Terrestrial System (eastern Canada) of 1977 to the name provided by the newName
argument.

CSats77ToCsrsLog ATS77 TO CSRS LOG function
Const char * EXP_LVL7 CSats77ToCsrsLog (Const double 11_77 [2])

Use this function to obtain a pointer to a string which contains the name of the file (from the Geodetic
Data Catalog) which would be used to convert the point provided by the II_77 argument. A null pointer
is returned if the ATS77 to CSRS conversion system has not been initialized, or the point provided is
not within the coverage of the ATS77 to CSRS conversion system.

CSats77ToCsrs ATS77 TO CSRS conversion
int CSats77ToCsrs (double 11 _csrs [3],Const double 11_77 [3])

CSats77ToCsrs will convert the geographic coordinate provided by the ll_ 77 argument to the equivalent
CSRS (Canadian Spatial Reference System) values and return the results in the array indicated by the
ll_csrs argument. CSats77Init must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSats77ToCsrs will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSats77Init prior to calling CSats77ToCsrs. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by an ATS77 coordinate that is outside of the region
covered by the data files listed in the Geodetic Data Catalog file used to initialize the ATS77 system.

CScsrsToAts77 CSRS TO ATS77 conversion
int CscsrsToAts77 (double 11_77 [3],Const double 1l1_csrs [3])

CScsrsToAts77 will convert the geographic coordinate provided by the ll_csrs argument to the
equivalent ATS77 values and return the results in the array indicated by the Il_77 argument.
CSats77Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CScsrsToAts77 will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSats77Init prior to calling CScsrsToAts77. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by an ATS77 coordinate that is outside of the region
covered by the ATS77 CSRS data files listed in the Geodetic Data Catalog file used to initialize the
ATS77 system.

Canadian Spatial Reference System

Use this transformation to convert coordinates based on the North American Datum of 1983 (NAD83)
to coordinates based on the Canadian Spatial Reference System. Thistransformation is based on
datum shift data filesin the Canadian National Transformation, Version 2, format which arelisted in
the in the Geodetic Data Catalog named Nad83ToCsrs.gdc.

CScsrsCls Canadian Spatial Reference System CLoSe
void CSnadCls (void)

Use CsnadCls to release all resources allocated by a previous call to CScsrs/nit. Obviously,
subsequent calls to the CSnad83ToCsrs or CScsrsToNad83 will fail until such time that CScsrsinitis
called again.

Chapter 4 Chatper 4 -- Library Functions 273

CScsrslnit Canadian Spatial Reference System INITialize
int CScsrslnit (void)

Use this function to initialize the NAD83CSRS conversion system. The initialization will occur using the
Geodetic Data Catalog file named by the contents of the cs_CsrsName global variable. CScsrsinit
returns zero on success and —1 on failure. Failure is usually caused by a problem encountered in
processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_csrsName Canadian Spatial Reference System NAME
void CS_csrsName (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Canadian Spatial Reference System to the name provided by the newName argument.

CSnad83ToCsrsLog NAD83 TO CSRS LOG function
Const char* CSnad83ToCsrsLog (Const double 11_83 [2])

Use this function to obtain a pointer to a string which contains the name of the file (from the Geodetic
Data Catalog) which would be used to convert the point provided by the Il_83 argument. A null
pointer is returned if the NAD83 to CSRS conversion system has not been initialized, or the point
provided is not within the coverage of the NAD83 to CSRS conversion system.

CSnad83ToCsrs NAD83 TO Canadian Spatial Reference System conversion
int CSnad83ToCsrs (double 11 _csrs [3],Const double 11_83 [3])

CSnad83ToCsrs will convert the geographic coordinate provided by the II_83 argument to the
equivalent CSRS values and return the results in the array indicated by the ll_csrs argument.
CScsrsinit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad83ToCsrs will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CScsrsinit prior to calling CSnad83ToCsrs. A positive 1 is returned in the
case of a soft failure. A soft failure us caused by a NAD83 coordinate that is outside of the region
covered by the CSRS data files listed in the Geodetic Data Catalog file used to initialize the CSRS
system.

CScsrsToNad83 Canadian Spatial Reference System TO NAD83 conversion
int CScsrsToNad83 (double 11_83 [3],Const double 1l _csrs [3])

CScsrsToNad83 will convert the geographic coordinate provided by the Il_csrs argument to the
equivalent NAD83 values and return the results in the array indicated by the 1I_83 argument.
CScsrsinit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CScsrsToHarn will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CScsrsinit prior to calling CScsrsToNad83. A positive 1 is returned in the
case of a soft failure. A soft failure us caused by a CSRS coordinate that is outside of the region
covered by the HARN data files listed in the Geodetic Data Catalog file used to initialize the HARN
system.

274

CS-MAP User's Guide User's Guide

High Precision Gps Network

Use this transformation to convert coordinates based on the North American Datum of 1983 (NAD83)
to coordinates based on the High Accuracy Reference Network (HARN). In the past, this has been
referred to as High Precision GPS Network (HPGN) and NAD83/91. Thistransformation is based on
datum shift datafilesin the NADCON LAS/LOS format which are listed in the in the Geodetic Data
Catalog named Nad83ToHarn.gdc.

These functions are defined in the module named CS hpgn.c.

CSharnCls HARN CLoSe
void CSharnCls (void)

Use CSharnClsto release all resources allocated by a previous call to CSharninit. Obviously,
subsequent calls to the CSnad83ToHarn or CSharnToNad83 will fail until such time that CSharninitis
called again.

CSharnlinit HARN INITialize
int CSharnlnit (void)

Use this function to initialize the NAD83HARN conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_HarnName global variable.
CSharninitreturns zero on success and —1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSnad83ToHarnLog NAD83 TO HARN LOG
Const char* CSnad83ToHarnLog (Const double 11 _83 [3])

Use this function to obtain a pointer to a string which contains the name of the file (from the Geodetic
Data Catalog) which would be used to convert the point provided by the II_83 argument. A null
pointer isreturned if the NAD83 to HARN conversion system has not been initialized, or the point
provided is not within the coverage of the NAD83 to HARN conversion system.

CSharnToNad83 HARN TO NAD83 conversion
int CSharnToNad83 (double 11_83 [3],Const double 11 _harn [3])

CSharnToNad83 will convert the geographic coordinate provided by the ll_harn argument to the
equivalent NAD83 values and return the results in the array indicated by the 1I_83 argument.
CSharn/nit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSharnToNad83 will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSharninit prior to calling CSharnToNad83. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by a HARN coordinate that is outside of the region
covered by the HARN data files listed in the Geodetic Data Catalog file used to initialize the HARN
system. A positive 2 is returned in the case of a coverage failure where a fallback datum definition is
used to supply approximate results.

CSnad83ToHarn NAD83 TO HARN conversion
int CSnad83ToHarn (double 11 _harn [3],Const double 11_83 [3])

CSnad83ToHarn will convert the geographic coordinate provided by the 1I_83 argument to the
equivalent HARN argument and return the results in the array indicated by the ll_harn argument.

Chapter 4 Chatper 4 -- Library Functions 275

CSharni/nit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad83ToHarn will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSharn/nit prior to calling CSnad83ToHarn. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by a NAD83 coordinate that is outside of the region
covered by the HARN data files listed in the Geodetic Data Catalog file used to initialize the HARN
system. A positive 2 is returned in the case of a coverage failure where a fallback datum definition is
used to supply approximate results.

North American Datum of 1983

Thistransformation converts geographic coordinates based on the North American Datum of 1927 to
geographic coordinates based on the North American Datum of 1983. Two different file formats are
supported:

1 NADCON LAS/LOS format files as generated and distributed by the US National Geodetic Survey
(NGS); and

2 Canadian National Transformation, Version 2, format files as distributed by Geomatics Canada.

The files which are to be used must be listed in the Geodetic Data Catal og named Nad27ToNad83.gdc.

Clearly, the files published by the US NGS apply to US geography (i.e. the 48 conterminous states,
Alaska, Hawaii, etc.), and the file(s) distributed by Geomatics Canada apply to Canadian geography.
Through the use of the Geodetic Data Catalog feature, CS-MAP presents NAD83 to the user asasingle
entity.

Note that there is substantial overlap between the data files supplied by these two different sources.
The fileswill not produce identical results. Thereforeit isimportant that the features of the Geodetic
Data Catalog be used to obtain the results desired.

CSnadCls NADcon CLoSe
void CSnadCls (void)

Use CsnadClsto release all resources allocated by a previous call to CSnadinit. Obviously, subsequent
calls to the CSnad27ToNad83 or CSnad83ToNad27 will fail until such time that CSnad/nitis called again.

CSnadInit NADcon INITialize
int CSnadlnit (void)

Use this function to initialize the NAD27NAD83 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_NadName global variable. CSnad/nit
returns zero on success and —1 on failure. Failure is usually caused by a problem encountered in
processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSnad27ToNad83Log NAD27 TO NAD83 LOG
Const char* CSnad27ToNad83Log (Const double 11_27 [2])

276

CS-MAP User's Guide User's Guide

Given aNADZ27 based geographic point by the ll_27 argument, CSnad27ToNad83Log returns a pointer
to a static string which contains the name of the grid shift file which would be used to convert the point
to NAD83. A null pointer isreturned for any type of error. Errors are usually caused by afailure to
initialize the NADZ27 to NAD83 conversion system or if the provided point is not within the coverage
of the NAD27 to NAD83 transformation system.

CSnad27ToNad83 NAD27 TO NAD83 conversion
int CSnad27ToNad83 (double 11_83 [3],Const double 11_27 [3])

CSnad27ToNad83 will convert the geographic coordinate provided by the II_27 argument to the
equivalent NAD83 argument and return the results in the array indicated by the 1I_83 argument.
CSnadlnit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad27ToNad83 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnadlnit prior to calling CSnad27ToNad83. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a NAD27 coordinate that is outside of
the region covered by the NADCON data files listed in the Geodetic Data Catalog file used to initialize
the NADCON system. A positive 2 is returned if the point provided by the 1l_27 argument is outside
the coverage of the NAD27 to NAD83 transformation system and the fallback datum was used to
produce approximate results.

CSnad83ToNad27 NAD83 TO NAD27 conversion
int CSnad83ToNad27 (double 11_27 [3],Const double 11 _83 [3])

CSnad83ToNad27 will convert the geographic coordinate provided by the 1I_83 argument to the
equivalent NAD27 argument and return the results in the array indicated by the 1l_27 argument.
CSnad/nit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnad83ToNad27 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnadlnit prior to calling CSnad83ToNad27. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a NAD83 coordinate that is outside of
the region covered by the NADCON data files listed in the Geodetic Data Catalog file used to initialize
the NADCON system. A positive 2 is returned if the point provided by the 1I_83 argument is outside
the coverage of the NAD27 to NAD83 transformation system and the fallback datum was used to
produce approximate results.

New Zealand Geodetic Datum of 1949

This transformation converts geographic coordinates based on the New Zea and Geodetic Datum of
1949 to geographic coordinates based on the New Zealand Geodetic Datum of 2000. The conversionis
based on grid shift files which are in the in the Canadian National Transformation, Version 2, format.
The files which are to be used must be listed in the Geodetic Data Catal og named Nzgd49ToNzgd2k.gdc.

This set oif functions relies on the Geodetic Data Catal og concept, even though thereisasinglefile,
and it isunlikely that there would ever be more than onefile.

CSnzgd49Cls New Zealand Geodetic Datum of 1949 CLoSe
void CSnzgd49Cls (void)

Use CSnzgd49Cls to release all resources allocated by a previous call to CSnzgd49/nit. Obviously,

Chapter 4 Chatper 4 -- Library Functions 277

subsequent calls to the CSnzgd49ToNzgd2K or CSnzgd2KToNzgd49 will fail until such time that
CSnzgd49initis called again.

CSnzgd49Init New Zealand Geodetic Datum of 1949 INITialize
int CSnzgd49lnit (void)

Use this function to initialize the NZGD49NZGD2000 conversion system. The initialization will occur
using the Geodetic Data Catalog file named by the contents of the cs_Nzgd49Name global variable.
CSnzgd49Initreturns zero on success and —1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CS_nzgd49Name New Zealand Geodetic Datum of 1949 NAME
void CS_nzgd49Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catal og associated with the New
Zealand Geodetic Datum of 1949 to the name provided by the newName argument.

CSnzgd2KToNzgd49 NZGD2K TO NZGD49 conversion
int CSnzgd2KToNzgd49 (double 11_49 [3],Const double 11_2k [3])

CSnzgd2KToNzgd49 will convert the geographic coordinate provided by the |l_2k argument to the
equivalent NZGD49 argument and return the results in the array indicated by the 1I_49 argument.
CSnzgd49init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnzgd2KToNzgd49 will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnzgd49init prior to calling CSnzgd2KToNzgd49. A positive 1
is returned in the case of a soft failure. A soft failure us caused by a NZGD2000 coordinate that is
outside of the region covered by the NZGD49 NZGD2000 data files listed in the Geodetic Data
Catalog file used to initialize the NZGD49 system. A positive 2 is returned in the case of a coverage
failure where a fallback datum definition is used to supply approximate results.

CSnzgd49ToNzgd2K NZGD49 TO NZGD2K conversion
int CSnzgd49ToNzgd2K (double 11_2k [3],Const double 11_49 [3])

CSnzgd49ToNzgdZK will convert the geographic coordinate provided by the 1I_49 argument to the
equivalent NZGD2000 values and return the results in the array indicated by the II_2k argument.
CSnzgd49Init must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSnzgd49ToNzgd2K will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSnzgd49init prior to calling CSnzgd49ToNzgd2K. A positive 1
is returned in the case of a soft failure. A soft failure us caused by a NZGD49 coordinate that is
outside of the region covered by the NZGD49 data files listed in the Geodetic Data Catalog file used to
initialize the NZGD49 system. A positive 2 is returned in the case of a coverage failure where a
fallback datum definition is used to supply approximate results.

278

CS-MAP User's Guide User's Guide

World Geodetic System of 1972

This transformation converts geographic coordinates based on World Geodetic System of 1972
(WGST72) to geographic coordinates based on the World Geodetic System of 1984 (WGS84). This
transformation isanalytical. That is, some simple formulas are available and no data files (or Geodetic
Data Catalog files) are necessary.

CSwgs72284 WGS72 TO wgs84
int CSwgs72284 (Const double 11_72 [2],double 11_84 [2]);

CSwgs72284 will convert the WGS-72 based latitude and longitude provided in the Il_72 array to their
equivalent WGS-84 values and return the result in the 1I_84 array. LI_72 and 1I_84 may be the same
array. In these arrays, the first element is the longitude and the second element is the latitude.
Longitude and latitudes must be given in degrees where negative values indicate west longitude and
south latitude. CSwygs72284 returns FALSE to indicate a successful conversion.

ERRORS

CSwygs72284 returns FALSE to indicate a successful conversion. Future versions of CSwgs72284 may
return TRUE to indicate a failure of some sort.

CSwgs8472 WGS84 to wgs72
int CSwgs8472 (Const double 11_84 [2],double 11_72 [2]);

CSwgs8472 iteratively calls CSwgs72284 in order to convert the WGS-84 geographic coordinates given
by the 1I_84 argument to an equivalent pair of WGS-72 coordinates. The results are returned in the
I_72 array. LI_84 and Il_72 may be the same array. In both arrays, the first element is the longitude
and the second element is the latitude. Values must be in degrees where negative values are used to
indicate west longitude and south latitude. CSwgs8472 returns FALSE to indicate a successful
conversion.

ERRORS

CSwys8472 returns TRUE and sets cs_Error appropriately if any of the following conditions are
encountered during the calculations:

cs_ WGS_CNVRG The iterative calculation of the WGS-72 values failed to
converge after six iterations.

Chapter 4 Chatper 4 -- Library Functions 279

North American Datum of 1983

For most practical applications, the North American Datum of 1983 (NADS83) and the World Geodetic
System of 1984 (WGS84) are the same. These are two very precise measurements of the same thing
by two different organizations using similar, but not identical, techniques. Thus, there is significant
debate as whether there are any significant differences between the two.

CS-MAP considers NAD83 and WGS84 to be the same. thisistrue for the reason given above, and

al so because we have not located (as yet) atransformation which can be used to convert between these
two. (The absence of such a published conversion leads us to believe that everyone else also considers
these two datums to be the same.)

However, in order to make it easy for an application programmer to institute a transformation for this
conversion, two stub functions are incorporated into CS-MAP which are called whenever a
transformation would be appropriate.

CSnad8384 NAD38 to wgs84
int CSnad8384 (Const double 11 _83 [2],double 11_84 [2]);

Currently, CSnad8384 simply copies the contents of the 1I_83 array to the II_84 array and returns
FALSE to indicate that it did so successfully.

There are differences between NAD83 and WGS 84. However, both are very accurate measurements
of the same thing. Therefore, the differences are slight and are within the tolerance of error associated
with WGS-84. Currently, there are no generally accepted techniques for converting one to the other.
This function is a hook to provide such conversion should a generally recognized technique become
available in the future.

ERRORS

CSnad8384 will FALSE to indicate success. Future versions of CSnad8384 may return a TRUE value to
indicate an error of some sort.

CSwgs8483 WGS84 to nad 83
int CSwgs8483 (Const double 11 _84 [2],double 11 _83 [2]);

Currently, CSwgs8383 simply copies the contents of the Il_84 array to the II_83 array and returns
FALSE to indicate that it did so successfully.

There are differences between NAD83 and WGS 84. However, both are very accurate measurements
of the same thing. Therefore, the differences are slight and are within the tolerance of error associated
with WGS-84. Currently, there are no generally accepted techniques for converting one to the other.
This function is a hook to provide such conversion should a generally recognized technique become
available in the future.

ERRORS

CSwgs8483 will FALSE to indicate success. Future versions of CSwgs8483 may return a TRUE value
to indicate an error of some sort.

280

CS-MAP User's Guide User's Guide

Geocentric Datum of Australia, 1994

CSgda%4ToWgs84 Gdad4 to WGS84
int CSgda94ToWgs84 (Const double 11 _wgs84 [3],double 11 _gda94 [3]);

Currently, CSgda94ToWgs84 simply copies the contents of the ll_gda94 array to the ll_wgs84 array
and returns FALSE to indicate that it did so successfully.

There are differences between GDA94 and WGS84. However, the differences are slight, and
considering them to be the same produces acceptable results for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSgda94ToWgs84 will FALSE to indicate success. Future versions of CSgda94ToWgs84 may return a
TRUE value to indicate an error of some sort.

CSwgs84ToGda%94 WGS84 To GDA9%4
int CSwgs84ToGda94 (Const double 11 _gda94 [3],double 11 _wgs84 [3]);

Currently, CSwgs84ToGda94 simply copies the contents of the Il_wgs84 array to the ll_gda94 array
and returns FALSE to indicate that it did so successfully.

There are differences between GDA94 and WGS84. However, the differences are slight, and
considering them to be the same produces results acceptable for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSwgs84ToGda94 will FALSE to indicate success. Future versions of CSwgs84ToGda94 may return a
TRUE value to indicate an error of some sort.

Geodetic Datum of New Zealand, 2000

CSnzgd
int CSnzgd2KToWgs84 (Const double 11 _wgs84 [3],Const double 11 _nzgd2k [3]);

Currently, CSnzgdZkToWgs84 simply copies the contents of the Il_nzgd2k array to the Il_wgs84 array
and returns FALSE to indicate that it did so successfully.

There are differences between NZGD 2000 and WGS84. However, the differences are slight, and
considering them to be the same produces acceptable results for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

Note, the 'K' in this function name is an uppercase 'K'.

ERRORS

CSnzgd2K ToWgs84 will FALSE to indicate success. Future versions of CSnzgd2K ToWgs84 may return
a TRUE value to indicate an error of some sort.

Chapter 4 Chatper 4 -- Library Functions 281

CSwgs84ToNzgd2k WGS84 to NZGD2000
int CSwgs84Tonzgd2K (Const double 11 _nzgd2k [3],Const double 11 _wgs84 [3]);

Currently, CSwgs84Tonzgd2K simply copies the contents of the Il_wgs84 array to the |Il_nzgd2k array
and returns FALSE to indicate that it did so successfully.

There are differences between NZGD 2000 and WGS84. However, the differences are slight, and
considering them to be the same produces results acceptable for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

Note, the 'K' in this function name is an uppercase 'K'.

ERRORS

CSwgs84Tonzgd2K will FALSE to indicate success. Future versions of CSwgs84Tonzgd2K may return a
TRUE value to indicate an error of some sort.

European Terrestrial Reference System of 1989

CSetrf89ToWgs84 ETRF89 To WGS84
int CSetrf89ToWgs84 (Const double 11_wgs84 [3],double Il _etrf89 [3]);

Currently, CSetrf89ToWgs84 simply copies the contents of the llI_etrf89 array to the ll_wgs84 array
and returns FALSE to indicate that it did so successfully.

There are differences between ETRF89 and WGS84. However, the differences are slight, and
considering them to be the same produces acceptable results for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSetrf89ToWgs84 will FALSE to indicate success. Future versions of CSetrf89ToWgs84 may return a
TRUE value to indicate an error of some sort.

CSwgs84ToEtrf89 WGS84 To ETRF89
int CSwgs84ToEtrf89 (Const double 11 _etrf89 [3],Const double 11 _wgs84 [3]);

Currently, CSwgs84ToELtrf89 simply copies the contents of the ll_wgs84 array to the Il_etrf89 array
and returns FALSE to indicate that it did so successfully.

There are differences between ETRF89 and WGS84. However, the differences are slight, and
considering them to be the same produces results acceptable for most practical applications. This
function is provided as a hook for those who wish to implement a transformation for this conversion.

ERRORS

CSwgs84ToEtrf89 will FALSE to indicate success. Future versions of CSwgs84ToEtrf89 may return a
TRUE value to indicate an error of some sort.

282

CS-MAP User's Guide User's Guide

European Datum of 1950

This transformation converts geographic coordinates based on the European Datum of 1950 to
geographic coordinates based on the European Terrestrial Reference System of 1989. Currently, a
single file format, the Canadian National Transformation Version 2, is supported. The fileswhich are
to be used must be listed in the Geodetic Data Catalog named Ed50ToEtrf89.gdc. As of this writing,
only one datafileis known to exist. That file covers Spain, and is not yet declared official.

Note that is very likely that there will be substantial overlap between the data files supplied by the
various governmental agencies. Since these will be produced by different governments, it is even more
likely that the results produce in the regions of overlap will be significantly different. Thereforeitis
important that the features of the Geodetic Data Catal og be used to obtain the results desired.

CSed50Cls Eurpean Datum of 1950 CLoSe
void CSed50CIs (void)

Use CSed50CIs to release all resources allocated by a previous call to CSed50/nit. Obviously,
subsequent calls to the CSed50ToEtrf89 or CSetrf89ToLd50 will fail until such time that CSed50/nit is
called again.

CSed50Init European Datum of 1950 INITialize
int CSed50Init (void)

Use this function to initialize the ED50 to ETRF89 conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Ed50Name global variable.
CSed50Init returns zero on success and —1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

The default Geodetic Dataum Catalog file name is Ed50ToEtrf89.gdc.

CS_ed50Name European Datum of 1950 NAME
void CS_ed50Name (Const char *newName)

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
European Datum of 1950 to the name provided by the newName argument.

CSed50ToEtrf89 ED50 To ETRF89 conversion
int CSed50ToEtrf89 (double 11 _etrf89 [3],Const double 11 _ed50 [3])

CSed50ToEtrf89 will convert the geographic coordinate provided by the II_ed50 argument to the
appropriate ETRF89 equivalent and return the results in the array indicated by the ll_etrf89 argument.
CSed50/nit must have been successfully called prior to using this function. This is (currently) a two
dimensional function, the third element of each array is currently ignored.

CSed50ToEtrf89 will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSed50/nit prior to calling CSed50ToEtrf89. A positive 1 is returned in
the case of a soft failure. A soft failure is caused by a ED50 coordinate that is outside of the region
covered by the data files listed in the Geodetic Data Catalog file used to initialize the transformation. A
positive 2 is returned in the case of a coverage failure where a fallback datum definition is used to
supply approximate results.

CSetrf89ToEd50 ETRF89 To ED50 conversion
int CSetrf89ToEd50 (double 11 _ed50 [3],Const double Il _etrf89 [3])

Chapter 4 Chatper 4 -- Library Functions 283

CSetrf89ToLEd50 will convert the geographic coordinate provided by the ll_etrf89 argument to the
equivalent ED50 geographic coordinates and return the results in the array indicated by the Il_ed50
argument. CSed50/nit must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSetrf89ToEd50 will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSed50/nit prior to calling CSetrf89ToLd50. A positive 1 is returned in
the case of a soft failure. A soft failure us caused by a ETRF89 coordinate that is outside of the region
covered by the ED50 to ETRF89 data files listed in the Geodetic Data Catalog file used to initialize the
ED50 system. A positive 2 value is returned if the point to be converted was outside the coverage of
the data files available and the fallback datum was used to calculate approximate results.

Tokyo Datum

This transformation converts geographic coordinates based on the Tokyo Datum to geographic
coordinates based on the Japanese Geodetic Datum of 2000. Currently, asinglefile format is
supported, atext format devised by an agency of the Japanese government. It appears that thereisa
single large file which covers the entire nation of Japan. Due to the file format, it is easy to produce
smaller regional files. Thus, it may be that you will have severa files to work with, and a Geodetic
Data Catalog has been implemented for this purpose. The fileswhich are to be used must belisted in
the Geodetic Data Catal og named TokyoToJgd2k.gdc.

Note that usually the naming convention of this group usually uses the name of the source datum
(Tokyointhiscase). Dueto arather strange sequence of events, the functions associated with this
transformation got named for the target datum, Japanese Geodetic Datum of 2000 (JGD2K). While an
inconvenience, it certainly does effect the quality of the numeric results.

Note that the data files are actually normal text files. Since there does not seem to be any guarantees as
to the fixed length nature of the recordsin these files, the CS-MAP implementation converts the text
fileto abinary formonitsfirst use. This enables random access to the data in the file without hogging
up virtual memory space. Thus, the first time this transformation is used, you are liekly to experience a
slight pause as the text to binarty conversion takes place. CS-MAP will always check the dates and
times on the two files, and regenerate the binary version of the file when it appears appropriate.

CSjgd2kCls Japanese Geodetic Datum of 2000 CLoSe
void CSjgd2kCls (void)

Use CSjgd2kCls to release all resources allocated by a previous call to CSjga2k/nit. Obviously,
subsequent calls to the CSjgd2kToTokyo or CStokyoToJgdZk will fail until such time that CSjgd2kinitis
called again.

CSjgd2kinit
int CSjgd2kinit (void)

Use this function to initialize the Tokyo to JGD2K conversion system. The initialization will occur using
the Geodetic Data Catalog file named by the contents of the cs_Jgd2kName global variable.
CSjgdZkinit returns zero on success and —1 on failure. Failure is usually caused by a problem
encountered in processing the Geodetic Data Catalog, or the data files listed in the catalog file.

CSj
void CS_jgd2kName (Const char *newName)

284

CS-MAP User's Guide User's Guide

Use this function to change the file name portion of the Geodetic Data Catalog associated with the
Japanese Geodetic Name of 2000 to the name provided by the newName argument.

CStokyoToJgd2k TOKYO
int CStokyoToJdgd2k (double 11_jgd2k [3],Const double 11_tokyo [3])

CStokyoToJgdZk will convert the geographic coordinate provided by the ll_tokyo argument to the
equivalent JGD 2000 geographic coordinate and return the results in the array indicated by the
ll_jgd2k argument. CSjgd2kinit must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CStokyoToJgdZk will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSjga2kinit prior to calling CStokyoToJgaZk. A positive 1 is
returned in the case of a soft failure. A soft failure is caused by a tokyo coordinate that is outside of the
region covered by the data files listed in the Geodetic Data Catalog file used to initialize the
transformation. A positive 2 is returned in the case of a coverage failure where a fallback datum
definition is used to supply approximate results.

CSjgd2kToTokyo JGD2000 to TOKYO conversion
int CSjgd2kToTokyo (double 11 _tokyo [3],Const double 11_jgd2k [3])

CSjgd2kToTokyo will convert the geographic coordinate provided by the Il_jgd2k argument to the
equivalent tokyo geographic coordinates and return the results in the array indicated by the Il_tokyo
argument. CSjgdZkinit must have been successfully called prior to using this function. This is
(currently) a two dimensional function, the third element of each array is currently ignored.

CSjgd2kToTokyo will return zero on success and a —1 for a hard failure. A hard failure is usually
caused by a failure to successfully call CSjga2kinit prior to calling CSjgd2kToTokyo. A positive 1 is
returned in the case of a soft failure. A soft failure us caused by a JGD 2000 coordinate that is outside
of the region covered by the data files listed in the Geodetic Data Catalog file used to initialize the
Tokyo system. A positive 2 value is returned if the point to be converted was outside the coverage of
the data files available and the fallback datum was used to calculate approximate results.

Chapter 4 Chatper 4 -- Library Functions 285

Nouvelle Triangulation de la France (NTF)

This transformation transforms Réseau Géodésique Francais of 1993 (RGF93) based coordinates to
Nouvelle Triangulation de la France (NTF) based coordinates. This transformation is unique in four

way’s.

First, most transformations of this sort convert from the older datum to the newer datum. In this case,
the conversion is actually the other way. That is, the algorithms and data files are designed to convert
from the newer datum to the older datum. Since we are converting from RGF93 to NTF, the function
naming uses rgf9o3 as the base name.

Second, most transformations of this type use data files to carry the actual latitude and longitude shifts
between the two datums (often in seconds of arc). In this case, the shifts are maintained in the datafile
in the form of geocentric cartesian coordinate translations in meters. That is, upon examining the data
file, and performing some bi-linear interpolations, the result is the equivalent of a Three Parameter
Transformation which is customized for each point in the domain of the transformation (i.e. coverage
of the datafile).

Third, the supplied datafileis actually anormal text file. Therefore, for performance and reliability
reasons, the CS-MAP implementation will read the entire data file into memory and organize the data
in such aform as to maximize performance and minimize disk thrashing.

Fourth, since there is only one known data file, and the client for whom it was originally implemented
was in ahurry, there is no Geodetic Data Catalog for this transformation. Thisis also dueto the fact
that many of the Geodetic Data Catal og features do not apply due to the rather unique nature of this
transformation technique. So, there exists asingle datafile, it must be named gr3df97a.txt, and it must
reside in the primary data directory (i.e. the directory set by CS aftdr). Thisislikely to changein the
future.

Finally, note that the French produced a program which will perform these cal culations which can be
used to compare with CS-MAP results. In doing the inverse, the French program simply reversed the
direction of the translation in the Three Parameter Transformation. This produces fully acceptable
resultsin most cases, but does not produce the exact inverse of the forward calculation. The codein
CS-MAP includes two functions for calculating the inverse. A version which will produce the exact
inverseis commented out. The version which matches the results which are produced by the French
program is active by default in the distribution. Y ou pays your money, and you takes your choice.
This transformation isimplemented in a module named CS rgf93ToNitf.c.

Bugs

In addition to not using a Geodetic Data Catalog, this set of functions uses hardcoded ellipsoid
references to Clarke 1880 (actually, "CLRK-IGN") and GRS 1980. This hard coded references should,
perhaps, be replaced with references in a datum definition somewhere.

CSrgf93init RGF93 INITialize
int CSrgfa3ilnit (void)

286 CS-MAP User's Guide User's Guide

Use this function to initialize the Réseau Géodésique Francais of 1993 (RGF93) to Nouvelle
Triangulation de la France (NTF) conversion system. While likely to change in future releases, in
Release 11 there is no Geodetic Data Catal og associated with this tranformation. There is asingle data
file, it must be named and it must reside in the primary data directory.

Sincethisisatext file, and thus the integrity of fix length records is questionable, this function will
process the text file and produce a binary copy of it. This copying processis skipped if the date/time of
the binary file is newer that the date/time of the text file. This, there will be adlight pause the first time
thisfunction is called.

CSrgf93Init returns zero on success and —1 on failure. Failureisusualy caused by either not finding
the datafile in the primary data directory or a corrupted datafile. (Asthe datafileisatext file,
corruption of the file is quite easily accomplished, even by accident.)

While perhaps not necessary after the first call (and the generation of the binary copy of thefile, the
text file must remain in the primary directory for the system to work. (Although, | must admit that,
you can probably replace the text file with an empty file as long as the name and time stamp are

appropriate.)

CSrgf93Cls Réseau Géodésique Francais of 1993 CLoSe
void CSrgf93Cls (void)

Use CSrgrfd3Cisto release all resources allocated by a previous call to CSrgf93/nit. Obviously,
subsequent calls to the CSrgf93ToNtfor CSntfToRgf93 will fail until such time that CSrgf93/nitis called
again.

CSrgfa3ToNtf - RGF93 To NTF conversion
int CSrgfo3ToNtf (double 11_ntf [3],Const double 11_rgfo3 [3])

CSrgf93ToNtfwill convert the geographic coordinate provided by the Il_rgf93 argument to the
appropriate Nouvelle Triangulation de la France (NTF) equivalent and return the results in the array
indicated by the ll_ntf argument. CSrgf93/nit must have been successfully called prior to using this
function. This is (currently) a two dimensional function, the third element of each array is currently
ignored.

CSrgf93ToNtfwill return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSrgf93Init prior to calling CSrgf93ToNtf. A positive 1 is returned in the
case of a soft failure. A soft failure is caused by an Réseau Géodésique Francais of 1993 (RGF93)
coordinate that is outside of the region covered by the data file used in the transformation. (In future,
at such time as a Geodetic Data Catalog is implemented, a positive 2 return value will be possible and
will indicate that the fallback datum definition was used to obtain approximate results due to a
coverage failure.)

CSntfToRgf93 NTF to RGF93 conversion
int CSntfToRgf93 (double 11 _rgf93 [3],Const double 11_ntf [3])

CSntfToRgrd3 will convert the geographic coordinate provided by the Il_ntf argument to the equivalent
Réseau Géodésique Francais of 1993 (RGF93) geographic coordinates and return the results in the
array indicated by the ll_rgf93 argument. CSrgf93/nit must have been successfully called prior to
using this function. This is (currently) a two dimensional function, the third element of each array is
currently ignored.

Chapter 4 Chatper 4 -- Library Functions 287

CSntfToRgra3 will return zero on success and a —1 for a hard failure. A hard failure is usually caused
by a failure to successfully call CSrgf93/nit prior to calling CSntfToRgr93. A positive 1 is returned in the
case of a soft failure. A soft failure us caused by a Nouvelle Triangulation de la France (NTF)
coordinate that is outside of the region covered by the RGF93 to NTF data file used to in the
transformation. (In future, at such time as a Geodetic Data Catalog is implemented, a positive 2 return
value will be possible and will indicate that the fallback datum definition was used to obtain
approximate results due to a coverage failure.)

Microsoft MFC User Dialog Functions

The functions described in this section provide the means by which programmers in the Windows MFC
environment can display dialog boxes to accomplish common tasks with regard to using the CS-MAP
library. Obvioudly, these functions are not of much value in an environment other than Windows 32.

While the functions themselves are declared with normal 'C' linkage, they must access MFC using
"mangled" C++ linkage. For convenience, the C++ components of these functions are enclosed within
aconditional compile based on the ___CPP___ preprocessor constant. Therefore, should you desireto
have these functions compiled into your library, you will need to arrange for the__ CPP___
preprocessor constant to be defined.

CS_csDataDir Coordinate System DATA DIRectory dialog

int CS _csDataDir (void);
Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with a data directory dialog and enables the user to specify the
directory in which the dictionaries reside, and the file names assigned to the different dictionaries.
Users who routinely develop new and different coordinate systems enjoy being able to maintain a
"development" set of dictionaries separate from the "distribution” set.

Upon successful dismissal, this dialog will transfer the results of the dialog to the CS-MAP system
through the use of the CS_altdr, CS _csfnm, CS_dtfnm, and CS_elfnm functions. The return value
indicates the status of the check boxes included in the dialog. A value of zero indicates that neither
box was checked. The "one" bit is set if the "Save in .INI file" box was checked. The "two" bit is set if
the "Save in registry" box was checked.

BUGS

The function does not provide a means for disabling the check boxes for environments where they do
not apply.

CS_csDualBrowser Coordinate System DUAL BROWSER

int CS_csBrowser (char *csKeyName);

288 CS-MAP User's Guide User's Guide

Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which facilitates the selection of source
and target coordinate systems from the 1,000 or more contained in the Coordinate System Dictionary.
The dialog is self-contained and requires little, if any, help from the application programmer.

The csKeyName argument to CS_csBrowser must be a pointer to a character array of not less than 24
characters (use cs_KEYNM_DEF from cs_map.h). The csKeyName argument is used to provide the
source coordinate system key name that will be the initial content of the browser upon display. If the
initial value of the argument is not that of a valid coordinate system key name, CS_csBrowser displays
"LL" as a default.

CS_csBrowser will return IDOK (that's a Windows/MFC manifest constant) if the user dismissed the
dialog box with a valid selection. In this case, the selected key name is returned in the character array
pointed to by the argument. If the user dismisses the dialog box by any other means, IDCANCEL
(another Windows/MFC manifest constant) is returned, and the character array pointed to by the
argument remains unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csBrowser expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

CS_csBrowser Coordinate System BROWSER

int CS_csDualBrowser (char *srcKeyName,char *trgKeyName)

Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which facilitates the selection of two
coordinate systems from the 1,000 or more contained in the Coordinate System Dictionary. The dialog
enables the use to select two coordinate systems, the first being labeled the "Source Coordinate
Systems" and the second being labeled the "Target Coordinate System." The dialog is self-contained
and requires little, if any, help from the application programmer.

The argumentsto CS_csDualBrowser must be pointers to a character array of not lessthan 24 characters
(use cs_KEYNM_DEF from cs_map.h). CS_csDualBrowserwill use the value provided by the
srcKeyName argument as the key name of the coordinate system definition that is to be displayed as
the Source Coordinate System upon initial activation. Similarly, the value provided by the
trgkeyName argument will be that which is displayed as the Target Coordinate System upon initial
activation. If theinitial value of srcKeyName or trgkeyName is not that of avalid coordinate
system key name, CS_csDualBrowser displays "US48" and "LL27", respectively, as default values.

CS csDualBrowser will return IDOK (that's a Windows/MFC manifest constant) if the user dismissed
the dialog box with a valid selection. In this case, the key names as selected by the user are returned
in the character arrays pointed to by the srcKeyName and trgkeyName arguments. If the user
dismisses the dialog box by any other means, IDCANCEL (another Windows/MFC manifest constant)
is returned, and the contents of the character array pointer to by arguments remain unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS csDualBrowser expects to find the Help file in the same directory as the coordinate

Chapter 4 Chatper 4 -- Library Functions 289

system dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help
context integers used by this function are defined in cs_hlp.h.

CS_csEditor Coordinate System EDITOR dialog

void CS_csEditor (char *cskKeyName);

Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the examination,
modification, creation, and deletion of coordinate system definitions in the Coordinate System

Dictionary. Thedialog is self-contained and requires little (or no) interaction on the part of the
application programmer.

The single argument to CS_csEditor must be a pointer to a character array of not less than 24 characters
(use cs_KEYNM_DEF from cs_map.h). CS csEditor will use the value of this character array asthe
key name of the coordinate system definition that is to be displayed upon initia activation. Upon
dismissal, CS_csEditor will return in this array the key name of the coordinate system definition
displayed upon exit. If theinitial value of csKeyName is not that of avalid coordinate system key
name, CS_csEditor displays "USA48" as a default.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csEditor expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hip.h.

CS_dtEditor DaTum EDITOR dialog

void CS_dtEditor (char *dtKeyName);
Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the examination,
modification, creation, and deletion of datum definitions in the Datum Dictionary. The dialog is self-
contained and requires little (or no) interaction on the part of the application programmer.

The single argument to CS_dtEditor must be a pointer to a character array of not less than 24
characters (use cs_KEYNM_DEF from cs_map.h). CS_dtEditor will use the value of this character
array as the key name of the datum definition that is to be displayed upon initial activation. Upon
dismissal, CS_dtEditorwill return in this array the key name of the datum definition displayed upon exit.
If the initial value of dtKeyName is not that of a valid datum key name, CS_dltEditor displays "WGS84"
as a default.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_dtEditor expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in ¢s_hlp.h.

290 CS-MAP User's Guide User's Guide

CS_gdcEdit Geodetic Data Catalog EDITor

void CS _gdcEditor (char *gdcName);

Use this function to present to the user a dialog box which enables the examination and modification of
any Geodetic Data Catalog currently known to the system. In this case, known to the system means
any Geodetic Data Catalog file which resides in the general data directory established by acall to

CS altar.

The gdcName argument to CS_gadcEditor must be a pointer to a character array of not less than 64
characters (use cs_FNM_MAXLEN from cs_map.h). The gdcName argument is used to provide the
name of the Geodetic Data Catalog (sans extension) that will be the initial content of the editor upon
display. If theinitial value of the argument is not that of avalid Geodetic Data Catalog, CS_gdcEditor
displays "Nad27ToNad83" as a default.

Upon dismisal from the dialog box, CS_gdcEditor will cause the character array pointed to by the single
argument to contain the name of the last Geodetic Data Catalog display in the editor. It isadvisableto
cal ¢s_recvrimmediately before cakling this function, or after a return from this function, to cause
the release of al geodetic objects which may rely on the Geodetic Data Catalogs edited by the user.
Thiswill cause areconstruction of these objects using the possibly edited values in the Geodetic Data
Catalog files.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csBrowser expectsto find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify adifferent location and/or file. The help context
integers used by this function are defined in cs_hip.h.

CS_elEditor ELlipsoid EDITOR dialog

void CS_elEditor (char *elKeyName);
Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dialog which enables the examination,
modification, creation, and deletion of ellipsoid definitions in the Ellipsoid Dictionary. The dialog is self-
contained and requires little (or no) interaction on the part of the application programmer.

The single argument to CS_e/Editor must be a pointer to a character array of not less than 24
characters (use cs_KEYNM_DEF from cs_map.h). CS elEditor will use the value of this character
array as the key name of the ellipsoid definition that is to be displayed upon initial activation. Upon
dismissal, CS_elEditorwill return in this array the key name of the datum definition displayed upon exit.
If the initial value of elKeyName is not that of a valid datum key name, CS_e/Editor displays "WGS84"
as a default.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_el/Editor expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify a different location and/or file. The help context
integers used by this function are defined in cs_hlp.h.

Chapter 4 Chatper 4 -- Library Functions 291

CS_csTest Coordinate System TEST dialog

void CS _csTest (char *srcSystem,char *trgSystem,double srcXYZ [3]);
Use of thisfunction isvalid only in the Microsoft MFC environment.

This function presents the user with an MFC based GUI dial og which enables the conversion of single
keyboard coordinates from any coordinate system to another. The original purpose of this dialog was
to facilitate testing, but has been found to very useful for many other purposes.

The argumentsto CS_csTest determine the initial presentation of the dialog. Use the srcSystem
argument to specify theinitial source coordinate system key name and the trgSystem argument to
specify theinitial target coordinate system key name. Note that upon dismissal of the dialog, the last
user specified values are returned in these arrays. Therefore, these arguments must point to character
arrays that are not less than 24 charactersin length. Use the cs_ KEYNM_DEF manifest constant from
cs_map.hto define these arrays. CS_csTest uses the srcXYZ argument to initialize the source
coordinate values that are to be converted. Again, upon dismissal of the dialog, the last values entered
by the user for the source system coordinate values are returned in this array; therefore it must be
dimensioned at 3 (or more).

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS csTest expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify adifferent location and/or file. The help context
integers used by this function are defined in cs_hip.h.

CS _mgTest Military Grid TEST dialog

void CS_mgTest (char *elKeyName);
void CS_mgTestA (char *elKeyName, int* prec, long* latFrmt,long* IngFrmt);

292 CS-MAP User's Guide User's Guide

Both of these functions cause presentation of the MGRS Test/Cal culation dialog box to the user.

Inthe case of CS_mgTest, the ellipsoid selection isinitially set to that provided by the elKeyName
argument and all other valuesin the dialog are defaulted to hard coded values (i.e. zeros).

Inthe case of CS_mgTestA, initia values for precision, format of the display of latitude values, and the
format of the display of longitude values are proviuded by the prec, latFrmt, and IngFrmt arguments
respectively.

At such time that the user dismissesthe dialog box, CS_mgTestand CS_mgTestA will cause the key
name of the last selected ellipsoid to be copied to the character array pointed to by the elKeyName
arguemnt. CS_mgTestAwill also cause the prec, latFrmt, and IngFrmt values to be updated to the last
values used in the dialog.

Users specify aformat for the longitude and/or latitude display by entering alongitude and/or latitude
in the appropriate fields in the format which they desire to see the results displayed. Thismay be an
extra step for the user, but by remembering these settings asis possible with the A version of this
function, it does not need to be repeated (if the application remembers these values, of course).

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_csDualBrowser expects to find the Help file in the same directory as the coordinate
system dictionary. You can use CS_setHelpPath to specify adifferent location and/or file. The help
context integers used by this function are defined in cs_hip.h.

CS_dtSelector DaTum SELECTOR

int CS_dtSelector (char *dtKeyName);

Call this function to present the operator with an MFC based dialog box which can be used to select a
specific datum from the Datum Dictionary. The dtKeyName argument must point to a character array
of not less than 24 characters (use cs_KEYNM_DEF from cs_map.h). The key name contained in the
character array pointed to by the single argument will be presented to the user as the initial selection.

If thisvalueis not that of adatum definition in the dictionary, "WGS84" is displayed as a default.

CS_dtSelectorwill return IDOK (that's a Windows/MFC manifest constant) if the user dismissed the
dialog box with avalid selection. Inthis case, the selected key name is returned in the character array
pointed to by the argument. If the user dismisses the dialog box by any other means, IDCANCEL
(another Windows/M FC manifest constant) is returned, and the character array pointed to by the
argument remains unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_dtSelector expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify adifferent location and/or file. The help context
integers used by this function are defined in cs_hip.h.

CS elSelector ELipsoid SELECTOR

int CS_elSelector (char *elKeyName);

Chapter 4 Chatper 4 -- Library Functions 293

Call this function to present the operator with an MFC based dialog box which can be used to select a
specific elipsoid from the Ellipsoid Dictionary. The elKkeyName argument must point to a character
array of not less than 24 characters (use cs_KEYNM_DEF from cs_map.h). The key name contained in
the character array pointed to by the single argument will be presented to the user as the initia
selection. If thisvaueisnot that of a ellipsoid definition in the dictionary, "WGS84" is displayed as a
defaullt.

CS elSelectorwill return IDOK (that's a Windows/MFC manifest constant) if the user dismissed the
dialog box with avalid selection. In this case, the selected key name is returned in the character array
pointed to by the argument. If the user dismisses the dialog box by any other means, IDCANCEL
(another Windows/M FC manifest constant) is returned, and the character array pointed to by the
argument remains unchanged.

The dialog contains a Help button that is grayed out if the module cannot locate the Help file.
Normally, CS_elSelector expects to find the Help file in the same directory as the coordinate system
dictionary. You can use CS_setHelpPath to specify adifferent location and/or file. The help context
integers used by this function are defined in cs_hip.h.

CSwinhlp WINdows HelP

int CSwinhlp (void *hWnd,unsigned long context);

Use CSwinhjpto activate the Windows help program displaying the CS-MAP help file, cs-map.hlp. The
hWnd argument is the handle to the window that is requesting the help. The context argument is
used to select the specific article of help in the help file, see cs_hlp.h.

ERRORS

CSwinhip returns non-zero to indicate success, i.e. at least the WinHelp.exe executable and the cs-
map.hlp file were found and successfully started. CSwinhlp returns zero if a help screen could not be
displayed.

General Support Functions

This section contains descriptions of functions of ageneral support nature. These are used quite
liberally inside of CS-MAP. Y our application may find some of these useful.

CS_adjlpi ADJust angle to 2 PI

double CS_adjlpi (double az);

The az argument is assumed to be an angle in radians. CS_adjipireturns az after normalizing it to be
greater than or equal to -/2 and less than or equal to /2.

294 CS-MAP User's Guide User's Guide

CS adj180 ADJust angle to 180 degrees

double CS adj180 (double az);

The az argument is assumed to be an angle in degrees. CS_adj180returns az after normalizing it to
be greater than -180 and less than or equal to 180.

CS_adj270 ADJust angle to 270 degrees

double CS _adj270 (double az);

The az argument is assumed to be an angle in degrees. CS aaj270returns az after normalizing it to
be greater than -270 and less than or equal to +270.

CS_adj2pi ADJust angle to 2 PI

double CS adj2pi (double az);

The az argument is assumed to be an angle in radians. CS_adjZpireturns az after normalizing it to be
greater than - and less than or equal to .

CS_adj2pil ADJust angle to 2 Pl Inclusive

double CS_adj2pil (double az);

The az argument is assumed to be an angle in radians. CS_adj2pil returns az after normalizing it to
be greater than or equal to - and less than or equal to .

CS_adj90 ADJust angle to 90 degrees

double CS_adj90 (double az);

The az argument is assumed to be an angle in degrees. CS_adj90returns az after normalizing it to be
greater than -90 and less than or equal to 90.

CS_adjll ADJust Lat/Long

void CS_adjIl (double 11 [2]);

CS_adj//adjusts the longitude in the array provided by the Il argument (i.e. the first element of the
array) to be within the range of greater than -180 degrees and less than or equal to 180 degrees. The
latitude (i.e. the second element of the array) is adjusted to be within the range of greater than -90
degrees and less than or equal to 90 degrees. Of course, the values provided must be in degrees.

Latitude values that indicate a traversal of the pole cause the longitude to be properly adjusted. For
example, a coordinate pair of [90,135] is adjusted to [-90,45].

Chapter 4 Chatper 4 -- Library Functions 295

CS_bins BINary Search

int CS bins (int fd,long start, long eof,int rs,Const void *rec,
int (*comp)(Const void *,Const void¥*));

CS_bins will perform a binary search on the sorted file of fixed length records indicated by the file
descriptor fd. Rs must specify the size, in bytes, of the record in the file, and rec must point to a
record whose contents indicate the specific record that is to be searched for. The records are
compared by calling the function comp with pointers to the records to be compared. Comp must
return a value which is less than zero, zero, or greater than zero to indicate that the first record
precedes, matches, or follows the second record respectively. (Strcmpis an acceptable compare
function.)

The extent of the file that is searched is limited to the records which start at the file position indicated
by start and end before the file position indicated by eof. This enables files with magic numbers and
the like to be "bins'ed". If the value of start is less than zero, the current position of the file is used as
the start position. If the value of eof is less than or equal to zero, the current end of file is used as the
end of the search extent.

CS_binsreturns a TRUE (i.e. +1) value if a record that matches the record provided (rec) was located;
and returns a FALSE (i.e. zero) value if no such record could be located.

Upon a successful return from CS_bins (i.e. a matching record was located), the file will be positioned
such that a read will produce the matched record. If more than one record existed with a matching
key, the read will always produce the first of such records. Upon an unsuccessful return, (i.e. no
matching record was found) the file will be positioned at the point where the record would be if the
desired record had existed.

ERRORS

CS binswill return a -1 and set cs_Error appropriately if any of the following conditions are detected:

¢cs_NO_MEM Insufficient memory existsto malloc a
buffer of rs bytesfor 1/0O purposes.

cs_IOERR A physical I/O error was encountered
while performing the search.

cs_INV_FILE A read of rs bytesfailed to produce
same even though the start and eof
indicated that it should have.

CS_bswap Byte SWAPer

int CS bswap (void *rec,Const char *frmt);

CS bswap swaps bytes in a data record from little endian to big endian byte order, but only if the
current system is a big endian byte order system. The frmt argument specifies the size and data types

296

CS-MAP User's Guide User's Guide

contained in the data record that is pointed to by the rec argument as described below. The swapping
occurs in place in the data area pointed to by rec.

The frmt argument points to an ordinary null terminated character string. In the simple case, each
character in the string defines a data type:

¢ aone byte character (no swapping)

S a 16 bit integer

a 32 bit long integer

f a32 bit IEEE redl (i.e. afloat)

d a64 bit IEEE redl (i.e. adouble)

Case is significant, all characters must be lower case

Any such specification can be preceded by a decimal number to indicate an array of the item type that
terminates the number. For example, "32c4l6ds" describes a record which consists of a 32 character
array, an array of 4 longs, an array of 6 doubles, followed by a single short. Thus, with regard to
swapping, the form of a structure can be easily and efficiently defined for this function.

CS bswap has been written under the assumption that all data files containing binary data will be
written using the little endian byte order. Thus, if CS_bswap detects that the current system is a little
endian system, it does nothing successfully. If it detects that the current system is a big endian
system, it swaps the bytes of all shorts, longs, floats, and doubles in the record. Obviously, it does
nothing to character arrays.

CS bswap returns a zero if no swapping was performed due to the fact that it determined that the
current system is a little endian machine. It returns positive one if swapping was performed indicating
that the current system is a big endian machine. It returns a -1 to indicate that the byte ordering of the
current system is not supported.

CS bswap uses a single 4 byte long to determine the byte ordering of the current system. Further, it
only supports little endian and big endian byte orderings. The rather strange byte orderings that exist
on some machines, such as some older DEC machines, are not supported.

The swap algorithm from little to big endian is exactly the same as big to little. l.e. the same function
does either one. Therefore, there are no arguments to tell CS_bswap what the end result is supposed
to be. ltis up to the calling module to know what it's got, and what CS_bswap will return. Release 6.0
of CS-MAP, and later releases, assume that all binary data read from disk is in little endian order. It
further assumes that all data written to disk will be in little endian order.

To disable dynamic byte swapping for whatever reason, simply write a stub for this function that does
nothing, returns zero, and force link this stub before the linker searches the CS-MAP library.

BUGS

This function will not successfully swap bytes for some older machines, such as the PDP-11 or the
VAX.

Chapter 4 Chatper 4 -- Library Functions 297

CS_cschk Coordinate System CHecK

int CS _cschk (Const struct cs_Csdef_ *cs _def,unsigned short chk flg,int
err_list [],
int list_sz);

CS cschk verifies the validity of the coordinate system definition provided. For each abnormal
condition detected, CS_cschkwill add a CS-MAP error code to the integer array provided by the
err_list argument. The list_sz argument must indicate the dimension of the err_list array. If list_sz is
zero and/or err_list is the NULL pointer, CS_cschk will not attempt to return any error codes. As
implied by the calling sequence, CS_cschk attempts to find all problems with a definition in a single call.

The chk_flg argument is a bit map indicating which of several options is to be active. This
complication is necessary to enable this function to be used in the Dictionary Compiler whose
environment is rather strange. The "orable" options are:

cs_CSCHK_DATUM | enablesthe checking of the datum
reference, if any, in the coordinate
system definition.

¢cs_CSCHK_ELLIPS enables the checking of the ellipsoid
reference, if any, in the coordinate
system definition

¢s_CHCHK_REPORT | instructs CS_cschkto report each
error to CS_erpt before returning.

In all cases, CS_cschk will return the total number of abnormal conditions located, even if this value is
greater than list_sz. In any case, this flag word, along with support for non-existent err_list, provides
great flexibility for the calling module.

CS _cschk checks all elements of the coordinate system definition that are common to all coordinate
systems. It then verifies the validity of the projection key name by looking it up in the projection table.
Once the appropriate entry in the projection table is located, the specific projection check function is
called to finish the evaluation.

CS_cslcl Coordinate System, LoCalL

struct cs_Csprm_ *CS_cslcl (Const double min_I1 [2],
Const double max_I1 [2],
Const char *units,
Const struct cs_Datum_ *datum,
double map_scl);

Given a region on the ellipsoid as specified by the min_Ill and max_Il arguments, CS _cs/c/ creates a
coordinate system based on the Transverse Mercator projection optimized for the defined region. A
pointer to a malloced coordinate system definition structure, initialized for the optimized coordinate
system, is returned. This pointer is suitable for use with the CS _c¢cs2/l, CS _/l2cs, CS_csscl, and CS_cscnv
functions.

The min_Il array defines the southwestern corner of the region; the first element specifies the

298 CS-MAP User's Guide User's Guide

longitude, the second the latitude. Both values are given in degrees where negative values are used to
indicate south latitude and west longitude. Similarly, the max_Il array defines the northeastern corner
of the region.

The units argument must point to a null terminated string that defines the units of the coordinate
system, usually "METER" or "FOOT" (see CsdataU.c).

The datum argument must point to a datum definition structure that carries the definition of the datum
to be used. Such a pointer can be obtained from CS_dltloc.

The map_scl argument can be used to scale the resulting coordinates to a specific map scale, or,
perhaps, to plotter or display units. Specify a value of 1.0 to get unscaled values.

The resulting coordinate system definition should be released using CS_free when no longer needed.

The resulting coordinate system is based on the Transverse Mercator projection and has the following
properties:

Central meridian bisects the region.

Latitude origin is the minimum latitude given in min_II.
Scale reduction is optimized for the specified region.
Datum is as specified.

Units are as specified.

False northing set to zero. That is, the minimum latitude mapsto aY coordinate of zero.

N o o~ WODN PP

Fal se easting set to minimum longitude; i.e. the minimum longitude maps to an X coordinate value
of zero.

Mapping scale is applied to all coordinates after conversion.

BUGS

Since the Transverse Mercator projection is used, this function is not recommended for high accuracy
mapping where the east/west extent of the region exceeds six degrees of longitude.

CS_erpt Error RePorT

extern int cs_Error,cs Errno;
void CS_erpt (int err_num);

CS erptis called by all functions in the Coordinate System Mapping Package whenever an error
condition is detected. The value of err_num indicates the specific error condition detected and must
be one of the manifest constants defined in cs_map.h.

At the current time, CS_erpt does nothing other than set the value of global variable cs_Error to the
supplied value of err_num and set the global variable of cs_Errno to the current value of the system's
global variable errno.

It is expected that users will want to write their own CS_erpt function which will properly inform the
operator of the nature of the problem encountered.

Chapter 4 Chatper 4 -- Library Functions 299

Each function in the Coordinate System Mapping Package is programmed to clean up after itself after
return from CS_erpt. That is, upon return from CS_erpt, all memory malloced by the function detecting
the error is free¢ed and any temporary file created by the function detecting the error is removed.

CS_fillin coordinate system definition FILL IN

void CS_Ffillin (struct cs_Csdef_ *csPtr);

CS fillinis designed to be called by a GUI function that displays coordinate system definitions. This
function provides values for those projection parameters which are fixed, defaulted, or calculated for a
specific projection. CS_fillin examines the provided definition, determines the projection, and then "fills
in" parameters with the appropriate values.

For example, the relatively new UTM System Projection accepts zone number and hemisphere as the
primary parameters. From these parameters, ordinary projection parameters such as origin longitude,
false easting, false northing, etc. are computed from these values. CS_fillin can be used to have these
values computed and set in the cs_CsdeT _ structure provided by the csPtr argument.

CS_ii??? Imaginary Arithmetic Functions

The functions described in this section represent CS-MAP's ability to deal with complex numbers, as is
required for certain projections such as the Modified Sterographic and the New Zealand National Grid
System. A complex number consists of an instance of the cs_Cmplx__ structure that has real and
imaginary elements.

CS_iiadd - Imaglnary ADD

CS iiadd (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS Jiaddwill add the complex numbers referenced by the aa and bb arguments and return the result in
the structure referenced by the cc argument. The cc argument may point to either the aa or bb array.
The aa and bb arguments may point to the same structure.

CS _iisub - Imaglnary SUBtract

CS _iisub (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS iisub will subtract the complex number referenced by the bb argument from that referenced by the
aa argument and return the result in the structure referenced by the cc argument. The cc argument
may point to either the aa or bb structure. The aa and bb arguments may point to the same structure.

CS_iikmul - Imaglnary Konstant MULtiply

CS_iikmul (Const struct cs Cmplx_ *aa,double kk,struct cs Cmplx_ *cc);

CS _iikmul/will multiply the complex number referenced by the aa argument by the value of the kk
argument, a real value, and return the result in the structure referenced by the cc argument. The cc
argument may point to the same structure as the aa argument.

300

CS-MAP User's Guide User's Guide

CS_iimul - Imaglnary MULtiply

CS_iimul (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_Cmplx_ *cc);

CS iimul/will multiply the complex numbers referenced by the aa and bb arguments and return the
result in the structure referenced by the cc argument. The cc argument may point to either the aa or
bb structure. The aa and bb arguments may point to the same structure.

CS_iidiv - Imaglnary DIVide

CS_iidiv (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ *bb,struct
cs_CmplIx_ *cc);

CS iidivwill divide the complex number referenced by the aa by the complex number referenced by the
bb argument and return the result in the structure referenced by the cc argument. The cc argument
may point to either the aa or bb structure. The aa and bb arguments may point to the same structure.

CS_iisrs - Imaglnary SeRieS

CS _iisrs (Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ AB[],int nn,
struct cs_Cmplx_ *cc);

CS Jfsrs uses Horner's method to calculate the power series expansion of a complex nhumber, the aa
argument, to the nn power, using the array referenced by the AB argument as the coefficients of the
series expansion. NOTE: the first element, i.e. the zero element, of the array referenced by the AB
argument must contain a complex zero. The array referenced by the AB argument must contain nn+1
elements. The result is returned in the structure referenced by the cc argument. The cc argument
may point to the same structure as the aa argument.

CS _iisrsl - Imaglnary SeRieS, 1st derivative

CS_iisrsl(Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ AB[],int nn,
struct cs_Cmplx_ *cc);

CS ifsrs1 operates in the same manner as CS _Jisrs described elsewhere. However, the return value is
the value of the first derivative of the series.

CS _iisrs0 - Imaglnary SeRieS, alternate for new zealand

CS_iisrs0(Const struct cs_Cmplx_ *aa,Const struct cs_Cmplx_ AB[],int nn,
struct cs_Cmplx_ *cc);

CS JfsrsO operates in the same manner as CS _Jisrs described elsewhere. However, the Horner method
is not used (as yet) and the return value is that required by the New Zealand National Grid System.
We suspect that Snyder's method of inverting the Modified Sterographic series is superior to that
published for the New Zealand. If this suspicion survives further scrutiny, this function will not be
present in future releases of CS_MAP.

CS_iiabs - ImagInary ABSolute value

double CS _iiabs (Const struct cs Cmplx_ *aa);

CS Jiabs returns the absolute value of the complex number referenced by the aa argument.

Chapter 4 Chatper 4 -- Library Functions 301

CS_iicnj - Imaglnary CoNJugate

CS_i1icnj (Const struct cs Cmplx_ *aa,struct cs Cmplx_ *cc);

CS_Jicnf computes the complex conjugate of the complex number referenced by the aa argument and
returns the result in the structure referenced by the cc argument. The arguments may reference the
same structure.

CS init INITialize
int CS_init (int keepers);

CS initinitializes an instance of CS-MAP for independent operation. This function is provided for the
sole purpose of initializing a new thread of execution in a multi-threaded environment. Use of CS_initis
not normally required in multi-tasking environments. CS /nit needs to be used only in environments
where separate execution threads share the same data space.

When compiled for use in a multi-threaded environment, all global variables which CS-MAP uses
dynamically are declared with the __declspec (thread) or __ thread as is appropriate for the
compiler in use. Thus, each thread will have it's own copy of these variables. CS_/n/it will initialize
these variables to values suitable for use by the new thread, independent of any other currently
executing thread.

The keepers argument to CS /nitis an integer bit map that can be constructed from the manifest
constants described below. A value of zero provides for complete initialization of the thread, and is
normally used. The global variables cs_Dir and cs_DirP are always inherited from the parent task
(assuming that they are valid). All other values are initialized to their standard CS-MAP default values
unless the keepers argument specifically instructs CS /nitto preserve the value inherited from the
parent thread.

Any, or all, of the following constants may be 'or'ed together to construct a value of the keepers
argument. The typical value for keepers is zero.

302 CS-MAP User's Guide User's Guide

cs_THRD_CSNAME Preserve the parent thread's setting
for the file name of the Coordinate
System Dictionary (cs_Csname).

cs_THRD_DTNAME | Preserve the parent thread's setting
for the file name of the Datum
Dictionary (cs_Dtname).

¢s_THRD_ELNAME Preserve the parent thread's setting
for the file name of the Ellipsoid
Dictionary (cs_ElIname).

¢cs_THRD_DTDFLT Preserve the parent thread's setting
for the default datum (cs_DtDFIt).

cs_THRD_ELDFLT Preserve the parent thread's setting
for the default ellipsoid
(cs_EIDFIT).

¢s_THRD_LUDFLT Preserve the parent thread's setting
for the default linear unit
(cs_LuDFIt).

¢cs_THRD_AUDFLT Preserve the parent thread's setting
for the default angular unit
(cs_AuDFIt).

BUGS

While CS_init assures that invalid dictionary directories and file names are never inherited from the
parent thread, it does not check the validity of inherited defaults.

CS _ips In Place Sort

int CS_ ips (int fd,int rs,long eof,int (*comp)(Const void *,Const void *));

CS ips sorts a file of fixed length records into order under the control of the comparison function
provided by comp. The sort is done in place, requiring no additional disk space. The file descriptor of
the open file that is to be sorted is provided by fd. Of course, read and write access is required. The
length of the records in the file, as a number of bytes, is specified by rs. Only that portion of the file
between its current position when CS_jpsis invoked and the position specified by eof is actually sorted.
A value of zero or less for eof is taken to mean the current end of the file. CS_jps will return an
indication of the number of record swaps required to sort the file. A zero return value indicates that the
file was in order. A return value greater than zero indicates that the file had to be sorted. A-1is
returned if the sort failed for some reason. No other significance should be attributed to the return
value.

The comparison function is called with two arguments, pointers to the two records that are to be
compared. The comparison function must return a value that is negative if the first record should
precede the second, zero if the records are equivalent or greater than zero if the first record should

Chapter 4 Chatper 4 -- Library Functions 303

follow the second. In the case where the sort key is a character array which is the first item in the
records being sorted, strcmpis an acceptable comparison function.

THIS IS NOT A STABLE SORT. That is, the relative order of records with equal keys after sorting is not
guaranteed to be, and will almost always not be, the same as it was prior to the sort.

The position of the file when this function is called establishes the position of the first fixed length
record to be sorted. This enables files with magic numbers, headers, or other such stuff to be sorted.
Failing to properly position the file before calling CS /ps produces some interesting results.

CS ipsuses a malloced sort buffer of 16K bytes. The size of this sort buffer can be controlled by the
application by setting the desired size, in bytes, in the global variable cs_Sortbs. cs_Sortbs is
declared as an integer, therefore the size of the sort buffer cannot be larger than MAXINT.

CS /psis not the speediest sort in the world. It is designed especially for sorting small files (256K or
less) and for doing so without incurring disk space liability problems (i.e. in place, no extra disk space
required). Performance on large files (i.e. greater than 512K) has been found to be abominable. Of
course, if you can spare a larger buffer, sort performance will improve somewhat.

ERRORS

CS ipswill return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions is encountered:

¢cs_NO_MEM Insufficient memory was available to
support the malloc of the sort buffer.

cs_IOERR A physical I/O error occurred during
the sort.

CS _isHIpAvailable IS HeLP file AVAILABLE

int CS_isHIpAvailable (void);

CS_isHIpAvailable will return +1 (i.e. TRUE) if CS-MAP is aware of the location of a file named cs-
map.hlp. Otherwise, CS_isHlpAvailable returns zero (i.e. FALSE).

CS lget Left justified GET

char *CS_lget (char *str,Const char *fld, int size,char fill);

CS lget will produce, in the character array pointed to by str, a null terminated string that represents
the data in a left justified data field pointed to by fld. The size of the field is given by size. The field is
assumed to be filled (on the right) by the character given by fill. That is, trailing fill characters will be
omitted in the null terminated result.

CS Ilgetreturns a pointer to the terminating null character in str.

304 CS-MAP User's Guide User's Guide

CS_Iput Left justified field PUT

void CS _lput (char *fld,Const char *str,int size,char fill);
CS_[putcreates a left justified field of size bytes at the location given by fld. The field is populated with

data from the null terminated string given by str and padded on the right with fill characters as
necessary. If the length of str exceeds size, the value in the field is the first size characters of str.

CS_nampp NAMe PreProcessor

int CS nampp (char *key nm);

By convention, coordinate system key names, datum definition key names, and ellipsoid definition key
names:

not more than 23 charactersin length;

may start with a special character only if that special character isthe cs_Unique character (see
CSdata (5CY9));

may not include any specia characters other than:
the hyphen character,
the underscore character,
the dollar sign character,
the period character (decimal point),
the semi-colon character,
the colon character,
the space character,
the cs_Unique character;
must contain at least one alphabetic character;
must not contain two consecutive space characters,
may start with numeric characters providing the first non-numeric character is alphabetic;

otherwise must start with either an alphabetic character or the cs_Unique character.

CS _namppis used to force adherence to these requirements. While key nhames are case insensitive,
case is preserved in dictionaries for display purposes. CS nampp will strip leading and trailing white
space from the provided name. CS nampp will also ignore the characters involved in the default
system.

Chapter 4 Chatper 4 -- Library Functions 305

Given a pointer to a character array containing a null terminated key name, CS_nampp will strip all
leading and trailing white space and verify that the resulting name meets the conventions outlined
above. If all of these conditions are met, CS_nampp will return a zero. Otherwise, a -1 is returned.

Note that CS_nampp will modify the contents of the array pointed to by the key_nm argument to meet
the standards required of key names.

ERRORS

CS _nampp will return a -1 and set cs_Error appropriately if any of the following conditions are
detected:

cs_INV_NAME The supplied name contained non-printable
characters, was longer than eight characters, or
did not start with an aphabetic character.

cs_DBL_SPACE The supplied name contained two consecutive
spaces; a situation which can be difficult to
observe in many GUI's.

CS_prchk Protection CHecK

int CS_prchk (short protect);

The single argument to the CS_prchk function, protect, is expected to be a protection value obtained
from a dictionary definition. CS_prchk examines the value and determines if, in the current
environment, the value indicates that the dictionary definition it was obtained from would be considered
to be protected by the appropriate dictionary update function. A non-zero return value indicates that
the item is protected.

CS_prjEnum PRoJection ENUMerator

int CS prjEnum (int index,long *prj flags,char *prj_keynm,int keynm sz,
char *prj_descr,int descr_sz);

CS prjEnumis used to enumerate all projections in the projection table. CS_prjEnum returns in the
memory buffer pointer to by the prj_keynm argument the key name of the index'th entry in the
projection table. CS_prjEnum will never write more than keynm_sz bytes to the indicated location.
Similarly, CS_prjEnum will write no more than descr_sz bytes of the description of the index'th entry in
the projection table to the buffer referenced by the prj_descr argument. CS_prjEnum will copy the
projection flags word to the location indicated by the prj_flags argument. Any, or all, of the three
pointer arguments may be the NULL pointer, in which case CS_prjEnum does not attempt to return that
specific piece of information.

If index is valid, CS_prjEnum returns the numeric projection code value assigned to the projection. If
index is too large, a zero is returned. Index is a zero based index; the index of the first entry in the
projection table is zero.

306 CS-MAP User's Guide User's Guide

PROJECTION FLAGS

The following constants define specific bits in the 32 bit projection flag word. If the indicated bit is set,
the condition/feature applies to the specific projection. Three bits are reserved for use by application
programmers with source licenses. All other bits are reserved for use by OSGeo contributors. These
constants are defined in cs_map.h.

Chapter 4 Chatper 4 -- Library Functions

307

cs_PRIFLG_SPHERE

Spherical form of this projection is supported.

cs_PRIFLG_ELLIPS

Ellipsoidal form of this projection is supported.

cs_PRIFLG_SCALK

An analytical k scale function is available.

cs_PRIFLG_SCALH

An analytical h scale function is available.

cs_PRIFLG_CNVRG

An analytical convergence angle function is available.

cs_PRIFLG_CNFRM

The projection is generally considered to be conformal.

cs_PRIFLG_EAREA

The projection is generally considered to be equal area.

cs_PRIFLG_EDIST

The projection is generally considered to be equidistant.

cs_PRIFLG_AZMTH

The projection is generally considered to be azimuthal .

cs_PRIFLG_GEOGR

The projection produces geographic coordinates, i.e. non-
cartesian coordinates.

cs_PRIFLG_OBLQ

The projection is based on the oblique aspect of the base
projection surface.

cs_PRIFLG_TRNSV

The projection is based on the transverse aspect of the base
projection surface.

cs_PRIFLG_PSEUDO

The projection is generally considered to be based on a
"pseudo” surface. This qualifiesthe actual surface in use.
For example, the Eckert projections are considered to be
pseudo cylindrical.

cs_PRIFLG_INTR

The projection supports interruptions.

cs_PRIFLG_CYLND

The base projection surface is the cylinder.

cs_PRIFLG_CONIC

The base projection surface is the cone.

cs_PRIFLG_FLAT

The base projection surface is the flat plane (e.g. azimuthal).

cs_PRIFLG_OTHER

The base projection surface is other than the three indicated
immediately above.

cs_PRIFLG_SCLRED

The projection supports the concept of scale reduction.

cs_PRIFLG_ORGFLS

The projection does not use either false origin parameter.

308 CS-MAP User's Guide User's Guide

cs_PRIFLG_ORGLAT The projection does not use an origin latitude parameter.
Origin latitude is deduced from other parameters and need
not be specified directly.

¢s_PRIFLG_ORGLNG The projection does not use an origin longitude parameter.
Origin longitude is deduced from other parameters and need
not be specified directly.

¢s_PRIFLG_USER1 Reserved for application programmers.

¢s_PRIFLG_USER2 Reserved for application programmers.

¢s_PRIFLG_USER3 Reserved for application programmers.
ERRORS

CS prjEnum will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered:

cs_INV_INDX The index argument was negative.

CS_prjprm PRoJection PaRaMeter usage

int CS prjprm (struct cs_Prjprm_ *prj_prm,short prj_code,int prm_nbr);

CS_prjprmwill return a positive one (+1) if the projection indicated by the prj_code argument uses the
parameter indicated by the prm_nbr argument. Prm_nbr refers to one of the 24 parameters in the
cs_Csdef _structure that is used to define coordinate systems. Prj_prm is zero based, so values of
this argument should not exceed 23. Prj_code values are the numeric values now assigned to all
projections in the cs_map.h header file (e.g. cs_PRICOD_ALBER). If the prj_prm argument is not
NULL, CS_prjprm will populate the structure provided with information as to how the indicated projection
uses the indicated parameter.

If the projection referenced by the prj_cod argument does not use the parameter indicated, CS_prjorm
returns a zero. If either the prj_code or the prm_nbr arguments are invalid, CS_prjprm returns a
negative one (-1).

cs_Prjprm_ Structure

CS prjprm uses an initialized array of cs_Prjprm_ structures in order to do its work. This structure is
declared in cs_map.h and the array is defined and initialized in CSdataPJ.c. Application programmers
may need/wish to modify the contents of this initialized structure. The elements of this structure are:

Chapter 4 Chatper 4 -- Library Functions

309

min_val

minimum allowable value for the parameter.

max_val

maximum allowable value for the parameter.

deflt;

asuitable valueto initialize this parameter to for a new
definition.

format

aCS ftoa format specification suitable for displaying this
parameter. The log_typ element described below may be more
useful for this purpose.

help_id

not used by CS-MAP (as yet). Reserved for use as a context
sensitive help-id for this parameter.

labl_id

not used by CS-MAP (asyet). Reserved for use as the string
resource |D of asuitable label for this parameter.

label

an 8 bit ASCII label for this parameter in English, standard C
code page.

phys_typ

an integer code value indicating the physical type of this
parameter. Since al parameters are doubles (currently), this
valueis always set to cs_ PRMPTYP_DBL (currently).

log_typ

an integer code value indicating the logical type of this
parameters. For example, cs_ PRMLTYP_LNG indicates a
longitude parameter.

prj_code

cs_Prjprm_ structures returned to users will have the prj_code
argument copied into this element for identification purposes.

parm_nbr

cs_Prjprm_ structures returned to users will have the prm_nbr
argument copied into this element for identification purposes.

sprf_type

anon-zero value indicates that the string contained in label or
referenced by labl_id contains sprintfformat specifications.
The specific value of this element indicates the nature of the
additional arguments that are to be passed to sprintf. Currently,
only the value 1 is supported and it provides sprintfwith an
integer argument equal to (2* prm_nbr + 1), suitable for
labeling complex coefficient arguments for the Modified
Stereographic.

CS_quadF QUADrant Forward

void CS _quadF (double xy [2],double xx,double yy,double x off,double

310 CS-MAP User's Guide User's Guide

y_off,short quad);

CS quadF applies quadrant processing to the coordinates given by the xx and yy arguments, returning
the results in the xy array provided. The x_off and the y_off arguments are the false easting and the
false northing respectively. The quadrant processing requested is indicated by the quad argument.

The quad argument is a bit map of the following instructions:

¢cs_QUAD_INVX Invert the X axis
¢cs_QUAD_INVY Invert theY axis
cs_QUAD_SWAP Sawp the axes.

Note that the quad argument to this function is distinctly different from the quad element of the
cs_Csdef _structure. Each projection setup function maps the quad element of the cs_Csdef _
structure to the value described immediately above.

CS quadF will always invert the appropriate axes first, then add the false origin values, and finally, if
requested, swap the axes. A quad value of zero is valid; in which case CS_guadFbecomes an
expensive way to add the false origin to the coordinates.

CS_quadl QUADrant Inverse

void CS _quadl (double *xx,double *yy,Const double xy [2],double
x_off,double y off,
short quad);

CS quadl performs the inverse of CS_quadF. In this case, quadrant processing is removed from the
coordinate provided by the xy argument and the results are returned in the located pointed to by the xx
and yy arguments.

CS_renam RENAMe a file

void CS_renam (Const char *old,Const char *new);

CS renam will change the name of the existing file named old to that indicated by new. On MS-DOS
systems, it simply calls the rename function. On UNIX systems, it uses the /inkand unlink system calls
to obtain the same result. This function simply provides a degree of operating system independence.

ERRORS

CS renamwill return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions is encountered:

Chapter 4 Chatper 4 -- Library Functions 311

cs_RENAME The rename request failed for the
reason indicated by the value of the
cs_Errno global variable. Under
UNI X, this means that either the link
or the unlink system call failed.

CS_setHelpPath SET HELP PATH

int CS_setHelpPath (const char *helpPath);

Use the CS_setHelpPath function to set the directory that you desire to have CS-MAP search when
seeking the MFC dialog help file. The helpPath argument must point to a null terminated string that
carries the full path to the desired directory.

CS_setHelpPathreturns +1 (i.e. TRUE) if a properly named file exists in the indicated directory. Zero
(i.e. FALSE) is returned if such a file does not exist.

CS_stcpy STring CoPY

char *CS_stcpy (char *dest,Const char *source);

CS _stcpy copies the null terminated character string pointed to by source to the character array
pointed to by dest. A pointer to the null terminating character in dest is returned.

CS_stcpyreturns a pointer to the null character that terminates the newly copied string (as opposed to
its first argument). Otherwise, it is identical to the strcpy function.

BUGS

Obviously, CS_stcpy knows nothing of the size of the destination character array and cannot prevent
the source string from exceeding its size.

CS_stncp STring, N characters at most, CoPy

char *CS_stncp (char *dest,Const Const char *source,int size);

CS_stncp copies at most size minus one characters from the null terminated character string pointed to
by source to the character array pointed to by dest. The result is guaranteed to be null terminated.
The result, including the terminating null character, will not occupy more than size bytes. A pointer to
the null character that terminates the result in dest is returned.

CS stncp differs from strncpy in two ways. Most importantly, it guarantees a null terminated result,
copying one less character than strncpy when the source string will not fit in the destination array.
Second, it returns a pointer to the terminating null character in the destination array as opposed to a
pointer to the destination array itself.

ERRORS

312 CS-MAP User's Guide User's Guide

Since CS_stncp guarantees the result to be NULL terminated, it cannot perform successfully if given a
zero (or negative) size argument. In this case, the NULL pointer is returned.

CS_stricmp STRing, case Insensitive, CoMPare

int CS_stricmp (Const char *strl,Const char *str2);

CS_stricmp compares the string pointed to by the str1 argument to the string pointer to by str2. The
comparison ignores case. The returned result is negative if str1 should collate before str2, zero if the
two strings are identical (case excepted), and positive if str1 should collate after str2.

While similar functions are available in most 'C' run time libraries and are a part of the ANSI standard,
the developers of CS-MAP have found variations in how various libraries deal with the special
characters in between the upper and lower case characters. Thus, to have CS-MAP operate
consistently on all platforms, we have our own implementation of this function.

CS_strincmp STRing, case Insensitive, N chars max, CoMPare

int CS _strincmp (Const char *strl,Const char *str2,int nCount);

CS_strincmp compares the string pointed to by the str1 argument to the string pointer to by str2. No
more than nCount characters are compared. The comparison ignores case. The returned result is
negative if str1 should collate before str2, zero if the two strings are identical (case excepted), and
positive if str1 should collate after str2.

While similar functions are available in most 'C' run time libraries, the developers of CS-MAP have
found variations in how various libraries deal with the special characters in between the upper and
lower case characters. Thus, to have CS-MAP operate consistently on all platforms, we have our own
implementation of this function.

CS _stristr find STRing, case Insensitive, in a STRing

Const char *CS_stristr (Const char *strl,Const char *str2);

CS stristr searches the string pointed to by the str1 argument for an occurrence of the string pointed to
by the str2 argument. CS_stristrignores case while looking for a match. If an occurrence of str2 is
found in str1, CS_stristrreturns a pointer to the first such occurrence in str1. Otherwise, CS_stristr

returns the NULL pointer.

While similar functions are available in most 'C' run time libraries, the developers of CS-MAP have
found variations in how various libraries deal with the special characters in between the upper and
lower case characters. Thus, to have CS-MAP operate consistently on all platforms, we have our own
implementation of this function.

CS_swpal SWaP ALl binary data files

int CS_swpal (void (*prog)(Const char *file_name));

CS swpalwill cause all CS-MAP binary data files in the current data directory (i.e. cs_Dir) to be byte
swapped. If the prog argument is not NULL, it is called with the name of the file to be swapped just
prior to initiating the swap (see CS swpf)). If the swap of the entire directory was successful, CS_swpa/

Chapter 4 Chatper 4 -- Library Functions 313

returns a zero. Otherwise, the CS-MAP error code of the condition that caused termination of the swap
operation is returned.

CS swpal swaps all data files into a complete set of temporary files. Only when all such conversions
are successfully completed will it then replace the original files with the swapped temporaries. In the
event of an error, the temporaries are simply removed and the originals remain unchanged.

CS swpaluses the CS_bswap function to perform byte swaps. It does not expect to be called if
CS bswap will not swap bytes. The result of calling CS_swpa/when CS_bswap is not swapping is
undefined. The result is usually a big long no-op, but this is not guaranteed.

CS swpalwas written specifically for testing purposes. It could, however, be used as part of a
manufacturing process to swap all data files for distribution. CS_swpa/will swap bytes in NADCON (i.e.
.LAS and .LOS files) as well as Canadian National Transformation (version 1) data files.

BUGS

CS _swpalwill not properly swap bytes in encrypted dictionary files, nor the Australian version of the
NTv2 files.

CS_swpfl SWaP a single FiLe

char *CS_swpfl (Const char *file_name);

CcS swillwill swap the bytes in the file named by the file_name argument. The file is required to reside
in the CS-MAP data directory indicated by cs_Dir and the result is written to a temporary file (see

CS _tmpfn) in the same directory. A pointer to a static memory array containing the name of this
temporary file, and only the name, is returned. In the event of an error, the NULL pointer is returned.

CS swpflwas written primarily for testing purposes. It uses CS_bswap to effect the swapping of the
data elements in the file. It should not be called when CS_bswap is not swapping anything. (Why
would you want to anyway?). The result of calling CS_swpflwhen CS_bswap is not swapping anything
is usually a big no-op, but this is not guaranteed.

BUGS

CS _swpfwill not properly swap bytes in encrypted dictionary files or Australian version NTv2 files.

CS tpars Table PARSe

Const char *CS_tpars (char **pntr,Const char *table,int tab_size);

CS_tparsis designed to parse tokens from the text source, *pntr, of specific values; the values being
given in the table array. Tab_size specifies the size of the elements in the table array.

Successful parses return a pointer to the matching table element and *pntr is updated to point at the
character immediately following the matched token. Unsuccessful parses return the NULL pointer
value and the value of *pntr is unaltered.

The first byte of each element of table must contain the size of the token that is described in the table
element. The actual key value must begin in the second byte of the table element. The remainder of

314 CS-MAP User's Guide User's Guide

the table entry can be used to satisfy application requirements. A table element with a zero for the
key size must be present to terminate the table. Such parsing tables are useful in converting specific

token values to code values while parsing and validating at the same time. For example:
struct prs_tab_

{
unsigned char key_len; /* Assumes byte alignment */
char key [8];
short code_value;

} prs_tab [] =

{
{5,"NORTH",0},
{5,""SOUTH", 2},
{4,"EAST",1},
{4,"WEST",3}

}:

char text [128];

char *cp;

struct prs_tab_ *tab_ptr;

cp = text;

tab_ptr = (struct prs_tab_ *)CS_tpars (&cp, (struct prs_tab_ *)prs_tab,sizeof (struct
prs_tab_));

if (tab_ptr == NULL)

{

printf ("Invalid direction.\n");
3
else if (tab_ptr->code_value == 1)
{

/* Here if EAST was specified. */
3

It is important to note that it is usually best to have table ordered by the size of the key, the largest
values first. This will cause the longest possible match to be returned which is usually what is desired.

BUGS

CS tpars will always return the first match encountered. If the table is not ordered properly (by key
size, largest first) and keys with duplicate initial characters exist (e.g. "WEST" and "WESTERN"), the
result may not be what is desired.

CS_trim character array TRIM

int CS_trim (char array);

CS trimtrims leading and trailing white space from the null terminated character string in the array

Chapter 4 Chatper 4 -- Library Functions 315

pointed to by the array argument. The length of the resulting null terminated string is returned. White
space, for this function, is considered to be blank, tab, and new-line characters.

CS_zones extract ZONES from definition

int CS zones (Const struct cs_Csdef_ *csdef,struct cs_Zone_ zones [8]);

CS zones will extract zone definitions from the 24 projection parameters in the coordinate system
definition provided by the csdef argument, and place these extracted definitions in the cs_Zone_
structure array pointed to by the zones argument. The zones argument must point to an array of not
less than 8 cs_Zone_ structures. CS zones returns the number of valid zones extracted.

A single zone is defined by three doubles in the prj_prm section of the cs_Csdef_ structure. Each
group of three doubles is used to represent a zone, up to eight zones. Prj_prml thru prj_prm3 are
used to defined the first zone; prj_prm4 thru prj_prm6 are used to defined the second zone, and so
on. CS zone needs to extract four elements of information for each zone: the longitude of the western
extent of the zone, the central meridian of the zone, the longitude of the eastern extent of the zone,
and whether the zone is for the northern or southern hemisphere. However, in order to support eight
zones, we only have three doubles in which to encode this information. Therefore, the coding scheme
described below is used for each group of three doubles and applies to each zone.

A zone is defined by a group of three doubles. CS zones will ignore any group of three doubles in
which the first and the third are both zero. In all other cases, the first of the three doubles is taken to be
the longitude of the western extent of the zone. The second of the three doubles is taken to be the
central meridian of the zone. The third of the three doubles is taken to be the longitude of the eastern
extent of the zone. To indicate the hemisphere (north or south) to which the zone definition applies,
the magnitude of the first double is increased by a certain amount (the sign remains unaffected).

Magnitude increases are interpreted as follows:

0.0 Zone includes both hemispheres.

1000.0 Zone applies to the northern
hemisphere only.

2000.0 Zone applies to the southern
hemisphere only.

3000.0 Zone applies to both hemispheres
(redundant, but maintained for
consistency).

For example, for a zone where the western extent is 100 degrees west longitude (-100.0), and which is
to apply only to the southern hemisphere, the value of the first of the three doubles would be -2100.0.

CS_znlocF ZoNe LOCator Forward

Const struct cs Zone_*CS_znlocF (Const struct cs Zones_ zones [8],int
zone_cnt,

double Ing,double lat);

Given a pointer to an array of zone_cnt cs_Zone_ structures, and a coordinate pair, CS_znlocFand

316 CS-MAP User's Guide User's Guide

CS znlocl will return a pointer to the specific cs_Zone__ element in the array to which the given
location belongs. The NULL pointer is returned if the provided location does not reside in any zone. In
the case of CS_znlocF, the location is provided by the Ing and lat arguments where Ing gives the
longitude in degrees east of Greenwich (i.e. negative values for west longitude) and lat provides the
latitude in degrees north of the equator.

These functions are called by the forward and inverse conversion functions of projections that support
interrupted zones. By CS-MAP convention, zones other than the easternmost zone include the zone's
westernmost boundary but not its easternmost boundary. The easternmost zone includes both its
western and eastern boundaries. In all cases, the equator is considered part of the northern
hemisphere.

CS_znlocl ZoNe LOCator Inverse

Const struct cs_Zone_ *CS_znlocl (Const struct cs_Zones_ zones [8],int
zone_cnt,
double xx,double yy);

Given a pointer to an array of zone_cnt cs_Zone__ structures, and a coordinate pair, CS_zn/oc/ and
CS znlocF will return a pointer to the specific cs_Zone__ element in the array to which the given
location belongs. The NULL pointer is returned if the provided location does not reside in any zone. In
the case of CS_znlocl, the location is provided by the xx and yy arguments that are the cartesian X and
Y coordinates of the coordinate system.

These functions are called by the forward and inverse conversion functions of projections that support
interrupted zones. By CS-MAP convention, zones other than the easternmost zone include the zone's
westernmost boundary but not its easternmost boundary. The easternmost zone includes both its
western and eastern boundaries. In all cases, the equator is considered part of the northern
hemisphere.

CSbcclu Basic Cached Coordinate system Look Up

struct cs_Csprm_ *CSbcclu (Const char *cs_name);

Csbcclu searches the coordinate system cache for a coordinate system with a name that matches the
cs_name argument. If such an entry is found, the associated cs_Csprm_ structure pointer is
returned. If a coordinate system with the name provided is not found, CSbcclu uses CS cslocto obtain
such a pointer and adds the name and associated pointer to the cache, deleting the least recently
access entry if necessary.

In any case, Csbcclureturns a pointer to an initialized cs_Csprm_ structure that defines the named
coordinate system.

This function was originally written in support of an interface designed for application programmers
using the Basic language; hence the name.

ERRORS

Csbeeluwill return the NULL pointer and set cs_Error appropriately if any of the following conditions
are encountered while obtaining the definition of the named coordinate system:

Chapter 4 Chatper 4 -- Library Functions 317

¢s_UNKWN_PROJ] The projection specified in the
coordinate system definitionis
unknown to the system.

Csbeclu uses CS_csloc which uses the following functions which detect a majority of the exceptional
conditions which may occur:

CS csdef L ocates and fetches the coordinate
system definition from the
Coordinate System Dictionary.

CS dltloc Locates and fetches the datum
definition from the Datum
Dictionary.

CS eldef L ocates and fetches the ellipsoid
definition from the Ellipsoid
Dictionary.

CSbdclu Basic Datum Conversion Look Up

struct cs_Dtcprm_ *CSbhdclu (Const struct cs_Csprm_ *src_cs,
Const struct cs_Csprm_ *dst_cs,
int dat_err,
int blk_err);

Csbdclu searches the datum conversion cache for a datum conversion parameter block generated by
the same coordinate systems as those provided by the src_cs and the dst_cs arguments. If such an
entry is found, the associated cs_Dtcprm_ structure pointer is returned. If a datum conversion based
on the two coordinate systems provided is not found, CSbdc/uuses CS_dfcsuto obtain such a pointer
and adds the names and associated pointer to the cache, deleting the least recently access entry if
necessary.

In any case, Csbdclu returns a pointer to an initialized cs_Dtcprm_ structure that defines the required
datum conversion.

The dat_err argument is the value that is to be passed to CS dfcsu in the event that function needs to
be called in order to obtain a datum conversion parameter structure. The following values for dat_err
are recognized:

318 CS-MAP User's Guide User's Guide

cs_DTCFLG_DAT_I

Ignore unsupported datum conversion
request errors and, in the event of
such an error, silently activate the null
conversion.

cs_DTCFLG_DAT_W

In the event of an unsupported datum
conversion request error, report the
condition asawarning to CS_erpt
(cs_DTC_DAT_W) and activate the
null conversion. In this case, the user
is notified, but data processing
continues.

cs_DTCFLG_DAT_F

In the event of any error, report the
condition as afatal error to CS_erpt
(cs_DTC_DAT_F) and return the
NULL pointer.

The value of the blk_err argument is stored with the datum conversion parameter block for access by
the impending call to CS_dtcvt. The blk_err argument is used to indicate the desired disposition of
certain errors that are encountered during the conversion of individual coordinate values. The error
disposition control afforded by blk_err applies only to errors indicating that the required data for the
geographic region containing the coordinate to be converted is not available. System errors, such as
physical I/O or insufficient memory for example, are always treated as fatal errors.

The following values for blk_err are recognized:

Chapter 4 Chatper 4 -- Library Functions

319

cs_DTCFLG_BLK_I

Ignore datum conversion errors
caused by data availability problems
and silently use the null conversion
for the specific coordinate which
could not be converted and cause
CS dfevtto return azero value.

cs_DTCFLG_BLK_W

In the event a datum conversion fails
dueto data availability, report a
warning through CS_erpt
(cs_DTC_BLK_W), convert the
coordinate using the null conversion,
and cause a CS_dfrevttoreturn a
positive non-zero value for the
specific coordinate that could not be
converted. Thewarning message is
issued for each coordinate that could
not be converted.

cs_DTCFLG_BLK_1

In the event a datum conversion fails
dueto data availability, report the
error condition once, using the datum
conversion parameter block asthe
memory device for recording the
location of the block which caused
the error.

cs_DTCFLG_BLK_F

Report afatal condition through

CS erpt (cs_DTC_BLK_F), convert
the coordinate using the null
conversion, and cause CS_dltcvtto
return a negative non-zero value to
indicate that the expected conversion
did not take place.

This function was originally written in support of an interface designed for application programmers
using the Basic language; hence the name.

ERRORS

Csbdclu will return the NULL pointer and set cs_Error appropriately if a call to CS dfcsuis necessary
and that call fails. See CS dfcsufor a description of the possible error conditions.

CSbt??7?? BeTa (authalic latitude) calculation

Functions described in this section implement the calculations associated with authalic (equal area)

latitude.

320 CS-MAP User's Guide User's Guide

CSbtFcal BeTa Forward CALculation
double CSbtFcal (Const struct cs_BtcofF_ *bt ptr,double lat);

Given the geographic latitude, lat, in radians, CSbt/calreturns the corresponding authalic latitude (in
radians, negative for south latitude), which Snyder refers to as beta. The bt_ptr argument points to a
structure of power series coefficients, as developed by CSbtFsu, which can be determined solely from
the ellipsoid in use. Therefore, CSbtFsu performs all calculations that can be performed once, while
CSbtFcal performs all calculations that must be performed for each coordinate to be converted. See
Snyder, John P., Map Projections - A Working Manual, U.S. Geological Survey Professional Paper
1395, pages 16-19.

CSbtFsu BeTa Forward SetUp
void CSbtFsu (struct cs_BtcofF_ *bt _ptr,double e _sq);

CSbtFsu develops the coefficients of the power series required to compute the authalic latitude (which
Snyder refers to as beta) from the geographic latitude. The resulting coefficients are stored in the
structure pointed to bt_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSbtFcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

CShbtlcal BeTa Inverse CALculation
double CSbtlcal (Const struct cs _Btcofl_ *bt ptr,double beta);

Given the authalic latitude, beta, in radians, CSbt/calreturns the corresponding geographic latitude, in
radians. The bt_ptr argument points to a structure of power series coefficients, as developed by
CSbtlsu, which can be determined solely from the ellipsoid in use. Therefore, CSbt/su performs all
calculations that can be performed once, while CSbt/calperforms all calculations that must be
performed for each coordinate to be converted. See Snyder, John P., Map Projections - A Working
Manual, U.S. Geological Survey Professional Paper 1395, pages 15, 19, and 45.

CSbtlsu BeTa Inverse SetUp
void CSbtlsu (struct cs_Btcofl_ *bt _ptr,double e _sq);

CSbtlsu develops the coefficients of the power series required to compute the geographic latitude from
the authalic latitude (which Snyder refers to as beta). The resulting coefficients are stored in the
structure pointed to by bt_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSbtical. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

CSccsphrD angular distance (CC) on SPHeRe in Degrees

double CSccsphrD (Const double 110 [2],Const double 111 [2]);

Chapter 4 Chatper 4 -- Library Functions 321

CScesphrD returns the angular distance, in degrees, between the two geographic locations given by 110
and l1. For this function, 110 and 111 are in degrees.

A spherical earth is assumed. The technique used should produce accurate results from very close to
zero to very close to .

CSccsphrR angular distance (CC) on SPHeRe in Radians

double CSccsphrR (Const double 110 [2],Const double 111 [2]);

CScesphrR returns the angular distance, in radians, between the two geographic locations given by 110
and lI1. For this function, 110 and Il1 are in radians.

A spherical earth is assumed. The technique used should produce accurate results from very close to
zero to very close to .

CScsKeyNames Coordinate System Key Names
char *CScskKeyNames (void);

CScsKeyNames returns a pointer to a list that contains the key names of all coordinate systems in the
Coordinate System Dictionary. The list consists of null terminated strings and the entire list is
terminated by two consecutive null characters. The coordinate system key names are in the same

order as they appear in the Coordinate System Dictionary.

The resulting pointer is cached by CScsKkeyNames in a global variable named cs_CsKeyNames. Thus,
once generated, CScsKeyNames returns the same pointer. Thus, it is important applications do not free
the returned pointer unless they also set the cs_CsKeyNames global variable to the NULL pointer.

CS recvrfrees the list and is the normal means for freeing this list. The cached list is used by the

CS csEnumand CS_cslsValid functions.
ERRORS

CScsKeyNames will return the NULL pointer and set cs_Error appropriately if any of the following
conditions are encountered:

322 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary
could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical /O error occurred in
accessing the Coordinate System
Dictionary.

cs_CS_BAD_MAGIC | Thefile assumed to be a Coordinate
System Dictionary by virtue of its
name was not a Coordinate System
Dictionary; it had an invalid magic
number.

cs_NO_MEM Insufficient memory was available for
the creation of the key name list.

CSchi???? CHI (conformal latitude) calculation

Functions described in this section implement the cal cul ations associated with isometric (conformal)
latitude.

CSchiFcal CHI Forward CALculation
double CSchiFcal (Const struct cs_ChicofF_ *chi_ptr,double lat);

Given the geographic latitude, lat, in radians, CSchilcalreturns the corresponding conformal latitude (in
radians, negative for south latitude), which Snyder refers to as chi. The chi_ptr argument points to a
structure of power series coefficients, as developed by CSchiFsu, which can be determined solely from
the ellipsoid in use. Therefore, CSchiFsu performs all calculations that can be performed once, while
CSchiFcal performs all calculations that must be performed for each coordinate to be converted. See
Snyder, John P., Map Projections - A Working Manual, U.S. Geological Survey Professional Paper
1395, pages 15, 19, and 45.

CSchiFsu CHI Forward SetUp

void CSchiFsu (struct cs_ChicofF_ *chi_ptr,double e_sq);

CSchiFsu develops the coefficients of the power series required to compute the conformal latitude
(which Snyder refers to as chi) from the geographic latitude. The resulting coefficients are stored in the
structure pointed to chi_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSchiFcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

Chapter 4 Chatper 4 -- Library Functions 323

CSchilcal CHI Inverse CALculation
double CSchilcal (Const struct cs_Chicofl_ *chi_ptr,double chi);

Given the conformal latitude, chi, CSchilcalreturns the corresponding geographic latitude. The
chi_ptr argument points to a structure of power series coefficients, as developed by CSchilsu, which
can be determined solely from the ellipsoid in use. Therefore, CSchilsu performs all calculations that
can be performed once, while CSchilcal performs all calculations that must be performed for each
coordinate to be converted. See Snyder, John P., Map Projections - A Working Manual, U.S.
Geological Survey Professional Paper 1395, pages 15, 19, and 45.

CSchilsu CHI Inverse SetUp

void CSchilsu (struct cs_Chicofl_ *chi_ptr,double e_sq);

CSchilsu develops the coefficients of the power series required to compute the geodetic latitude from
the conformal latitude (which Snyder refers to as chi). The resulting coefficients are stored in the
structure pointed to chi_ptr. The e_sq argument is the square of the eccentricity of the ellipsoid.

Since the square of the eccentricity is the only input, these calculations can be performed once, once
the ellipsoid definition being used is known. The calculations required for each individual latitude are
performed by CSchilcal. See Snyder, John P., Map Projections - A Working Manual, U.S. Geological
Survey Professional Paper 1395, pages 15, 19, and 45.

Csdfltpro DeFaULT PROcessor

int CSdfltpro (int type,char *name,int size);

Csdfltprois the internal function used to perform default processing. The type argument must be set
to one to the manifest constants that define one of the four possible "defaultable" elements of a
coordinate system or datum definition. Name points to the name that may be a "defaultable"
reference, and size indicates the size of the character array pointed to by the name argument.

If name is enclosed with the default character sequences defined in cs_map.h and the specific default

feature indicated by type is active, Csdfftpro replaces the value in name with the default, surrounding it
with the replacement character sequences also defined in cs_map.h.

If a replacement is made, Csdl/ftoro returns TRUE, otherwise it returns FALSE.
As distributes, an element is considered "defaultable" if it is enclosed with square brackets. Once
replaced with a default value, it is enclosed in parenthesis as an indication that a default substitution

was made.

The manifest constants that are valid values for the type argument are:

324 CS-MAP User's Guide User's Guide

Cs_DFLTSW_DT

Datum name replacement.

Cs_DFLTSW_EL

Ellipsoid name replacement.

Cs_DFLTSW_LU

Linear unit replacement.

Cs_DFLTSW_AU

Angular unit replacement.

CSdtkeyNames DaTum Key Names

char *CSdtkKeyNames (void);

CSdtKeyNames returns a pointer to a list that contains the key names of all datums in the Datum
Dictionary. The list consists of null terminated strings and the entire list is terminated by two
consecutive null characters. The datum key names are in the same order as they appear in the Datum

Dictionary.

The resulting pointer is cached by CSdtKkeyNames in a global variable named cs_DtKeyNames. Thus,
once generated, CSdtKeyNames returns the same pointer. Thus, it is important applications do not free
the returned pointer unless they also set the cs_DtKeyNames global variable to the NULL pointer.

CS recvrfrees the list and is the normal means for freeing this list. The cached list is used by the

CS dtEnumand CS_dlt/sValidfunctions.

ERRORS

CcSdtkeyNames will return the NULL pointer and set cs_Error appropriately if any of the following

conditions are encountered:

Cs_DTDICT The Datum Dictionary could not be
found or otherwise opened. (See
CS_altar)

Cs_IOERR A physical I/O error occurred in

accessing the Datum Dictionary.

Cs_DT_BAD_MAGIC

The file assumed to be a Datum
Dictionary by virtue of its name was
not a Datum Dictionary; it had an
invalid magic number.

Cs_NO_MEM

Insufficient memory was available for
the creation of the key name list.

Chapter 4 Chatper 4 -- Library Functions 325

CSelKeyNames ELlipsoid Key Names

char *CSelKeyNames (void);

CSelKeyNames returns a pointer to a list that contains the key names of all ellipsoids in the Ellipsoid
Dictionary. The list consists of null terminated strings and the entire list is terminated by two
consecutive null characters. The ellipsoid key hames are in the same order as they appear in the
Ellipsoid Dictionary.

The resulting pointer is cached by CSelkKeyNames in a global variable named cs_ElKeyNames. Thus,
once generated, CSelKeyNames returns the same pointer. Thus, it is important applications do not free
the returned pointer unless they also set the cs_ElKeyNames global variable to the NULL pointer.

CS recvrfrees the list and is the normal means for freeing this list. The cached list is used by the

CS elEnumand CS_ellsValid functions.

ERRORS

CSelkeyNames will return the NULL pointer and set cs_Error appropriately if any of the following
conditions are encountered:

Cs_ELDICT The Ellipsoid Dictionary could not be
found or otherwise opened. (See
CS_altdr)

Cs_IOERR A physical I/O error occurred in

accessing the Ellipsoid Dictionary.

Cs_EL_BAD_MAGIC | Thefile assumed to be aEllipsoid
Dictionary by virtue of its name was
not a Ellipsoid Dictionary; it had an
invalid magic number.

Cs_NO_MEM Insufficient memory was available for
the creation of the key name list.

CSlIinrml Latitude/Longitude NoRMaL

void CSIInrml (Const double oll [2],Const double 11 [2],double 111
[2].,double 112 [2]);

Given the endpoints of an arc on the ellipsoid in terms of latiude and longitude, CS/inrm/returns the
latitude and longitude of an arc on the ellipsoid that is normal to the original arc and has a length of one
second of arc.

The original arc is specific by the oll and Il arguments. The returned arc is normal to the supplied arc
at the location specified by the Il argument. The endpoints of the returned arc are returned in the
arrays pointed to by the 111 and the 112 arguments.

326 CS-MAP User's Guide User's Guide

All latitudes and longitudes are in degrees where negative values are used for west longitude and
south latitude. In all cases, the longitude is the first element in each array and the latitude is the
second element.

This function has been developed expressly for the empirical calculation of K grid scale factors for
azimuthal projections. The returned latitude/longitude positions are converted to grid coordinates and
the grid distance is compared to the actual geodetic distance on the ellipsoid as computed by

CS llazdd. Therefore, customary usage is to provide the origin of the coordinate system as the oll
argument, and the point at which the grid scale factor is to be computed as the Il argument.

CSlinrml uses spherical trigonometry, i.e. assumes the earth is a sphere.

ERRORS

CSlinrm/ makes no checks for possible errors. Given reasonable values for the latitudes and
longitudes, and values for oll and Il that are not antipodal (i.e. opposite ends of a line passing through
the center of the earth) no errors should occur.

CSmm???? Meridional distance functions

Functions described in this section implement the calcul ations associated with cal culating the
meridiona distance from the equator to a geographic latitude.

CSmmFcal M Forward CALculation

double CSmmFcal (Const struct cs_MmcofF_ *mm_ptr,double lat,double sin_lat,
double cos_lat);

Given the geographic latitude, lat, in radians, and its sine (sin_lat) and its cosine (cos_lat), CSmm#Fcal
returns the meridional distance from the equator to the geographic latitude on the ellipsoid. (Snyder
calls this M). The return value is in the same units of the scaled equatorial radius argument that was
supplied to the CSmm#Fsu function when populating the structure pointed to by the mm_ptr argument
(see below).

The mm_ptr argument points to a structure of power series coefficients as developed by the CSmmFsu
function, which can be calculated solely from the ellipsoid in use. Therefore, the coefficients pointed to
by mm_ptr can be calculated once, once the ellipsoid definition is known.

BUGS

The calling sequence requires three forms of the geodetic latitude as these values are usually available
to calling functions. Thus, while redundant, this calling sequence assists in maintaining high
performance levels.

CSmmFsu M Forward SetUp

void CSmmFsu (struct cs_MmcofF_ *mm_ptr,double ka,double e_sq);

cSmmpfFsu develops the coefficients of the power series required to compute the meridional distance
from the equator to a specific geographic latitude. The resulting coefficients are stored in the structure
pointed to mm_ptr. The ka argument is the equatorial radius of the ellipsoid in the units of which the
calculated meridional distance is to be returned. The e_sq argument is the square of the eccentricity

Chapter 4 Chatper 4 -- Library Functions 327

of the ellipsoid.

Since the basic parameters of the ellipsoid are the only inputs, these calculations can be performed
once, once the ellipsoid definition being used is known. The calculations required for separate
latitudes are performed by CSmm#Fcal.

CSmmical M Inverse CALculation

double CSmmlcal (Const struct cs_Mmcofl_ *mm_ptr,double mm);

Given the meridional distance mm, CSmm/calreturns the corresponding geographic latitude in radians
where south latitude is negative. The mm_ptr argument points to a structure of power series
coefficients, as developed by the CSmm/su, which can be determined solely from the ellipsoid in use.
Therefore, CSmmlsu performs all calculations that can be performed once, while CSmml{cal performs
all calculations that must be performed for each coordinate to be converted. The units of the supplied
value of mm must be the same as that provided to the CSmm/su function, via the ka argument, which
produced the contents of the structure pointed to by mm_ptr.

CSmmisu M Inverse SetUp

void CSmmlsu (struct cs_Mmcofl_ *mm_ptr,double ka,double e _sq);

cSmmlsu develops the coefficients of the power series required to compute the geographic latitude
from the meridional distance (which Snyder calls M). The resulting coefficients are stored in the
structure pointed to mm_ptr. The ka argument is the equatorial radius of the ellipsoid in the same
units as the meridional distances CSmm/cal/will be expected to process. The e_sq argument is the
eccentricity of the ellipsoid squared.

Since the basic parameters of the ellipsoid are the only inputs, these calculations can be performed
once, once the ellipsoid definition being used is known. The calculations required for separate
latitudes are performed by CSmmlcal.

Dictionary Access Functions

Functions that can be used to read, write, and otherwise manipulate the dictionary files are described in
this section. Dictionary files are ordinarily distributed in encrypted form. This enables arather simple,
but somewhat effective means of protecting the valuable information which often residesin the
dictionaries.

The dictionary compilers can produce unencrypted dictionaries for testing purposes.

CS_cscmp Coordinate System CoMPare

int CS_cscmp (Const struct cs_Csdef_ *pp,Const struct cs_Csdef_ *qq);

CS_cscmp compares the two coordinate system definition structures provided to it by pp and qq and
returns an integer that represents the collating sequence relationship between the two coordinate
system definitions. The collating sequence is based on the key name of the coordinate system
definition. This function is used rather than stremp as this function can compare encrypted entries as

328 CS-MAP User's Guide User's Guide

well as unencrypted entries.

This function is used in conjunction with CS _jpsand CS _binsto access Coordinate System definitions in
the Coordinate System Dictionary.

CS_csDictCls Coordinate System DICTionary file CLoSe
void CS_csDictCls (csFILE* stream);

Applications must use this function to close a stream opened with the CS_csopn function. Using this
function assures that any memory of the open stream used for deferred closeis erased.

CS_csfnm Coordinate System dictionary File NaMe

int CS_csfnm (Const char *new_name);

CS_csfnm changes the file name that CS-MAP uses when opening the Coordinate System Dictionary
to that specified by new_name. This does not change the directory. Use CS altdrto change the
directory.

CS_csgrp Coordinate System dictionary GRouP

int CS _csgrp (Const char *grp_key,struct cs_Csgrplst_ **grp_lstp);
void CS_csgrpf (struct cs_Csgrplst_ *grp_Ist);

Given the name of a coordinate system dictionary group via the grp_key argument, CS_csgrp returns a
count of the number of coordinate systems in the specified group. At the location provided by the
grp_Istp argument, CS_csgrp also returns a pointer to a linked list of malloced cs_Csgrplst_
structures, one per coordinate system in the group. This feature is provided to ease the selection of a
single coordinate system from the 1,000 or more that are provided with the CS_MAP distribution.

Given a pointer to a linked list of cs_Csgrplst_ structures, CS_csgrpfwill free all memory resources
allocated by the linked list.

CS csgrpreturns a zero if no coordinate system definitions we located for the named group, or -1 if the
group key name provided is invalid. In both cases, the group list pointer provided by the a argument is
set to NULL.

The list of currently supported groups, and suitable textual descriptions thereof, are provided in a table
initialized in the CSdata.c module.

CS_csopn Coordinate System dictionary OPeN

csFILE *CS_csopn (Const char *mode);

CS _csopn will open the coordinate system dictionary for access as indicated by the mode argument
(_STRM_BINRD or _STRM_BINWR as defined in cs_map.h for example). The file stream of the
open file is returned. Upon successful return, the open file is positioned immediately after the magic
number that will have already been verified as being correct.

Chapter 4 Chatper 4 -- Library Functions 329

ERRORS

CS_csopnwill return NULL and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_CSDICT The Coordinate System Dictionary file could not be opened. (See CS_altar)

¢cs_CS_BAD_MAGIC Thefile that, by virtue of its name and location, was supposed to be a
Coordinate System Dictionary wasn't a Coordinate System Dictionary; its magic
number was invalid.

CS_csrd Coordinate System dictionary ReaD

int CS csrd (csFILE *strm,struct cs Csdef_ *cs_def,int *crypt);

CS csrdreads one record from the open Coordinate System Dictionary file indicated by the file stream
strm returning the results in the memory buffer pointed to by cs_def. The returned entry is always in
unencrypted form. Crypt is set to TRUE if the entry was encrypted in the file; otherwise crypt is set to
FALSE.

CS csrdcalls CS_bswap after reading and decrypting to effect a byte swap, if necessary, to the byte
order of the native machine.

CS csrdwill return a value of +1 if a record was successfully read, zero if the end of file was
encountered.

ERRORS

CS csrdwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS csrd could not read an entire cs_Csdef _ structure before
encountering the end of file.

CS_csrup Coordinate System Release UPdate

int CS _csrup (Const char *distrb,Const char *bkupnm);

CS csrupis designed for use in application installation programs and is used to update a user's
Coordinate System Dictionary file. The update is accomplished by updating the user's Coordinate
System Dictionary to the current release level, and merging the distribution file with the upgraded
user's file. Merging is performed based on coordinate system key name where the distribution version
is used wherever duplicate names are encountered.

330

CS-MAP User's Guide User's Guide

The distrb argument should be the name of the distribution file. If no directory information is present
(i.e. no directory separators), the file is expected to reside in the directory indicated by the cs_Dir
global variable. If directory information is present, the string provided is considered to be a complete
path to the distribution file. If distrb is the NULL pointer or points to the null string, CS_csrup simply
upgrades the user's existing Coordinate System Dictionary to the current release.

In all cases, CS_csrup expects to locate the user's current Coordinate System Dictionary using the
standard technique of combining the contents of the cs_Dir and cs_Csname global variables. If no
such file exists, CS_csrup creates it and copies the contents of the distribution file to the newly created
file.

If the bkupnm argument is not the NULL pointer and does not point to the null string, CS_csrup
considers it to be a file name and attempts to rename the user's existing Coordinate System Dictionary
to this name before replacing the Coordinate System Dictionary with the newly updated and merged
results.

CS csrup fully supports automatic byte swapping.
CS csrup writes the new Coordinate System Dictionary to a temporary file, and deletes the existing
Coordinate System Dictionary only after all processing has completed successfully. CS csruyp returns

Zero upon success.

ERRORS

CS csrupwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

Chapter 4 Chatper 4 -- Library Functions

331

cs_IOERR A physical I/O error was detected during the read operation or
CS csrup could not read an entire cs_Csdef _ structure before
encountering the end of file.

cs_FL_OPEN The open of the distribution file failed.

cs_INV_FILE Either file was not avalid Coordinate System Dictionary asit did

not contain records of the proper size.

cs_CSDEF_MAGIC

One of thefilesinvolved did not have the expected magic
number in the first 4 bytes of thefile.

cs_CS_NOT_FND

CS csrup could not find either the distribution file, or the user's
previous Coordinate System Dictionary file, and therefore could
not do anything.

cs_ NWCS_WRIT

A write error occurred while writing to the new Coordinate
System Dictionary. Usually indicates the disk isfull.

¢s_NOMEM Heap memory was insufficient to accommodate the allocation of
acs_Csdef_structure.
cs_ISER CS_csrup encountered a condition that could only be caused by a

coding error in the module itself.

CS_cswr Coordinate System dictionary WRite

int CS_cswr (csFILE *strm,Const struct cs_Csdef_ *cs def,int crypt);

CS cswrwrites the coordinate system definition pointed to by the cs_def argument at the current

position of the open Coordinate System Dictionary file indicated by the file stream strm. The definition
provided by the cs_def argument is always expected to be unencrypted. If the crypt argument is non-

zero, the definition is encrypted before being written.

CS cswrecalls CS_bswap before encrypting and writing to effect a byte swap, if necessary, to little

endian byte order.

CS_cswrwill return a value of FALSE if the record was successfully written, TRUE if an error condition

was detected.

ERRORS

CS_cswrwill return TRUE and set cs_Error appropriately if any of the following conditions are

encountered during the update:

332 CS-MAP User's Guide User's Guide

cs_IOERR A physical /O error was detected during the write operation.
cs_DISK_FULL A disk full indication was received as a result of the write
attempt.

CS_usrCsDef

int CS_usrCsDefPtr (struct cs_Csdef_ *csDef,Const char *keyName);

This name, CS_usrCsDefPtr, does not refer to afunction. Rather, it refersto a global variable which
is defined as a pointer to a function which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
specialized coordinate system definitionsin a dynamic manner.

If the global variable CS_usrCsDefPtr (defined in Cdata.c) is not null, the indicated function is
called whenever the CS-MAP library is asked to access a specific coordinate system definition. This
function, then, can be used to dynamically supply a coordinate system definition which does not exist
in the dictionary. Applications can use this to implement their own definition source (i.e. an external
database) or dynamically generate such a definition based on the name provided.

CS-MAP passes the keyName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired definition must be placed in
(copied to) the specific structure pointed to by the csDef argument.

The hook function returns an integer value:

= -lisreturned to indicate that normal dictionary access function isto return an error condition (i.e.
the null pointer). In this case, the hook function must have already reported the specific nature of
the error condition using CS_erpt.

= +1isreturned to indicate that normal CS-MAP dictionary accessis to be performed.

= QOisreturned to indicate that the hook function has supplied a definition that isto be used. In this
case, CS-MAP will allocate new memory from the heap, copy the hook function supplied
definition to the allocated memory, and return a pointer to the allocated memory to the calling
function.

CS_dtDictCls DaTum DICTionary file CLoSe

void CS dtDictCls (csFILE* stream);

Applications must use this function to close a stream opened with the CS_dfopn function. Using this
function assures that any memory of the open stream used for deferred closeis erased.

Chapter 4 Chatper 4 -- Library Functions 333

CS elDictCls ELlipsoid DICTionary file CLoSe

void CS_elDictCls (csFILE* stream);

Applications must use this function to close a stream opened with the CS_elopn function. Using this
function assures that any memory of the open stream used for deferred closeis erased.

CS_dtcmp DaTum definition CoMPare

int CS_dtcmp (Const struct cs_Dtdef_ *pp,Const struct cs_Dtdef *qq);

CS dtcmp compares the two datum definition structures provided to it by pp and qq and returns an
integer which represents the collating sequence relationship between the two datum definitions. The
collating sequence is based on the key name of the datum definition. This function is used rather than
stremp as it can compare encrypted entries as well as unencrypted entries.

This function is used in conjunction with CS _jpsand CS_bins to access datum definitions in the Datum
Dictionary.

CS_dtfnm DaTum dictionary File NaMe

int CS_dtfnm (Const char *new_name);

CS dtfnm changes the name used by CS-MAP when opening the Datums Dictionary to that specified
by new_name. The directory that is searched remains the same. Use CS_altdrto change the
directory.

CS_dtopn DaTum dictionary OPeN

csFILE *CS_dtopn (Const char *mode);

CS dtopn will open the Datum Dictionary for access as indicated by the mode argument
(_STRM_BINRD or _STRM_BINWR as defined in cs_map.h for example). The file stream of the
open file is returned. Upon successful return, the open file is positioned immediately after the magic
number that will have already been verified as being correct.

ERRORS

CS dtopn will return NULL and set cs_Error appropriately if any of the following conditions are
encountered during the update:

334 CS-MAP User's Guide User's Guide

cs_DTDICT The Datum Dictionary file could not be opened. (See
CS_altar).

cs_DT_BAD_MAGIC Thefilethat, by virtue of its name and location, was supposed
to be a Datum Dictionary wasn't a Datum Dictionary; its magic
number was invalid.

CS_dtrd DaTum dictionary ReaD

int CS dtrd (csFILE *strm,struct cs Dtdef_ *dt_def,int *crypt);

CS dtrdreads one record from the open Datum Dictionary file indicated by the file stream strm
returning the results in the memory buffer pointed to by dt_def. The returned entry is always in
unencrypted form. Crypt is set to TRUE if the entry was encrypted in the file; otherwise, crypt is set to
FALSE.

CS dtrd calls CS_bswap to effect a byte swap, if necessary, to the byte ordering of the native machine.

CS dtrdwill return a value of +1 if a record was successfully read, zero if the end of file was
encountered.

ERRORS

CS dtrdwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical 1/0 error was detected during the read operation or
CS ditrd could not read an entire cs_Dtdef _ structure before
encountering the end of file.

CS_dtrup DaTum dictionary Release UPdate

int CS _dtrup (Const char *distrb,Const char *bkupnm);

CS dtrupis designed for use in application installation programs and is used to update a user's Datum
Dictionary file. The update is accomplished by updating the user's Datum Dictionary to the current
release level, and merging the distribution file with the upgraded user's file. Merging is performed
based on datum key name where the distribution version is used wherever duplicate names are
encountered.

The distrb argument should be the name of the distribution file. If no directory information is present
(i.e. no directory separators), the file is expected to reside in the directory indicated by the cs_Dir
global variable. If directory information is present, the string provided is considered to be a complete
path to the distribution file. If distrb is the NULL pointer or points to the null string, CS_dtrup simply
upgrades the user's existing Datum Dictionary to the current release.

Chapter 4 Chatper 4 -- Library Functions 335

In all cases, CS_dtrup expects to locate the user's current Datum Dictionary using the standard
technique of combining the contents of the cs_Dir and cs_Dtname global variables. If no such file
exists, CS_dtrup creates it and copies the contents of the distribution file to the newly created file.

If the bkupnm argument is not the NULL pointer and does not point to the null string, CS_dtrup
considers it to be a file name and attempts to rename the user's existing Datum Dictionary to this name
before replacing the Datum Dictionary with the newly updated and merged results.

CS dtrup fully supports automatic byte swapping.

CS dtrup writes the new Datum Dictionary to a temporary file, and deletes the existing Datum
Dictionary only after all processing has completed successfully. CS_dtruyp returns zero upon success.

ERRORS

CS dtrup will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS dtrup could not read an entire cs_Dtdef _ structure before
encountering the end of file.

cs_FL_OPEN The open of the distribution file failed.

cs_INV_FILE Either file was not avalid Datum Dictionary asit did not
contain records of the proper size.

cs_DTDEF_MAGIC One of thefilesinvolved did not have the expected magic
number in the first 4 bytes of thefile.

cs_DT_NOT_FND CS dtrup could not find either the distribution file, or the user's
previous Datum Dictionary file, and therefore could not do
anything.

cs_NWDT_WRIT A write error occurred while writing to the new Datum

Dictionary. Usually indicates the disk isfull.

¢s_NOMEM Heap memory was insufficient to accommodate the allocation
of acs_Dtdef _ structure.

cs_ISER CS_dtrup encountered a condition that could only be caused by
acoding error in the module itself.

CS_dtwr DaTum dictionary WRite

int CS_dtwr (csFILE *strm,Const struct cs_Dtdef *dt _def,int crypt);

336 CS-MAP User's Guide User's Guide

CS dtwrwrites the datum definition pointed to by the dt_def argument to the current position of the
Datum Dictionary file indicated by the file stream strm. The datum definition provided is always
expected to be in unencrypted form. If crypt is non-zero, the definition is encrypted before being
written to the Datum Dictionary.

CS dtwrcalls CS_bswap prior to encrypting and writing to effect a byte swap, if necessary, to little
endian byte order ala Intel/DOS.

CS _dtwrwill return a value of zero if the definition was successfully written, -1 if an error condition was
detected.

ERRORS

CS dtwrwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical 1/O error was detected during the write operation.

CS_usrDtDefPtr - Datum Definition Hook Function

int CS_usrDtDefPtr (struct cs_Dtdef *dtDef,Const char *keyName);

This name, CS_usrDtDefPtr, does not refer to afunction. Rather, it refersto a global variable which
is defined as a pointer to a function which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
specialized datum definitions in a dynamic manner.

If the global variable CS_usrDtDefPtr (defined in CSdata.c) is not null, the indicated functionis
called whenever the CS-MAP library is asked to access a specific datum definition. This function,
then, can be used to dynamically supply a datum definition which does not exist in the dictionary.
Applications can use this to implement their own definition source (i.e. an external database) or
dynamically generate such a definition based on the name provided.

CS-MAP passes the keyName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired definition must be placed in
(copied to) the specific structure pointed to by the dtDef argument.

The hook function returns an integer value:

= -lisreturned to indicate that normal dictionary access function isto return an error condition (i.e.
the null pointer). In this case, the hook function must have already reported the specific nature of
the error condition using CS_erpt.

= +1isreturned to indicate that normal CS-MAP dictionary accessisto be performed.

= QOisreturned to indicate that the hook function has supplied a definition that isto be used. In this
case, CS-MAP will allocate new memory from the heap, copy the hook function supplied
definition to the allocated memory, and return a pointer to the allocated memory to the calling
function.

Chapter 4 Chatper 4 -- Library Functions 337

CS_elcmp ELlipsoid definition CoMPare

int CS_elcmp (Const struct cs_Eldef_ *pp,Const struct cs_Eldef *qq);

CS_elemp compares the two ellipsoid definition structures provided to it by pp and qq and returns an
integer that represents the collating sequence relationship between the two ellipsoid definitions. The
collating sequence is based on the key name of the ellipsoid definition. This function is used rather
than stremp as it can compare encrypted entries as well as unencrypted entries.

This function is used in conjunction with CS _jps and CS_binsto access ellipsoid definitions in the
Ellipsoid Dictionary.

CS_elfnm ELlipsoid dictionary File NaMe

int CS_elfnm (Const char *new_name);

CS elfnm changes the name used by CS-MAP when opening the Ellipsoid Dictionary to that specified
by new_name. The directory that is searched remains the same. Use CS_altdrto change the
directory.

CS elopn ELlipsoid dictionary OPeN

csFILE *CS_elopn (Const char *mode);

CS_elopn will open the Ellipsoid Dictionary for access as indicated by the mode argument
(_STRM_BINRD or _STRM_BINWR as defined in cs_map.h for example). The file stream of the
open file is returned. Upon successful return, the open file is positioned immediately after the magic
number that will have already been verified as being correct.

ERRORS

CS_elopnwill return NULL and set cs_Error appropriately if any of the following conditions are
encountered while opening the file:

cs_ELDICT The Ellipsoid Dictionary file could not be opened. (See
CS_altar).
cs_EL_BAD_MAGIC Thefilethat, by virtue of its name and location, was supposed

to be an Ellipsoid Dictionary wasn't an Ellipsoid Dictionary;
its magic number was invalid.

CS elrd ELlipsoid dictionary ReaD

int CS elrd (csFILE *strm,struct cs Eldef_ *el _def,int *crypt);

CS elrdreads one record from the open Ellipsoid Dictionary file indicated by the file stream strm
returning the results in the memory buffer pointed to by el_def. The returned entry is always in

338 CS-MAP User's Guide User's Guide

unencrypted form. Crypt is set to TRUE if the entry was encrypted in the file; otherwise, crypt is set to
FALSE.

CS elrdcalls CS_bswap after reading and decrypting to effect, if necessary, a byte swap to the byte
ordering of the native machine.

CS elrdwill return a value of +1 if a record was successfully read, zero if the end of file was
encountered.

ERRORS

CS elrdwill return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS elrd could not read an entire cs_Eldef_ structure before
encountering the end of file.

CS elrup ELipsoid dictionary Release UPdate

int CS _elrup (Const char *distrb,Const char *bkupnm);

CS elrypis designed for use in application installation programs and is used to update a user's
Ellipsoid Dictionary file. The update is accomplished by updating the user's Ellipsoid Dictionary to the
current release level, and merging the distribution file with the upgraded user's file. Merging is
performed based on ellipsoid key name where the distribution version is used wherever duplicate
names are encountered.

The distrb argument should be the name of the distribution file. If no directory information is present
(i.e. no directory separators), the file is expected to reside in the directory indicated by the cs_Dir
global variable. If directory information is present, the string provided is considered to be a complete
path to the distribution file. If distrb is the NULL pointer or points to the null string, CS_e/rup simply
upgrades the user's existing Ellipsoid Dictionary to the current release.

In all cases, CS_elrup expects to locate the user's current Ellipsoid Dictionary using the standard
technique of combining the contents of the cs_Dir and cs_Elname global variables. If no such file
exists, CS_elruyp creates it and copies the contents of the distribution file to the newly created file.

If the bkupnm argument is not the NULL pointer and does not point to the null string, CS_elrup
considers it to be a file name and attempts to rename the user's existing Ellipsoid Dictionary to this
name before replacing the Ellipsoid Dictionary with the newly updated and merged results.

CS elruyp fully supports automatic byte swapping.

CS_elrup writes the new Ellipsoid Dictionary to a temporary file, and deletes the existing Ellipsoid
Dictionary only after all processing has completed successfully. CS elrup returns zero upon success.

ERRORS

CS elryp will return a -1 and set cs_Error appropriately if any of the following conditions are

Chapter 4 Chatper 4 -- Library Functions

339

encountered during the update:

cs_IOERR A physical I/O error was detected during the read operation or
CS elrup could not read an entire cs_Eldef _ structure before
encountering the end of file.

cs_FL_OPEN The open of the distribution file failed.

cs_INV_FILE Either file was not avalid Ellipsoid Dictionary asit did not

contain records of the proper size.

cs_ELDEF_MAGIC

One of thefilesinvolved did not have the expected magic
number in the first 4 bytes of thefile.

cs_EL_NOT_FND

CS elrup could not find either the distribution file, or the user's
previous Ellipsoid Dictionary file, and therefore could not do
anything.

cs_NWEL_WRIT

A write error occurred while writing to the new Ellipsoid
Dictionary. Usually indicates the disk isfull.

¢s_NOMEM Heap memory was insufficient to accommodate the allocation
of acs_Eldef _ structure.
cs_ISER CS_elrup encountered a condition that could only be caused by a

coding error in the module itself.

CS_elwr ELlipsoid dictionary WRite

int CS_elwr (csFILE *strm,Const struct cs_Eldef_ *el_def,int crypt);

CS elwrwrites the ellipsoid definition pointed to by the el_def argument to the current position of the
Ellipsoid Dictionary file indicated by the file stream strm. The ellipsoid definition provided is always
expected to be in unencrypted form. If crypt is non-zero, the definition is encrypted before being
written to the Ellipsoid Dictionary.

CS elwrcalls CS_bswap before writing the data. This effects a byte swap, if necessary, to write the
ellipsoid definition in little endian (i.e. Intel/DOS) byte order.

CS_elwrwill return a value of FALSE if the definition was successfully written, TRUE if an error
condition was detected.

ERRORS

CS elwrwill return a -1 and set cs_Error appropriately if any of the following conditions are

encountered during the update:

340 CS-MAP User's Guide User's Guide

cs_IOERR A physical /O error was detected during the write operation.

cs_DISK_FULL A disk full condition was detected during the write operation.

CS_usrElDefPtr - Ellipsoid Definition Hook Function

int CS_usrElDefPtr (struct cs_Eldef_ *elDef,Const char *keyName);

Thisname, CS_usreElDefPtr, does not refer to afunction. Rather, it refersto aglobal variable which
is defined as a pointer to afunction which is defined as the above given prototype declares.
Applications can use a function as declared above, and the related global pointer variable, to implement
specialized ellipsoid definitions in a dynamic manner.

If the global variable CS_usrEIDefPtr (defined in CSdata.c) is not null, the indicated functionis
called whenever the CS-MAP library is asked to access a specific ellipsoid definition. This function,
then, can be used to dynamically supply a ellipsoid definition which does not exist in the dictionary.
Applications can use this to implement their own definition source (i.e. an external database) or
dynamically generate such a definition based on the name provided.

CS-MAP passes the keyName argument to the hook function prior to any validation, thus dynamic
definition names need not adhere to the CS-MAP key name conventions. In the event that the hook
function determines that it wishes to supply the definition, the desired definition must be placed in
(copied to) the specific structure pointed to by the elDef argument.

The hook function returns an integer value:

= -lisreturned to indicate that normal dictionary access function isto return an error condition (i.e.
the null pointer). In this case, the hook function must have already reported the specific nature of
the error condition using CS_erpt.

= +1isreturned to indicate that normal CS-MAP dictionary accessisto be performed.

= Qisreturned to indicate that the hook function has supplied a definition that isto be used. In this
case, CSSMAP will alocate new memory from the heap, copy the hook function supplied
definition to the allocated memory, and return a pointer to the allocated memory to the calling
function.

Well Known Text Implementation

While the syntax used by Well Known Text (WKT) represents areliable standard, the manner in which
isanything but standard. There are six flavors of WKT that the devel opers of CS-MAP have
identified; undoubtedly there are more. CS-MAP currently includes reliable data for the six flavorsit
knows about; however significant data sets for only three flavors have been found; thus serious testing
has been limited to those three flavors:

1 ESRI
2 Oracle

Chapter 4 Chatper 4 -- Library Functions 341

3 GeoTools

Thus, WKT remains awork in progress and probably will so remain for years to come.

Please note that the major issue with WKT isthat most all WKT definitions do not include reliable data
concerning the datum in use. Yes, the datum is named, but that isall we haveto go on. Thus,
successful tranglation of aWKT definition relies heavily on being able to map the datum name (and
indirectly the ellipsoid name) to a known definition. Known definition in this case means a definition
currently existing in the CS-MAP Datum Dlctionary.

Successful conversion of WKT definitions relies heavily on:

1 identifying the flavor of the WKT definition being processed.

2 mapping the datum name used by a specific flavor to a CS-MAP datum definition.
3 mapping the projection name used in the WKT definition to a CS-MAP projection.
4

mapping the various parameter names used in the WKT definition to CS-MAP projection
parameters.

Thisthereisalot of room for failure and errors of al sorts. Asof thisrelease (11.15) most all WKT
definitions for which a corresponding EPSG definition exists, and both the projection and datum
transformation technique are supported by CS-MAP, are handled properly. Fortunately, thisincludes
most all of the widely used coordinate systems, datums, and ellipsoids.

The subsections which follow describe the functions implemented within CS-MAP to process WKT
definitions.

Objects/Functions Implemented in C++

The functions and object described in this section are implemented in C++. That is, they implement a
C++ object in the form of aclass, or they use C++ features such as std::istream or std::string.
Obviously, these can only be compiled by a compiler capable of compiling C++ in addition to standard
'C'. Fortunately, that includes most all compilers today.

The C++ codein all of these modules is encapsulated within a conditional compile controlled by the
__CPP__ preprocessor constant. Developers will need to arrange to have this constant defined while
compiling the code modul es containing the implementation of these objects and functions.

342

CS-MAP User's Guide User's Guide

TrcWktElement Object

CS-MAP implements the WKT structure as a C++ object named TrcWktElement. Such an element is
used to represent the various WKT entities, and is designed such that it can contain sub-elements of
itself. A TrcWktElement object representing a Datum, for example, will contain an instance of a
TrcWktElement which represents a Spheroid. In thisway, the parsing and maintenance of awide
variety of WKT strings can be defined by a single object.

Note that TrcWktElement is a C++ object (i.e. aclass). The implementation of this object is
encapsulated with a conditional compile controlled by the__ CPP___ preprocessor constant. Thus, to
implement the WKT feature one must be using a compiler capable of compiling C++ code, and arrange
to havethe__ CPP___ preprocessor constant defined before compiling.

The name of this object deviates substantially from the CS-MAP standard naming conventions. Thisis
the case asit was originally coded for use in a new product which uses an enhanced naming
convention.

TrcWktElement - Parameters
The following parameters are used by the member functions of the 7rcWktElement object:

Name Type Description

type ErcWktEleType The WKT type of the element.

value char* The vaue of the element. Not the name, but the
value, usually numeric.

name char* The name associated with several elements.

flavor ErcWktFlavor The flavor of the WKT string to be parsed.

csMapParamCode | short A CS-MAP parameter code, dacs PRMCOD_?7??

parent TrcWktElement* | Pointer to the parent WKT element of the current
WKT element.

bufr char* Character array in which WKT values are returned as

anull terminated character array.

fieldNbr size t The zero based index of avalue to be extracted from
the WKT string. For those elements which require a
name, the name is not considered a value.

childElement TrcWktElement* | Pointer to anew WKT element object that isto be
added as a child to the current WKT element.

toBeRemoved TrcWktElement* | Pointer to a specific child element which isto be
removed from its parent element.

Chapter 4 Chatper 4 -- Library Functions 343

eleStart size t Index into the WKT string being parsed of the first
character of the extracted WKT element (in string
form).

eleTerm size t Index into the WKT string being parsed of the last
character of the extracted WKT element (in string
form).

bufrSize size t The size of acharacter array in which results are to be
returned.

wellKnownText char* A Well Known Text definition in anull terminated
character array form. Generally, the character string
may have other text preceding and following the
actual WKT definition.

TrcWktElement -- Construction / Destruction / Assignment
Constructors

TrcWktElement (void);
Constructs an empty object; an object with wktTypNOne, null name, and no values.

TrcWktElement (ErcWktEleType type,const char *value);
Constructs and object of the indicated type with asingle value.

TrcWktElement (ErcWktEleType type,const char *name,const char *value);

Constructs an object of the given type, with the provided name, and asingle value.

TrcWktElement (ErcWktEleType type,const std::string& value);
Constructs an object of the indicated type with asingle value.

TrcWktElement (ErcWktEleType type,const std::string& name,const std::string&
value);

Constructs an object of the indicated type, with the provided name and a single value.

TrcWktElement (const char *wellKnownText);

Constructs an object by parsing the provided WKT string. The result has a type indicated by the
preamble to the WKT string provided, and the value is set to the contents of the bracketed string which
followsthe preamble. If the typeis one of those which regquire a name, the name is extracted, and
removed, from the value.

TrcWktElement (const TrcWktElement& source);

344 CS-MAP User's Guide User's Guide

Copy constructor; nothing exceptional of note here.

Destructor
~TrcWktElement (void);

No surprises here.

Assignment
TrcWktElement& operator= (const TrcWktElement& source);

No surprises here.

Chapter 4 Chatper 4 -- Library Functions 345

TrcWktElement Member Functions
ErcWktEleType GetElementType (void) const;

Returns the WKT type of the element.
ErcWktEleType GetParentType (void) const;

Returns the WKT type of the parent element.
std::string GetElementName (void) const;

Returns the name of the element. For example, the spheroid name of a SPHEROID type
element as a string.

const char* GetElementNameC (void) const;
Returns the name of the element as a character pointer.
std::string GetCompleteValue (void) const;

Returns the complete value of the element asastring. Theis, the entire contents of the
unparsed bracketed value of the element.

bool HaslnitialName (void) const;
Returnstrueif the type of this element is one that requires an initial name.

void SetParent (const TrcWktElement* parent);

Sets the parent of the element to that provided. Used by the parent object when parsing out the
child elements. Probably should be protected, but it isn't.

void SetParentType (ErcWktEleType type);

Sets the type of the parent of the element to that provided. Used by the parent object
when parsing out the child elements. Probably should be protected, but it isn't.

const TrcWktElement *ChildLocate (ErcWktEleType type) const;

Returns a pointer to the first child element of the type provided. Returns null pointer if no
child of the type requested was found.

const TrcWktElement *ChildLocate (ErcWktEleType type,size t& index) const;

Returns a pointer to the first child element of the type requested. Search starts at the element
indicated by index. Index is set to the where a subsequent search should start. Returns null pointer if
no such type was found.

const TrcWktElement * ChildSearch (ErcWktElIeType type) const;

346

CS-MAP User's Guide User's Guide

Searches for achild element of the requested type. Immediate child elements are searched
first. 1f no element islocated, each child is then searched for a child element of the requested type.
The search isrecursive, to the lowest level. Null pointer isreturned if no child isfound.

const TrcWktElement * ParameterL ocate (ErcWktFlavor flavor,short csMapParamCode) const;

Searches all child elements of the PARAMETER type for a parameter with the indicated
parameter type. Flavor indicates the set of parameter names to be used in the search.

void GetFieldChar (char *bufr,size t bufrSize,size t fieldNbr) const;

Returns the value, as a character pointer. of the value indicated by fieldNbr. Returns null
pointer if such avalue does not exist.

std::string GetFieldStr (size_t fieldNbr) const;

Returns the value, as a std::string. of the value indicated by fieldNbr. Returns null pointer if
such avalue does not exist.

double GetFieldDouble (size_t fieldNbr) const;

Returns the indicated value as adouble. Returns zero if fieldNbr isinvalid. Conversion to
double accomplished via atof.

long GetFieldLong (size_t fieldNbr) const;

Returns the indicated value as along. Returns zero if fieldNbr isinvalid. Conversion to
double accomplished via atol.

ErcWktAxisld GetAxisld (void) const;

Returns an axisid value as indicated by the name of the element. Returns rcWwktAxisldNone if
valueisinvalid or type of element isnot AXIS.

ErcWktAxisValue GetAxisValue (void) const;

Returns an axis value asindicated by the value of the element. Returns rcWwktAxisNone if
valueisinvalid or type of element isnot AXIS.

ErcWktFlavor DetermineFlavor (void) const;

Attempts to determine the flavor of afully parsed element. Returns wktFvrUnknown if not
successful.

void AddChild (const TrcWktElement& childElement);
Adds achild WKT element to the current element.

void RemoveChild (const TrcWktElement* toBeRemoved);
Removes a child element from the current element.

void ReconstructValue (void);

Chapter 4 Chatper 4 -- Library Functions 347

Reconstructs the value of the current element from the name, values, and child elements of the
current element. Used when converting CS-MAP definitions to WKT.

std::string ProduceWkt (void) const;

Returns aWKT representation of the current element.

void ParseChildren (void);

Parses the current value of the element, producing and adding child elements as necessary.
Processis recursive.

WKT Object Support

The functions described in this section implement CS-MAP's ability to convert definitions from/to
WKT representation. While all of these functions are declared with standard 'C' linkage, many interact
with the C++ TrcWktElement object. Therefore, a C++ compiler is required to compile these functions
and the code implementing most of these function is encapsulated in a conditional compile segment
controlled by the __ CPP___ preprocessor constant.

CS_isWkt IS Well Known Text

int CS_isWkt (const char *wellKnownText);

CS _isWktwill return anon zero value if it considersit very likely that the string provided by the
wellKnownText argument isa WKT definition. Thisdetermination is mad by counting matching
square bracket characters. If the left and right bracket counts are equal and non-zero, the string is
assumed to be aWKT string. A zeroisreturned if the string fails this simple test.

CS_wktToCs Well Known Text To Coordinate System

int CS wktToCs (struct cs _Csdef_ *csDef,struct cs Dtdef *dtDef,
struct cs_Eldef_ *elDef,
ErcWktFlavor flavor,
const char *wellKnownText)

CS wktToCs converts the Well Known Text (WKT) provided by the wellKnownText argument to the
form used internally by CS-MAP. Use the flavor argument to indicate which flavor (there are several)
of WKT is being processed. The results are returned in the structures pointed to by the csDef, dtDef,
and elDef arguments. The dtDef and elDef arguments may be null.

348

CS-MAP User's Guide User's Guide

CS wktToCs will always copy the full name of the PROJCS element to the desc_nm member of the
cs_Csdef _ structure (and the name member of the cs_Dtdef _and cs_Eldef _ structures). It will
attempt to establish a keyname of 23 characters or less for each of these structures. If an
AUTHORITY element is present in the PROJCS (and DATUM and SPHEROID sub-elements) being
processed, the EPSG code will be used to manufacture a keyname of the form "Epsg:nnnn" where the
actual code value replacesthen's. If, for whatever reason, the manufacturing of a keyname of 23
characters or lessfails, CS wktToCs will return a positive, non-zero, value.

It isthe intent of the design that this function, and it close relatives, be dependent solely on the WKT
information provided by the wellKknownText argument. Additiona functions (see CS_wktToCsEx) are
provided which attempt to enhance the information produced by this function given access to mapping
tables and the CS-MAP dictionaries.

A zero return status, which israre, indicates complete success in parsing an conversion of the three
required elements. A non-zero positive statusis returned in the case of partial success. The value
returned is a bit map of the following conditions:

Preprocessor Constant Value Description

cs EL2WKT_NMTRUNC 1 Ellipsoid key name truncated

cs DT2WKT_NMTRUNC 2 Datum key name truncated

cs CS2WKT_NMTRUNC 4 Coordinate system key name truncated

cs DT2WKT_DTDEF 8 Datum definition extracted from CS-MAP
dictionary by name.

cs DT2WKT_NODEF 16 No datum definition is present in dtDef.

CS wktToCs will return a -1 and set cs_Error appropriately if any of the following conditions are
encountered during the conversion:

cs_WKT_WRNGTYP The type of WKT element provided to the function was was not that of
PROJCS. (Use CS_wktToDt to process GEOGTRAN objects.)

cs_WKT_NOUNIT A linear unit specification for the PROJCS definition was not found.

CS_WKT_INVUNIT The linear unit extracted for the PROJCS was not one recognized by
CS_MAP.

cs_WKT_NOGEOCS CS_wktToCs could not locate a GEOGCS element within the PROJCS

element. A GEOGCS is required in order to determine datum/ellipsoid.
Ccs_WKT_NOGUNIT The angular unit of the internal GEOGCS could not be located.

cs_WKT_INVGUNIT The angular unit extracted from the internal GEOGCS definition was
not one recognized by CS-MAP.

cs_WKT_NOPROJ CS whktToCs could not locate a PROJECTION specification in the
PROJCS definition.

Chapter 4 Chatper 4 -- Library Functions 349

cs_WKT_INVPROJ The PROJECTION specification located in the PROJCS definition
specified a projection that is not supported by CS-MAP (or otherwise
unrecognized).

cs_WKT_NODATUM A DATUM specification within the internal GEOGCS element is
required, and CS_wktToCs could not locate same.

cs_WKT_NOELLIP A SPHEROID specification within the DATUM specification is required,
and CS wktToCs could not locate same.

Whenever a negative value is returned, You may use CS_errmsg to obtain a textual description of the
problem.

CS_wktToCsEx Well Known Text To Coordinate System EXtended

int CS_wktToCsEx (struct cs_Csdef *csDef,struct cs Dtdef *dtDef,
struct cs_Eldef_ *elDef,
ErcWktFlavor flavor,
const char *wellKnownText)

CS wktToCsEx converts the Well Known Text (WKT) provided by the wellKknownText argument to the
form used internally by CS-MAP. Use the flavor argument to indicate which flavor (there are several)
of WKT is being processed. The results are returned in the structures pointed to by the csDef, dtDef,
and elDef arguments. If the flavor argument is set to wktFlvrNone, CS wkiToCsEx will attempt to
determine the flavor automatically. An negative status value is returned if this flavor determination
fails. The dtDef and elDef arguments may be null.

CS_wktToCsEx attempts to improve the results of CS_wktToCs by using definition name mapping tables
to resolve issues encountered during the WKT parsing process. Using the flavor specification, it
attempts to map the names of the coordinate system, the datum, and the ellipsoid contained in the WKT
to known CS-MAP definitions. In so doing, many of the issues regarding processing of WKT (such as
missing datum information) are often resolved.

CS wktToCsEX returns zero on success, indicating that key nams for al three elements have been
successfullly mapped to CS_MAP names and valid definitions exist in the CS-MAP dictionary for al
three names. In the event of partial success, hon-zero positive statusiis returned which is a bit map of
the following conditions:

Preprocessor Constant Value | Description

cs EL2WKT_NMTRUNC |1 Ellipsoid key name truncated

cs DT2WKT_NMTRUNC |2 Datum key name truncated

cs CS2WKT_NMTRUNC |4 Coordinate system key name truncated

cs DT2WKT_DTDEF 8 Datum definition extracted from CS-MAP
dictionary by name.

cs DT2WKT_NODEF 16 No datum definition is present in dtDef.

350 CS-MAP User's Guide User's Guide

In the evnt of failure, CS_wkitToCs will return a -1 and set cs_Error appropriately if any of the
following conditions are encountered during the conversion:

cs_WKT_BADFORM The provided WKT was not parsable. That is it did
not adhere to WKT syntax as understood by CS-MAP.

cs_WKT_FLAVOR The flavor argument value wktFlvrNone and CS_wktToCsEx
could not determine the flavor of the WKT entry
provided.

cs_WKT_DTMAP No datum transformation information was provided in

the WKT entry provided and CS wktToCsEx was unable to
determine an appropriate CS-MAP datum definition to

use.

cs_WKT_WRNGTYP The type of WKT element provided to the function was was not that of
PROJCS or GEOGCS. (Use CS wktToDtto process GEOGTRAN
objects.)

cs_WKT_NOUNIT A linear unit specification for the PROJCS definition was not found.

CS_WKT_INVUNIT The linear unit extracted for the PROJCS was not one recognized by
CS_MAP.

cs_WKT_NOGEOCS CS wktToCs could not locate a GEOGCS element within the PROJCS

element. A GEOGCS is required in order to determine datum/ellipsoid.
cs_WKT_NOGUNIT The angular unit of the internal GEOGCS could not be located.

cs_WKT_INVGUNIT The angular unit extracted from the internal GEOGCS definition was
not one recognized by CS-MAP.

cs_WKT_NOPROJ CS_wktToCs could not locate a PROJECTION specification in the
PROJCS definition.

cs_WKT_INVPROJ The PROJECTION specification located in the PROJCS definition
specified a projection that is not supported by CS-MAP (or otherwise
unrecognized).

cs_WKT_NODATUM A DATUM specification within the internal GEOGCS element is
required, and CS_wktT7oCs could not locate same.

cs_WKT_NOELLIP A SPHEROID specification within the DATUM specification is required,
and CS_wktToCs could not locate same.

Whenever a negative value is returned, You may use CS_errmsg to obtain a textual description of the
problem.

CS_wktToDt Well Known Text To DaTum

int CS wktToDt (struct cs Dtdef *dtDef,struct cs Eldef_*elDef,
ErcWktFlavor flavor,

Chapter 4 Chatper 4 -- Library Functions 351

const char *wellKnownText);

CS wktToDtwill parse the Well Known Text provided by the wellKknownText argument and popul ate
the pre-existing structures provided by the dtDef and elDef arguments; neither of which may be the
null pointer. If the flavor argument is set to wktFIvrNone, CS wktToDt will attempt to determine the
flavor for you. Otherwise, it will use the supplied flavor to interpret transformation method and
parameter names (which are, of course, non-standard).

CS wktToDt converts aWKT GEOTRANS object to CS-MAP format in the form of a cs Dtdef and a
cs_Eldef structure. If you have the newer format where the Datum element in the PROJCS element
has the TOWGS84 element embedded in it, smply use CS_wktToCs and convert the whole messin one
shot. Use this function only when dealing with the older GEOTRAN WKT type string.

CS wktToDt returns a positive value upon successful conversion. A non-zero positive result is a bit
map of the following conditions:

Preprocessor Constant Value | Description

cs EL2WKT_NMTRUNC (1 Ellipsoid key name truncated

CS_wktToDt will return a negative value and set cs_Error accordingly should any of the following
conditions be encountered:

¢s_WKT_FLAVOR The flavor of the provided Well Known Text string could not
be determined.

¢cs_WKT_GEOGCNT A valid GEOGTRAN WKT definition requires exactly two
GEOGCS specifications; the source and target systems.
CS_wktTodT encountered less than, or more than, two
such defintiions.

¢cs_WKT_WRNGTRG CS-MAP requires that the target datum specification be
WGSB84. IN the WKT string provided, a target other than
WGS84 was encountered.

¢cs_ WKT_NOSRCDT The source GEOGCS definition did not contain a datum
specification, or it was not parseable.

cs_WKT_NOMETH A transformation METHOD specificationcould not be
located in the provided WKT string.

¢s_ WKT_MTHERR While a METHOD specification did exist, the actual method
specified was not one of the method names understood, or
supported, by CS-MAP.

352 CS-MAP User's Guide User's Guide
cs_WKT_WRNGTYP The type of WKT element provided to the function was was
not that of PROJCS. (Use CS_wktToDt to process
GEOGTRAN obijects.)
¢s_WKT_NOELLIP A SPHEROID specification within the DATUM specification
is required, and CS_wktToCs could not locate same.

Whenever anegative return value is returned, you can use CS_errmsg to obtain atextual description of
the cause.

CScs2Wkt

int CScs2Wkt (char *csWktBufr,size_ t bufrSize,struct cs_Csdef_ *cs def)

Use CScs2Wikt to produce a complete PROJCS or GEOGCS object in the Well Known Text (WKT)
format. CScs2Wiktwill access the Datum and Ellipsoid Dictionaries as necessary to retrieve the
information necessary to complete this request. Theresult isreturned in the buffer pointed to by the
csWktBufr argument, but no more than bufrSize byte will be written there. The cs_def argument
provides the definition which is to be converted.

If the projection upon which the provided definition is based is the Unity projection, a GEOGCS object
is produced. Otherwise a PROJCS object is produced. CScs2Wkt returns a negative value in the event
of an error. Attempting to convert a coordinate system definition based on a projection which is not
supported by the WKT format is the most common cause of an error.

CS_wktToDict Well Known Text To DICTionary

int EXP_LVL1 CS_wktToDict (const char *csKeyName,const char *dtKeyName,
const char *elKeyName,
const char *wellKnownText,
int flavor);

Chapter 4 Chatper 4 -- Library Functions 353

CS wktToDict will parse the Well Known Text string provided by the wellKnownText argument and,
if successful, add the resulting components to the CS-MAP dictionaries. Use the flavor argument to
indicate the flavor of the Well Known Text that isto be parsed; €S wktToDict will not determine the
flavor for you.

Upon addition, the new entriesin the dictionary will be assigned key names as provided by the
csKeyName, dtKeyName, and elKeyName arguments respectively. Should any of the key name
arguments be the null pointer, or point to the null string, that specific dictionary update will not be
attempted. Note that these dictionary modifications are updates, and will replace existing definitions
with the same name.

A dictionary update will fail, and cause subsequent dictionary updates to be skipped, if CS_wktToDict
attempts to replace a protected definition.

CS wktToDict will return a-1 upon failure for any reason. Use CS_errmsgto obtain atextual
description of the cause of the failure. Notethat CS wktToDict uses CS_wktToCs to parse the provided
Well Known Text string, and CS_elupd, CS_dtupd, and CS_csupd (in that order) to update the
dictionaries. Seethese functions for a complete list of possible failure conditions.

Name/Number mapping Functions

The severa functionsin this section are used by the WKT processing facility to map definition names
and ID codes between CS-MAP, EPSG, and the various flavors of WKT. These are straight 'C'
functions, are not linked to the C++ implementation of the WKT object. Therefore, they can of general
value to all applications. New mapping functions are added quite regularly, so checking the cs_map.h
header file for new prototypes on each release is advised.

CS_epsg2msi EPSG code to MSI key name
int CS_epsg2msi (long epsghNbr,char* msiKeyName, int size);

CS_epsgZmsireturns in the character array provided by the msiKeyName argument the CSSMAP
coordinate system key name which corresponds to the EPSG code value provided by the epsgNbr
argument. CS_epsg2Zmsireturns a zero for success, a-1 if the epsgNbr argument was not avalid
EPSG coordinate system code value as far as CS-MAP is concerned.

Thisfunction isvery similar to CSepsg2msiCS, but is much easier for the Visual Basic programmer to
use.

354

CS-MAP User's Guide User's Guide

CS_esriName2mai ESRI Name TO CS-MAP name

Const char* CS_esriName2Msi (Const char* esriName,unsigned short* flags);

Returns a pointer to the CS-MAP coordinate system key name which corresponds to the ESRI name
provided by the esriName argument. Returns null pointer if the ESRI definition name is unknown to
CS-MAP or an equivalent CS-MAP name does not exist. The flags argument is required, set to zero,
and is otherwise unused at the current time.

CS_msi2epsg MSI key name TO EPSG code value
long CS_msi2epsg (Const char *msiKeyName);

CS_msiZepsg return the EPSG code value associated with aCS_MAP coordinate system key name.
The msiKeyName argument specifies the CS-MAP key name for which the EPSG code valueisto be
returned.

Thisisfunctionisvery similar to CSmsiZepsgCs, but it is easier for the Visua Basic programmer to
use.

CS_msiName2Esri CS-MAP NAME TO ESRI name

Const char* EXP_LVL1 CS msiName2Esri (Const char* msiName)

Returns a pointer to the ESRI coordinate system key name which corresponds to the CS-MAP name
provided by the msiName argument. Returns null pointer if the ESRI definition name is unknown to
CS-MAP.

CSepsg2msiCS EPSG code to MSI key name, Coordinate Systems
Const char* CSepsg2msiCS (long epsgNbr,short* flags);

Chapter 4 Chatper 4 -- Library Functions 355

CSepsg2msiCS returns a pointer to a constant string which is the CS-MAP key name which corresponds
to the EPSG code number provided by the epsgNbr argument. A null pointer isreturned if a
corresponding Mentor key name does not exists for the given EPSG code value.

In those cases where CSepsg2msiCS returns anon-null pointer, it will also return bit map in the variable
pointed to by the flags argument. The least significant bitsin this bit map value have the following
significance:

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of this
coordinate system.

1 EPSG has deprecated this definition. It should no longer be
used for output.

CSepsg2msiDT EPSG code to MSI key name, DaTums

Const char* CSepsg2msiDT (long epsgNbr,short* flags);

CSepsg2msiDT returns a pointer to a constant string which is the CS-MAP key name which
corresponds to the EPSG code number provided by the epsgNbr argument. A null pointer is returned
if acorresponding CS-MAP key name does not exists for the given EPSG code value.

In those cases where CSepsg2msiDT returns a non-null pointer, it will also return bit map in the
variable pointed to by the flags argument. The least significant bitsin this bit map value have the
following significance:

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of this
coordinate system.

1 EPSG has deprecated this definition. It should not be used for
output.

CSepsg2msiDT EPSG code to MSI key name, ELlipsoids
Const char* CSepsg2msiEL (long epsgNbr,short* flags);

356

CS-MAP User's Guide User's Guide

CSepsgZmsiEL returns a pointer to a constant string which is the CS-MAP key name which corresponds
to the EPSG code number provided by the epsgNbr argument. A null pointer isreturned if a
corresponding Mentor key name does not exists for the given EPSG code value.

In those cases where CSepsgZmsiEL returns anon-null pointer, it will aso return bit map in the variable
pointed to by the flags argument. The least significant bitsin this bit map value have the following
significance:

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of
this ellipsoid.

1 EPSG has deprecated this definition. It should not be used
for output.

CSepsgByldxCS EPSG codes BY InDeX, Coordinate Systems
long CSepsgByldxCS (int index);

Use CSepsgBylaxCSto iterate through CS-MAP's knowledge of EPSG coordinate system code values.
CSepsgByldxCS returns the EPSG code in the index location (first = 0) of CS-MAP's internal EPSG
codetable. If thevalue of indexistoo large, azero valueis returned.

Thus, one may iterate through the entire EPSG code table by simply starting with an index value of
zero, and incrementing it by one until CSepsgByldxCS returns azero value. The returned EPSG code
values can be used with CSepsg2msiCS to obtain the corresponding coordinate system key name.

CSepsgByldxDT EPSG codes BY InDeX, DaTums
long CSepsgByldxDT (int index);

Use CSepsgByldxDT to iterate through CS-MAP's knowledge of EPSG datum code val ues.
CSepsgByldxDT returns the EPSG code in the indexlocation (first = 0) of CS-MAP'sinterna EPSG
codetable. If thevalue of indexistoo large, azero valueis returned.

Thus, one may iterate through the entire EPSG code table by simply starting with an index value of
zero, and incrementing it by one until CSepsgByldxDT returns a zero value. The returned EPSG code
values can be used with CSepsg2msiDT to obtain the corresponding coordinate system key name.

Chapter 4 Chatper 4 -- Library Functions 357

CSepsgByldxCS EPSG codes BY InDeX, ELlipsoids
long CSepsgByldxEL (int index);

Use CSepsgBylaxEL to iterate through CS-MAP's knowledge of EPSG €ellipsoid code values.
CSepsgByldxEL returns the EPSG code in the index|ocation (first = 0) of CS-MAP's interna EPSG
codetable. If thevalue of indexistoo large, azero valueis returned.

Thus, one may iterate through the entire EPSG code table by simply starting with an index value of
zero, and incrementing it by one until CSepsgByldxEL returns azero value. The returned EPSG code
values can be used with CSepsgZmsiEL to obtain the corresponding coordinate system key name.

CSmsi2epsgCS MSI to EPSG, Coordinate Systems

long CSmsi2epsgCS (Const char *msiKeyName,short* flags);

CSmsiZepsgCS returns the actual EPSG code value associated with the CS-MAP key name provided by
the msiKeyName argument. A zeroisreturned if the provided name isinvalid, or an EPSG equivalent
does not exist. CSmsi2epsgCS returns, in the variable pointed to by the flags argument, to a bit map
value which indicates the status of the definition referred to. The value has no meaning if the return
value of the function is zero.

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of
this coordinate system.

1 EPSG has deprecated this definition. It should no longer be
used for output.

CSmsi2epsgDT MSI to EPSG, DaTums
long CSmsi2epsgCS (Const char *msiKeyName,short* flags);

358 CS-MAP User's Guide User's Guide

CSmsiZepsgDT returns the actual EPSG code val ue associated with the CS-MAP key name provided by
the msiKeyName argument. A zeroisreturned if the provided nameisinvalid, or an EPSG equivalent
does not exist. CSmsiZepsgDT returns, in the variable pointed to by the flags argument, to a bit map
value which indicates the status of the definition referred to. The value has no meaning if the return
value of the function is zero.

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition of
this datum.

1 EPSG has deprecated this definition, it should not be used
for output.

CSmsi2epsgEL MSI to EPSG, ELlipsoids

long CSmsi2epsgEL (Const char *msiKeyName,short* flags);

CSmsiZepsgEL returns the actual EPSG code value associated with the CS-MAP key name provided by
the msiKeyName argument. A zero isreturned if the provided nameisinvalid, or an EPSG equivalent
does not exist. CSmsiZepsgEL returns, in the variable pointed to by the flags argument, to a bit map
value which indicates the status of the definition referred to. The value has no meaning if the return
value of the function is zero.

Bit Number (0 = LSB) Meaning (when set)

0 CS-MAP distributions prior to 11.10 included a definition
of this ellipsoid.

1 EPSG has deprecated this definition, it should not be used
for output.

Legacy Functions

Functions which are obsol ete and/or replaced by newer implementations are described in this section.

CS842grf wgs 84 TO local Geodetic ReFerence system

int CS842grf (Const double 11_84,double 11 _Icl,struct cs_Grfprm_ *grf);

Given a properly initialized local geodetic reference system parameter block via the grf argument,

Chapter 4 Chatper 4 -- Library Functions 359

CS842grfwill convert the geographic coordinate, i.e. latitude and longitude, provided in 1l_84 to the
equivalent coordinates in the local geodetic reference system and return the results in ll_lcl. 11_84 and
ll_Ilcl may point to the same array. In both arrays, the first element is the longitude and second
element is the latitude. Latitudes and longitudes must in degrees relative to Greenwich where negative
values indicate south latitude and west longitude.

CS842grfreturns FALSE if the conversion was correctly performed, else TRUE is returned.
ERRORS

CS842grfwill return TRUE and set cs_Error appropriately if any of the following conditions are
encountered during the conversion:

Cs_WGG_CNVR | Theiterative calculation of the local geodetic coordinate failed to converge after 6
G iterations.

CS_bwcalc Bursa/Wolfe CALCulation

int CS bwcalc (Const double Icl_I1 [3],double 11_84 [3],
Const struct cs GrfBurs_ *bursa);

CS bwealc uses the information provided in the cs_GrfBurs_ structure provided by the bursa argument
to convert the latitude and longitude in the Icl_Il array to WGS84 based latitude and longitude. The
results are returned in the array provided by the II_84 argument.

All elements of the Il_Icl and Il_84 arrays must be in degrees. Longitude is carried in the first element
of each array; lataitude in the second element; and the third element is currently unused. In all cases,
negative values are used for west longitude and south latitude.

CS_bwcalc returns zero to indicate successful calculation, and non-zero otherwise. Currently,
CS_bwcalc is always successful.

CS_getcs GET Coordinate System definition

int CS_getcs (Const char *key nm,struct cs_Csdef_ *bufr);

CS getcs will return in the memory location indicated by the bufr argument the definition of the
coordinate system whose key name is given by the key_nm argument. CS_getcs normally returns
Zero.

ERRORS

CS geteswill return a -1 and set cs_Error if any of the following conditions are detected:

360 CS-MAP User's Guide User's Guide

cs_CSDICT The Coordinate System Dictionary file could not be found or
otherwise opened. (See CS_altar)

cs_IOERR A physical I/O error occurred during access to the Coordinate
System Dictionary file.

cs_CS_BAD_MAGIC The file accessed under the assumption that it was a
Coordinate System Dictionary wasn't a Coordinate System
Dictionary after all; it had an invalid magic number on the
front end.

¢cs_CS_NOT_FND A coordinate system definition with the name given by
key_nm was not found in the Coordinate System Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space
for acs_Csdef _ structure.

CS_getdt GET DaTum definition

int CS_getdt (Const char *key nm,struct cs Dtdef_ *bufr);

CS getdtwill return in the memory location indicated by the bufr argument the definition of the datum
whose name is given by the key_nm argument. CS getdt normally returns zero.

ERRORS

CS getdtwill return a -1 and set cs_Error if any of the following conditions are detected:

cs_DTDICT The Datum Dictionary file could not be found or otherwise
opened. (See CS_altdr)

cs_IOERR A physical I/O error occurred during access to the Datum
Dictionary file.

cs_DT_BAD_MAGIC The file accessed under the assumption that it was a Datum
Dictionary wasn't a Datum Dictionary after al; it had an invalid
magic number on the front end.

cs_DT_NOT_FND A datum definition with the name given by key_nm was not
found in the Datum Dictionary.

¢s_NO_MEM Insufficient dynamic memory was available to alocate space for
acs_Dtdef_ structure.

Chapter 4 Chatper 4 -- Library Functions 361

CS _getel GET ELlipsoid definition

int CS_getel (Const char *key nm,struct cs Eldef_ *bufr);

CS getel/will return in the memory location indicated by the bufr argument the definition of the ellipsoid
whose name is given by the key_nm argument. CS_gete/normally returns zero.

ERRORS

CS getel/will return a -1 and set cs_Error if any of the following conditions are detected:

cs_ELDICT The Ellipsoid Dictionary file could not be found or otherwise
opened. (See CS_altar)

cs_IOERR A physical I/O error occurred during access to the Ellipsoid
Dictionary file.

cs_EL_BAD_MAGIC The file accessed under the assumption that it was an Ellipsoid
Dictionary wasn't a Ellipsoid Dictionary after al; it had an
invalid magic number on the front end.

cs_EL_NOT_FND An ellipsoid definition with the name given by key_nm was not
found in the Ellipsoid Dictionary.

cs_NO_MEM Insufficient dynamic memory was available to allocate space for
acs_Eldef_dtructure.

CSgrf284 local Geodetic ReFerence system TO wgs 84

int CSgrf284 (Const double 11 _Icl [2],double 11 _84 [2],struct cs Grfprm_
*grf);

Given a properly initialized Geodetic Reference System parameter block via the grf argument,
CSgrf284 will convert the local geodetic reference system coordinates in the lcl_Il array to their
equivalent WGS 84 values and return the result in the 1I_84 array. Both pointers may point to the
same array. In both arrays, the first element is the longitude and the second element is the latitude.
Latitudes and longitudes are given in degrees where negative values indicate south latitude and west
longitude.

CSgri284 will use CS_mrcalc to calculate the new values if the provided cs_Grfprm_ structure has a
valid multiple regression formula initialized within it. If a multiple regression formula is not available, or
if the multiple regression calculation fails for any reason, CSgrf284 uses CS_mocalc or CS_bwecalc as is
appropriate to arrive at the desired result.

ERRORS

CSgrf284 will return zero to indicate that the conversion proceeded to a normal result; TRUE to indicate

362 CS-MAP User's Guide User's Guide

that an error occurred. In the event of an error the global variable cs_Error will be set to
¢s_MREG_RANGE in any case where a valid multiple regression formula did indeed exist, but the
location given by ll_lcl was outside of the domain of the multiple regression formula.

CSgrfinit local Geodetic ReFerence system INITialize

int CSgrfinit (Const struct cs_Csprm_ *csprm,grf,struct cs_Grfprm_ *grf);

Using the datum information contained in the datum element of the cs_Csprm__ structure provided by
the csprm argument, CSgrfinit will initialize the cs_Grfprm_ structure provided by the grf argument
for datum conversions. The initialized cs_Grfprm_ structure contains all the information necessary to
convert geographic coordinates (i.e. latitude/longitude) between the datum described (i.e. the local
geodetic reference system) and WGS 84.

Depending on the information contained in the datum element, either the Molodensky form or the
Bursa/Wolfe form of the conversion is always initialized as a backup to the possible initialization of a
multiple regression formula. If a valid and appropriately named multiple regression formula definition
file is located in the directory indicated by the cs_Dir global variable (see CSdata.c), the multiple
regression conversion is also initialized.

ERRORS

CSgrfinit always returns FALSE to indicate that no error condition has been detected. It is possible that
future versions of CSgrfinit will return TRUE to indicate the existence of an error condition.

CS_mocalc MOlodensky CALCulator

void CS_mocalc (Const double 11_Icl [2],double 11_84 [2],
Const struct cs_GrfMolo_ *molo);

Given a properly initialized cs_GrfMolo_ structure via the molo argument, CS_mocalc converts the
local geodetic reference system latitude and longitude pair provided by Il_lcl to WGS84 base latitudes
and longitudes and returns the result in the array pointed to by the Il_84 argument. CSgrfinitis usually
used to obtain an initialized cs_GrfMolo_ structure.

The formulas used are the unabridged Molodensky formulas where the elevation is assumed to be
zero.

ERRORS

At the current time, CS_mocalc always returns 0 to indicate that the calculation was performed
successfully.

CS_mrcalc Multiple Regression CALCulator

int CS_mrcalc (Const double 11 _Icl [2],double 11_84 [2],
Const struct cs _GrfMreg_ *mr_ptr);

Given a properly initialized cs_GrfMreg__ structure via the mr_ptr argument, CS_mrcalc converts the
local geodetic reference system latitude and longitude pair provided by Il_lcl to WGS84 base latitudes
and longitudes and returns the result in the array pointed to by the Il_84 argument. CSgrfinitis usually
used to obtain an initialized cs_GrfMreg__ structure.

Chapter 4 Chatper 4 -- Library Functions 363

ERRORS

CS_mrcalc will copy the contents of Il_lcl to II_84 and return 1 if the location provided by Il_lcl is
outside of the domain of the Multiple Regression formula provided. Otherwise, a zero is returned.

CS_p7calc 7 Parameter CALCulation

int CS _bwcalc (Const double Icl_I1 [3],double 11_84 [3],
Const struct cs_Grf7Prm_ *parm7);

CS prcalc uses the information provided in the cs_GrfBurs_ structure provided by the parm7
argument to convert the latitude and longitude in the Icl_Il array to WGS84 based latitude and
longitude. The results are returned in the array provided by the 1I_84 argument.

All elements of the ll_lcl and Il_84 arrays must be in degrees. Longitude is carried in the first element
of each array; latitude in the second element; and the third element is currently unused. In all cases,
negative values are used for west longitude and south latitude.

CS prcalcreturns zero to indicate successful calculation, and non-zero otherwise. Currently,
CS prcalcis always successful.

CS_putcs PUT Coordinate System to dictionary

int CS putcs (Const struct cs_Csdef_ *csDef,int crypt);

CS putcs writes the coordinate system definition pointed to by the csDef argument to the coordinate
system dictionary. If the crypt argument is non-zero, the definition is encrypted before writing.
CS _putcsreturns a zero on success, a negative value in the event of an error.

ERRORS

CS putcsuses CS_csupdfor a majority of its functionality; the return value is primarily what CS_csupd
returns.

CS putdt PUT DaTum to dictionary

int CS putdt (Const struct cs_Dtdef_*dtDef,int crypt);

CS_putdtwrites the datum definition pointed to by the dtDef argument to the datum dictionary. If the

crypt argument is non-zero, the definition is encrypted before writing. CS_putdtreturns a zero on
success, a negative value in the event of an error.

ERRORS

CS putdtuses CS_dtupdfor a majority of its functionality; the return value is primarily what CS_dtupd
returns.

364 CS-MAP User's Guide User's Guide

CS_putel PUT ELlipsoid to dictionary

int CS putel (Const struct cs_Eldef_ *elDef,int crypt);

CS_putelwrites the ellipsoid definition pointed to by the elDef argument to the ellipsoid dictionary. If
the crypt argument is non-zero, the definition is encrypted before writing. CS_pute/returns a zero on
success, a negative value in the event of an error.

ERRORS

CS putel/uses CS_elupdfor a majority of its functionality; the return value is primarily what CS_elupd
returns.

CS_un2d Units, Name TO Double

double CS un2d (Const char *uname);

This function is now obsolete, being replaced by CS wnitlu. 1t is being maintained to provide
compatibility with previous releases only.

CS _unZdwill return a double that represents the multiplier required to convert a value in the unit
system indicated by uname to units of meters. Uname must be a null terminated string defining one
of the supported units as defined in CSdataU.c. CS_wnZdreturns zero in the event the provided unit
name is not known.

For example, to convert a value in feet to meters, one could code:
double CS_un2d Q;
{
meters = feet * CS_un2d ('FOOT™);

Or to convert meters to feet:
double CS_un2d Q);

feet = meters / CS_un2d ('FOOT");

CS _unZdknows about the first and second abbreviations provided for in the cs_Unittab_ structure.

Therefore, the following are equivalent to the above:
double CS_un2d Q;
{

meters = feet * CS_un2d ("'FT");
T
double CS_un2d Q);

feet = meters / CS_un2d ("FT™);

ERRORS

CS_unZdwill return zero and set cs_Error to cs_INV_UNIT if the unit name pointed to by uname is
not defined in cs_Unittab.

CS842grf wgs 84 TO local Geodetic ReFerence system

int CS842grf (Const double 11_84,double 11 _Icl,struct cs_Grfprm_ *grf);

Chapter 4 Chatper 4 -- Library Functions 365

Given a properly initialized local geodetic reference system parameter block via the grf argument,
CS842grfwill convert the geographic coordinate, i.e. latitude and longitude, provided in 1l_84 to the
equivalent coordinates in the local geodetic reference system and return the results in ll_lcl. 1I_84 and
Il_lcl may point to the same array. In both arrays, the first element is the longitude and second
element is the latitude. Latitudes and longitudes must in degrees relative to Greenwich where negative
values indicate south latitude and west longitude.

CS842grfreturns FALSE if the conversion was correctly performed, else TRUE is returned.

ERRORS
S84 2grfwill return TRUE and set cs_Error appropriately if any of the following conditions are
encountered during the conversion:

¢cs_WGG_CNVRG The iterative calculation of the local geodetic coordinate
failed to converge after 6 iterations.

CSgrf284 local Geodetic ReFerence system TO wgs 84

int CSgrf284 (Const double 11 _Icl [2],double 11 _84 [2],struct cs Grfprm_
*grf);

Given a properly initialized Geodetic Reference System parameter block via the grf argument,
CSgri284 will convert the local geodetic reference system coordinates in the Icl_Il array to their
equivalent WGS 84 values and return the result in the 1I_84 array. Both pointers may point to the
same array. In both arrays, the first element is the longitude and the second element is the latitude.
Latitudes and longitudes are given in degrees where negative values indicate south latitude and west
longitude.

CSgri284 will use CS_mrrcalc to calculate the new values if the provided cs_Grfprm_ structure has a
valid multiple regression formula initialized within it. If a multiple regression formula is not available, or
if the multiple regression calculation fails for any reason, CSgrf284 uses CS_mocalc or CS_bwecalc as is
appropriate to arrive at the desired result.

ERRORS

CSgrf284 will return zero to indicate that the conversion proceeded to a normal result; TRUE to indicate
that an error occurred. In the event of an error the global variable cs_Error will be set to
¢s_MREG_RANGE in any case where a valid multiple regression formula did indeed exist, but the
location given by ll_lcl was outside of the domain of the multiple regression formula.

CSgrfinit local Geodetic ReFerence system INITialize

int CSgrfinit (Const struct cs Csprm_ *csprm,grf,struct cs_Grfprm_ *grf);

Using the datum information contained in the datum element of the cs_Csprm__ structure provided by
the csprm argument, CSgrfinit will initialize the cs_Grfprm_ structure provided by the grf argument
for datum conversions. The initialized cs_Grfprm_ structure contains all the information necessary to

366 CS-MAP User's Guide User's Guide

convert geographic coordinates (i.e. latitude/longitude) between the datum described (i.e. the local
geodetic reference system) and WGS 84.

Depending on the information contained in the datum element, either the Molodensky form or the
Bursa/Wolfe form of the conversion is always initialized as a backup to the possible initialization of a
multiple regression formula. If a valid and appropriately named multiple regression formula definition
file is located in the directory indicated by the cs_Dir global variable (see CSdata.c), the multiple
regression conversion is also initialized.

ERRORS

CSgrfinit always returns FALSE to indicate that no error condition has been detected. It is possible that
future versions of CSgrfinit will return TRUE to indicate the existence of an error condition.

CSgeoidCls GEOID, CLoSe

void CSgeoidCls (void);

CSgeoidCls decrements the global variable csGeoidOpenCnt and, if the result is zero or less, closes
all open GEOID database files and free's the memory allocated to the GEOID file control block cache
and the GEOID grid cell cache.

CSgeoidInitincrements the global variable csGeoidOpenCnt each time it is called. CSgeoidCls
decrements this count each time it is called. Resources are released only when csGeoidOpenCnt
reaches zero. Thus, resources are not released prematurely in processes where more than one geoid
height process is active at any given time.

Currently, CSgeoidCls does not free the memory allocated to the GEOID database directory. The
GEOID database directory does not require much memory (32 bytes per database) and is rather
expensive, computationally, to initialize. Therefore, this system resource is left alone by this function.
CSgeoidlnit will not attempt to reinitialize the directory if the value of csGeoidDirP is not NULL. Non-
source licensees who find this objectionable can free the GEOID database directory directly (i.e.
CS_free (csGeoidDirP);). Be sure to set the value of csGeoidDirP to NULL and the value of
csGeoidDirM and csGeoidDirU to zero.

CSgeoiddbo GEOID, DataBase Open

extern int cs_Error;
Const struct csGeoidFcb_ *CSgeoiddbo (Const double 11_84 [2]);

The database for GEOID height calculations consists of several different files, each covering a specific
geographic area. CSgeoiddbo returns a pointer to a csGeoidFchb__ structure that provides access to
the appropriate GEIOD database file for the geographic region containing the coordinate indicated by
the 1I_84 argument. LI_84 must contain the longitude in the first element, and the latitude in the
second element. Both must be in degrees where negative values are used to indicate west and south.
This geographic coordinate is expected to be a WGS 84 geographic coordinate.

CSgeoiddbo searches the GEOID file control block cache to see if the required database file is already
open. If so, a pointer to it is returned after this block is made the most recently accessed (i.e. moved to
the top of the linked list). Otherwise, the appropriate GEOID file is opened and a pointer to the
resulting file control block is returned.

If a GEOID database file that covers the geographic region containing |1I_84 cannot be found on the

Chapter 4 Chatper 4 -- Library Functions 367

system, cs_Error is set to zero and the NULL pointer is returned. If the database open failed for
another reason, the NULL pointer will be returned but cs_Error will be set to indicate the nature of
the failure.

CSgeoiddbo s called by CSgeoigptrwhen CSgeoidptr needs to access a database to fetch a new grid
cell. Itis not typically called by an application program directly. Should an application program need to
access this function directly, CSgeoid/nit must be called prior to the first call to this function.

ERRORS

For failures due to causes other than the availability of appropriate data, CSgeoiddbo will return the
NULL pointer and set cs_Error as follows:

Cs_GEOID_NO_SETUP CSgeoidinitwas not called prior to calling this function, or
the affect of calling CSgeoidinit was canceled by acall to
CSgeoidCls.

Cs_INV_FILE A required GEOID database file is corrupted beyond use.

Cs_GEOID_FILE A required GEOID database file that does exist could not be
opened.

CSgeoiddir GEOID, database DIRectory

Const struct csGeoidDir_ *CSgeoiddir (Const double 11 _84 [2]);

CSgeoiddir returns a pointer to the csGeoidDir__ structure in the GEOID database file directory that
contains the grid cell required to convert the coordinate given by the II_84 argument. The first element
of 1I_84 must be the longitude of the coordinate to be converted; the second element must contain the
latitude. Both elements must be in degrees. Negative values are used to indicate west longitude and
south latitude. The geographic coordinate supplied by the 1I_84 argument is expected to be a WGS 84
geographic coordinate.

In the event a database covering the specific location provided by the Il_84 argument cannot be
located, CSgeoiddirwill set cs_Error to zero and return the NULL pointer.

CSgeoiddbo, upon determining that a GEOID database file system needs to be opened, calls
CSgeoiddirto determine the base name of the database required to convert a specific coordinate. The
GEOID database directory pointed to by csGeoidDirP contains a list of the base names of all GEOID
database files present on the system, and the geographic region covered by each.

Application programs do not normally call this function directly. Should an application need to do so,
CSgeoidInit must be called prior to the first call to this function.

ERRORS

CSgeoiddirwill return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

368 CS-MAP User's Guide User's Guide

Cs_GEOID_NO_SETUP CSgeoidinitwas not called prior to calling this
function, or the affect of calling CSgeoidinit was
canceled by acall to CSgeoidCls.

CSgeoidHgt GEOID HeiGhT

int CSgeoidHgt (Const double 11 _84 [2],double *height);

Given a WGS 84 based geographic coordinate via the 1I_84 argument, CSgeoidHgt will return in the
double pointed to by the height argument the geoid height, in meters, at the indicated point. Some
prefer the term geoid separation to geoid height. Your application needs to call the CSgeoidinit
function once before calling CSgeoidHgt.

CSgeoidHgt will return a zero if it was successful, a -1 if a system error of some sort occurred, or a +1
to indicate that data for the specific location requested was not available. In any case, when
CSgeoidHgt returns a non-zero value, the height variable will be set to zero.

CSgeoidHgt relies on data files being present in the data directory. Currently, these data files must be
in the format used by the GEOID96 program published by the National Geodetic Service. In order to
extend the range of this function beyond that of US geography, additional file formats will be supported
in the future.

ERRORS

CSgeoidHgt will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered during the conversion:

Cs_GEOID_NO_SETUP CSgeoidinitwas not called prior to calling this function, or
the affect of calling CSgeoidinit was canceled by acall to
CSgeoidCls.

Cs_INV_FILE A required GEOID96 database file is corrupted beyond use.

Cs_GEOID_FILE A required GEOID96 database file that does exist could not
be opened.

Cs_NO_MEM An operating system request for additional memory failed.

CSgeoidinit GEOID, INITialize
int CSgeoidlnit (void);
CSgeoidInit causes the application program to be initialized for the computation of geoid heights.

CSgeoidInit, must be called prior to calling any other function in the group of functions related to geoid
height computation.

Chapter 4 Chatper 4 -- Library Functions 369

CSgeoidinit will return a zero value to indicate that the geoid height computation system has been
properly initialized. A positive non-zero status is returned if the initialization failed due to a lack of data
files. A negative non-zero status is returned if the initialization failed due to a system error such as a
physical I/O error or insufficient memory.

CSgeoidlInit allocates and initializes the GEOID database directory (csGeoidDirP), the GEOID file
control block cache (csGeoidFcb) and the GEOID grid cell cache (csGeoidGrdP). The effects of
CSgeoidInit upon system resources can be undone by calling CSgeoidCls.

CSgeoidInit may be called repeatedly without adverse affects. However, be aware that CSgeoidlnit
increments the global variable csGeoidOpenCnt once each time it is called. CSgeoidCls decrements
this count and releases system resource only when the count reaches zero.

ERRORS

CSgeoidInit will return a negative non-zero value and set cs_Error to the indicated value should any
of the following conditions be encountered:

Cs_NO_MEM Insufficient memory is available to allocate the GEOID database
directory, the GEOID file control block cache, or the GEOID
grid cell cache.

CSgeoidptr GEOID, return grid cell PoinTeR

extern int cs_Error
Const struct csGeoidGrd_ *CSgeoidptr (Const double 11 _84 [2]);

CSgeoidptrwill return a pointer to a csGeoidGrd__ grid cell structure appropriate for use in computing
the geoid height at the location specified by the 1I_27 argument. The NULL pointer is returned if a grid
cell for the coordinate could not be returned. If the cause of the failure was simple non-availability of
the data, cs_Error is set to zero. Otherwise, cs_Error will contain the appropriate error code
indicating the nature of the failure.

CSgeoidptrreturns a pointer to an entry in the grid cell cache pointed to by csGeoidGrd after
recording the returned entry the most recently accessed by making it the first in the linked list.
Obviously, if the required grid cell does not already exist in the cache, it must be fetched from disk. In
so doing, CSgeoidptralways uses the last entry in the linked list that will always be the least recently
accessed grid cell. Therefore, repeated requests for the grid cell covering coordinates in the same
local geographic region will be satisfied with a minimum of disk 1/O.

To a certain extent, increasing the number of entries in the grid cell cache will improve performance on
conversion projects that are large both geographically and in the number of points to be converted.
However, since the cache is searched linearly, a point of diminishing returns can be reached. The
number of grid cell cache entries is specified by the value contained in the csGeoidGrdCnt global
variable. This variable must be set to the desired value prior to the first call to CSgeoidinit.

CSgeoigptris normally called by CSgeoidHgtto obtain the appropriate grid cell for each geoid height
computation. Applications do not normally call this function directly. Should an application need to

370 CS-MAP User's Guide User's Guide

access this function directly, CSgeoid/nit must be called prior to the first call to this function.

ERRORS

CSgeoidptrwill return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

Cs_GEOID_NO_SETUP CSgeoidinit was not called prior to calling this function, or
the affect of calling CSgeoidinit was canceled by acall to
CSgeoidCls.

Cs_INV_FILE A required GEOID database file is corrupted beyond use.

Cs_GEOID_FILE A required GEOID database file that does exist could not
be opened.

CShpg283 High Precision Gps network, 91 TO 83 conversion

int CShpg283 (Const double 11 _91[2],double 11 _83 [2],int blk err);

Given latitude and longitude values (based on the High Precision GPS network) in the 1I_91 array,
CShpg283will return in the 1I_83 array the North American Datum of 1983 equivalent values. LI_91
and 1I_83 may point to the same array. Latitude and longitude values must be given in degrees where
negative values are used to indicate south and west respectively. Longitude values are carried in the
first element in each array; latitude is carried in the second.

CShpg283will return a zero if the requested conversion was successfully performed. Otherwise, the
II_91 array is copied to the II_83 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to that used by the National Geodetic Survey's
NADCON program. Therefore, the numerical results are identical to those of NADCON. NADCON is
the only known method of converting to/from High Precision GPS Network coordinates.

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtevtwhich in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dfcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CShpginit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS dfcvt causes the value
specified at the time of datum conversion set up to be passed to CSApg283. The valid values for this
argument are:

Chapter 4 Chatper 4 -- Library Functions 371

¢s_DTCFLG_BLK_I Errors caused by data availability are silently ignored and a
zero status value is returned.

¢cs_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS erptasawarning and a positive non-zero status value
returned.

¢cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CShpgbnf

and a positive non-zero status value returned. CShpgbnf
will suppress repeated error messages concerning the same
one degree by one degree block and suppress al such error
messages after 10 have been reported to CS_erpt. (Note,
CShpgbnfis aso obsolete.)

cs_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS ermpt as afatal error condition and a negative non-zero
status value returned.

The null conversion is always performed before any other processing is attempted. The null
conversion consists of simply copying 1I_91 to 1l_83.

ERRORS
CShpg283will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered during the conversion:

¢s_DTC_NO_SETUP CShpginit was not called prior to calling this function, or the
affect of calling CShpginitwas canceled by acall to CShpgcls.

cs_HPGN_ICNT Nine iterations of the algorithm (alaNADCON) failed to
produce a result within acceptabl e tolerance.

cs_INV_FILE A required NADCON database file is corrupted beyond use.

cs_DTC_FILE A required NADCON database file that does exist could not
be opened.

¢s_HPGN_CONS Two properly named files that are supposed to represent a

single HPGN database contain inconsistent information.

BUGS

The specifications for this function required a duplication of NADCON's functionality. Therefore, the
precision produced by this function is purposely limited to that provided by NADCON; i.e. precision is
limited to 9 decimal places.

372 CS-MAP User's Guide User's Guide

CShpg291 High Precision Gps network, (from 83) TO 91 conversion

int CShpg291 (Const double 11 _83 [2],double 11 91 [2],intblk _err);

Given latitude and longitude values (based on the North American Datum of 1983) in the II_83 array,
CShpg291 will return in the 11_91 array the High Precision GPS Network equivalent values. LI_83 and
1I_91 may point to the same array. Latitude and longitude values must be given in degrees where
negative values are used to indicate south and west respectively. Longitude values are carried in the
first element in each array; latitude is carried in the second.

CShpg291 will return a zero if the requested conversion was successfully performed. Otherwise, the
1I_83 array is copied to the Il_91 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to the National Geodetic Survey's NADCON
program. Therefore, the numerical results are identical to NADCON (round off errors excepted).

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtevtwhich in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dfcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CShpginit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS_dfcvt causes the value
specified at the time of datum conversion set up to be passed to CSApg291. The valid values for this
argument are:

¢cs_DTCFLG_BLK_I Errors caused by data availability are silently ignored and a
zero status value is to be returned.

cs_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS erptasawarning and a positive non-zero status value
returned.

¢cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CShpgbnf

and a positive non-zero status value returned. CShpgbnf
will suppress repeated error messages concerning the same
one degree by one degree block and suppress all such error
messages after 10 have been reported to CS_erpt.

¢cs_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS erptasafata error condition and a negative non-zero
status value returned.
ERRORS

CShpg291 will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered:

Chapter 4 Chatper 4 -- Library Functions 373

¢cs_DTC_NO_SETUP CShpginit was not called prior to calling this function, or
the affect of calling CShpginit was canceled by acall to
CShpgcls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_HPGN_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent
information.

CShgndbo High Precision Gps network, DataBase Open

extern int cs_Error;
Const struct csNadfcb_ *CShgndbo (Const double 11_83 [2]);

The database for NADCON datum conversions consists of several different file systems, each covering
a specific geographic area and consisting of two separate files. CShgndbo returns a pointer to a
csNadfcb_ structure which provides access to the appropriate HPGN database file system for the
geographic region containing the coordinate indicated by the Il_83 argument. Note that this location is
expected to be based on the North American Datum of 1983. LI_83 must contain longitude in the first
element, and latitude in the second element. Both must be in degrees where negative values are used
to indicate west and south.

CShgndbo searches the HPGN file control block cache to see if the required database file system is
already open. If so, a pointer to it is returned after this block is made the most recently accessed (i.e.
moved to the top of the linked list). Otherwise, the appropriate HPGN file system is opened and a
pointer to the resulting file control block is returned.

If aHPGN database file system that covers the geographic region containing Il_83 cannot be found on
the system, cs_Error isset to zero and the NULL pointer isreturned. If the database open failed for
another reason, the NULL pointer will be returned but cs_Error will be set to indicate the nature of
the failure.

CShgndbo is called by CShgnptrwhen CShgnptrneeds to access a database to fetch a new grid cell. It
is not typically called by an application program directly. Should an application program need to
access this function directly, CShgninit must be called prior to the first call to this function.

ERRORS

For failures due to causes other than the availability of appropriate data, CShgndbo will return the
NULL pointer and set cs_Error as follows:

374 CS-MAP User's Guide User's Guide

cs_DTC_NO_SETUP CShgninit was not called prior to calling this function, or
the affect of calling CShgninit was canceled by acall to
CShgncls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsistent
information.

CShpgdir High Precision Gps network database DIRectory

Const struct csNaddir_ *CShpgdir (Const double 11_83 [2]);

CShpgdirreturns a pointer to the csNaddir__ structure in the HPGN database file directory that
contains the grid cell required to convert the coordinate given by the I1I_83 argument. The content of
the 1I_83 array is expected to be a longitude latitude pair based on the North American Datum of 1983.
The first element of 1I_83 must be the longitude of the coordinate to be converted; the second element
must contain the latitude. Both elements must be in degrees. Negative values are used to indicate
west longitude and south latitude.

In the event a database covering the specific location provided by the Il_83 argument cannot be
located, CShpgdirwill set cs_Error to zero and return the NULL pointer.

CShpgdbo, upon determining that a HPGN database file system needs to be opened, calls CShpgdirto
determine the base name of the database required to convert a specific coordinate. The HPGN
database directory pointed to by csHpgdi rP contains a list of the base names of all HPGN database
file systems present on the system, and the geographic region covered by each.

Application programs do not normally call this function directly. Should an application need to do so,
CShpginit must be called prior to the first call to this function.

ERRORS
CShpgdirwill return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

¢s_DTC_NO_SETUP CShpginit was not called prior to calling this function, or the
affect of calling CShpginitwas canceled by acall to CShpgcls.

Chapter 4 Chatper 4 -- Library Functions 375

CShpginit High Precision Gps network, INITialize

int CShpginit (void);

CShpginit causes the application program to be initialized for the conversion of coordinates based on
the North American Datum of 1983 (NAD83) to coordinates based on the High Precision GPS Network
(HPGN), also known as High Accuracy Reference Network (HARN), NAD83/91, and NAD83/92.

CShpginitis not usually called directly by application code. CShpginitis usually called by CS dtcsu
when a datum conversion involving HPGN to NAD83 or NAD83 to HPGN is requested. Applications
which access CShpg283, CShpg291, CShpgptr, CShpgdbo, or CShpgdir directly will need to call this
function prior to the first call to any of these functions.

CShpginit will return a zero value to indicate that the NAD83 to HPGN (or vice versa) conversion has
been properly initialized. A positive non-zero status is returned if the initialization failed due to a lack of
data files. A negative non-zero status is returned if the initialization failed due to a system error such
as a physical I/O error or insufficient memory.

CShpginit allocates and initializes the NADCON database directory (csHpgd i rP), the HPGN file
control block cache (csHpgfcbP), and the HPGN grid cell cache (csHpggrdP). The effects of
CShpginit upon system resources can be undone by calling CSApgcls.

CShpginit may be called repeatedly without adverse affects. However, be aware that CShpginit
increments the global variable csHpgcnt once each time it is called. CSApgcls decrements this count
and releases system resource only when the count reaches zero.

ERRORS

CShpginit will return a negative non-zero value and set cs_Error to the indicated value should any of
the following conditions be encountered:

cs_NO_MEM Insufficient memory is available to allocate the HPGN database
directory, the HPGN file control block cache, or the HPGN grid
cell cache.

CShpgptr High Precision Gps network, return grid cell PoinTeR

extern int cs_Error
Const struct csNadgrd_ *CShpgptr (Const double 11_83 [2]);

CShpgptrwill return a pointer to a csNadgrd__ grid cell structure appropriate for use in converting the
coordinate given by the II_83 argument. The NULL pointer is returned if a grid cell for the coordinate
could not be returned. If the cause of the failure was simple non-availability of the data, cs_Error is
set to zero. Otherwise, cs_Error will contain the appropriate error code indicating the nature of the
failure.

CShpgptrreturns a pointer to an entry in the grid cell cache pointed to by csHpggrdP after recording
the returned entry as the most recently accessed by making it the first in the linked list. Obviously, if

376 CS-MAP User's Guide User's Guide

the required grid cell does not already exist in the cache, it must be fetched from disk. In so doing,
CShpgptr always uses the last entry in the linked list that will always be the least recently accessed grid
cell. Therefore, repeated requests for the grid cell covering coordinates in the same local geographic
region will be satisfied with a minimum of disk 1/O.

To a certain extent, increasing the number of entries in the grid cell cache will improve performance on
conversion projects that are large both geographically and in the number of points to be converted.
However, since the cache is searched linearly, a point of diminishing returns can be reached. The
number of grid cell cache entries is specified by the value contained in the csHpgccnt (see
Csdcdata.c) global variable. This variable must be set to the desired value prior to the first call to
CS_dftesu.

CShpgptris normally called by CShpg283to obtain the appropriate grid cell for each coordinate to be
converted. Applications do not normally call this function directly. Should an application need to
access this function directly, CShpginit must be called prior to the first call to this function.

ERRORS

CShpgptrwill return the NULL pointer and set cs_Error to the indicated value should any of the
following conditions be encountered:

cs_DTC_NO_SETUP CShpginit was not called prior to calling this function, or
the affect of calling CShpginit was canceled by acall to
CShpgcls.

cs_INV_FILE A required HPGN database file is corrupted beyond use.

cs_DTC_FILE A required HPGN database file that does exist could not be
opened.

¢s_HPGN_CONS Two properly named files that are supposed to represent a
single HPGN database contain inconsistent information.

CSnad227 North American Datum, 83 TO 27 conversion

int CSnad227 (Const double 11 _83 [2],double 11 _27 [2],int blk err);

Given latitude and longitude values (based on the North American Datum of 1983) in the II_83 array,
CSnad227will return in the Il_27 array the 1927 datum equivalent values. LI_83 and II_27 may point to
the same array. Latitude and longitude values must be given in degrees where negative values are
used to indicate south and west respectively. Longitude values are carried in the first element in each
array; latitude is carried in the second.

cSnaa227 will return a zero if the requested conversion was successfully performed. Otherwise, the
1I_83 array is copied to the II_27 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to that used by the National Geodetic Survey's
NADCON program. Therefore, the numerical results are identical to those of NADCON. NADCON is
rapidly being accepted as the standard for NAD27 to NAD83 conversion (and vice versa).

Chapter 4 Chatper 4 -- Library Functions 377

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_dtevtwhich in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dfcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CSnadinit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS_dfcvt causes the value
specified at the time of datum conversion set up to be passed to CSnad227. The valid values for this
argument are:

¢cs_DTCFLG_BLK_I Errors caused by data availability are silently ignored and a
zero status value is returned.

¢s_DTCFLG_BLK_W Errors caused by data availability are reported directly to
CS_erptasawarning and a positive non-zero status value
returned.

cs_DTCFLG_BLK_1 Errors caused by data availability are reported to CSdtconf

and a positive non-zero status value returned. CSdtconfwill
suppress repeated error messages concerning the same one
degree by one degree block and suppress al such error
messages after 10 have been reported to CS_erpt.

¢s_DTCFLG_BLK_F Errors caused by data availability are reported directly to
CS erptasafata error condition and a negative non-zero
status value returned.

The null conversion is always performed before any other processing is attempted. The null
conversion consists of simply copying II_83 to ll_27.

ERRORS

CSnad227will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered during the conversion:

378 CS-MAP User's Guide User's Guide

cs_DTC_NO_SETUP CSnadinitwas not called prior to calling this function, or the
affect of calling CSnadinit was canceled by acall to CSnadkcls.

cs_NADCON_ICNT Nine iterations of the algorithm (alaNADCON) failed to
produce a result within acceptabl e tolerance.

cs_INV_FILE A required NADCON database file is corrupted beyond use.

cs_DTC_FILE A required NADCON database file that does exist could not
be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a

single NADCON database contain inconsi stent information.

BUGS

The specifications for this function required a duplication of NADCON's functionality. Therefore, the
precision produced by this function is purposely limited to that provided by NADCON; i.e. precision is
limited to 9 decimal places.

CSnad283 North American Datum, (from 27) TO 83 conversion

int CSnad283 (Const double 11_27 [2],double 11_83 [2],int blk err);

Given latitude and longitude values (based on the North American Datum of 1927) in the Il_27 array,
CSnad283 will return in the 11_83 array the 1983 datum equivalent values. LI_27 and |I_83 may point to
the same array. Latitude and longitude values must be given in degrees where negative values are
used to indicate south and west respectively. Longitude values are carried in the first element in each
array; latitudes are carried in the second.

CcSnaa283 will return a zero if the requested conversion was successfully performed. Otherwise, the
1I_27 array is copied to the 1I_83 array unaltered and a non-zero value returned.

The algorithm used and the data accessed are identical to the National Geodetic Survey's NADCON
program. Therefore, the numerical results are identical to NADCON (round off errors excepted).
NADCON is rapidly being accepted as the standard for NAD27 to NAD83 conversions.

Typically, this function is not called directly by an application. This function is typically accessed via a
call to CS_drtevtwhich in turns calls this function due to the presence of a reference to this conversion
in the cs_Dtcprm_ structure which is provided to CS_dfcvt. In this manner, application code does not
directly reference any datum conversion software. New datum conversions can be added without
modification of application code.

If, for some reason, an application needs to access this function directly, the application must invoke
CSnadinit prior to the first call to this function.

The blk_err argument indicates the disposition of datum conversion errors caused by a lack of data
covering the geographic region containing the coordinate to be converted. CS dfcvt causes the value
specified at the time of datum conversion set up to be passed to CSnad283. The valid values for this
argument are:

Chapter 4 Chatper 4 -- Library Functions

379

cs_DTCFLG_BLK_I

Errors caused by data availability are silently ignored and
azero status value is to be returned.

cs_DTCFLG_BLK_W

Errors caused by data availability are reported directly to
CS_erptasawarning and a positive non-zero status value
returned.

cs_DTCFLG_BLK_1

Errors caused by data availability are reported to CSdtconf
and a positive non-zero status value returned. CSditcbnf
will suppress repeated error messages concerning the
same one degree by one degree block and suppress all
such error messages after 10 have been reported to

CS emnpt.

cs_DTCFLG_BLK_F

Errors caused by data availability are reported directly to
CS erptas afatal error condition and a negative non-zero
status value returned.

ERRORS

CSnad283 will return a -1 and set the value of global variable cs_Error appropriately if any of the
following conditions are encountered:

cs_DTC_NO_SETUP

CSnadinit was not called prior to calling this function, or the
affect of calling CSnadinit was canceled by a call to CSnadcls.

cs_INV_FILE

A required NADCON database file is corrupted beyond use.

cs_DTC_FILE

A required NADCON database file that does exist could not
be opened.

cs_NADCON_CONS

Two properly named files that are supposed to represent a
single NADCON database contain inconsistent information.

CSnad83284 NAD-83 TO wgs 84

int CSnad83284 (Const double 11_83 [2],double 11_84 [2]);

Currently, CSnad83284 simply copies the latitude and longitude in the 1I_83 array to the I|_84 array and

returns FALSE to indicate that it did so successfully.

There are differences between NAD83 and WGS 84. However, both are very accurate measurements
of the same thing. Therefore, the differences are slight and are within the tolerance of error associated

with WGS-84. Currently, there are no generally accepted techniques for converting one to the other.

This function is a hook to provide such a conversion should a generally recognized technique become

available in the future.

380 CS-MAP User's Guide User's Guide

ERRORS

CSnad83284 returns FALSE to indicate success. Future versions may return TRUE to indicate an error
condition of some sort.

CSnadcls North American Datum, CLoSe

void CSnadcls (void);

CSnadcls decrements the global variable csNadcnt and, if the result is zero or less, closes all open
NADCON database files and fre€'s the memory allocated to the NADCON file control block cache and
the NADCON grid cell cache.

CSnadinitincrements the global variable csNadcnt each time it is called. CSnadc/s decrements this
count each time it is called. Resources are released only when csNadcnt reaches zero. Thus,
resources are not released prematurely in processes where more than one datum conversion process
is active at any given time.

Currently, CSnadcls does not free the memory allocated to the NADCON database directory. The
NADCON database directory does not require much memory (32 bytes per database) and is rather
expensive, computationally, to initialize. Therefore, this system resource is left alone by this function.
CSnadinit will not attempt to reinitialize the directory if the value of csNaddirP is not NULL. Non-
source licensees who find this objectionable can free the NADCON database directory directly (i.e. free
(csNaddirP) ;). Be sure to set the value of csNaddirP to NULL and the value of csNaddirM and
csNaddirU to zero.

CSnaddbo North American Datum, DataBase Open

extern int cs_Error;
Const struct csNadfcb_ *CSnaddbo (Const double 11_27 [2]);

The database for NADCON datum conversions consists of several different file systems, each covering
a specific geographic area and consisting of two separate files. CSnaddbo returns a pointer to a
csNadfcb_ structure that provides access to the appropriate NADCON database file system for the
geographic region containing the coordinate indicated by the Il_27 argument. LI_27 must contain
longitude in the first element, and latitude in the second element. Both must be in degrees where
negative values are used to indicate west and south.

CSnaddbo searches the NADCON file control block cache to see if the required database file system is
already open. If so, a pointer to it is returned after this block is made the most recently accessed (i.e.
moved to the top of the linked list). Otherwise, the appropriate NADCON file system is opened and a
pointer to the resulting file control block is returned.

If a NADCON database file system that covers the geographic region containing Il_27 cannot be found
on the system, cs_Error is set to zero and the NULL pointer is returned. If the database open failed
for another reason, the NULL pointer will be returned but cs_Error will be set to indicate the nature of
the failure.

CSnaddbois called by CSnadptrwhen CSnadptrneeds to access a database to fetch a new grid cell. It
is not typically called by an application program directly. Should an application program need to
access this function directly, CSnadinit must be called prior to the first call to this function.

Chapter 4 Chatper 4 -- Library Functions 381

ERRORS

For failures due to causes other than the availability of appropriate data, CSnaddbo will return the NULL
ointer and set cs_Error as follows:

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or
the affect of calling CSnadinit was canceled by acall to
CSnadkcls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

cs_NADCON_CONS Two properly named files that are supposed to represent a
single NADCON database contain inconsi stent
information.

CSnaddir NADcon database DIRectory

Const struct csNaddir_ *CSnaddir (Const double 11_27 [2]);

CSnaddirreturns a pointer to the csNaddir_ structure in the NADCON database file directory that
contains the grid cell required to convert the coordinate given by the Il_27 argument. The first element
of II_27 must be the longitude of the coordinate to be converted; the second element must contain the
latitude. Both elements must be in degrees. Negative values are used to indicate west longitude and
south latitude.

In the event a database covering the specific location provided by the Il_27 argument cannot be
located, CSnaddirwill set cs_Error to zero and return the NULL pointer.

CSnaddbo, upon determining that a NADCON database file system needs to be opened, calls CSnaddir
to determine the base name of the database required to convert a specific coordinate. The NADCON
database directory pointed to by csNaddi rP contains a list of the base names of all NADCON
database file systems present on the system, and the geographic region covered by each.

Application programs do not normally call this function directly. Should an application need to do so,
CSnadinit must be called prior to the first call to this function.

ERRORS

CSnaddirwill return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

382 CS-MAP User's Guide User's Guide

cs_DTC_NO_SETUP CSnadinit was not called prior to calling this function, or
the affect of calling CSnadinit was canceled by acall to
CSnadcls.

CSnadinit North American Datum, INITialize

int CSnadinit (void);

CSnadinit causes the application program to be initialized for the conversion of coordinates based on
the North American Datum of 1927 (NAD27) to coordinates based on the North American Datum of
1983 (NADS83).

CSnadinitis not usually called directly by application code. CSnadinitis usually called by CS dfcsu
when a datum conversion involving NAD27 to NAD83 or NAD83 to NAD27 is requested. Applications
which access CSnad227, CSnad283, CSnadptr, CSnaddbo, or CSnaddir directly will need to call this
function prior to the first call to any of these functions.

CSnadinit will return a zero value to indicate that the NAD27 to NAD83 (or vice versa) conversion has
been properly initialized. A positive non-zero status is returned if the initialization failed due to a lack of
data files. A negative non-zero status is returned if the initialization failed due to a system error such
as a physical I/O error or insufficient memory.

CSnadinit allocates and initializes the NADCON database directory (csNaddi rP), the NADCON file
control block cache (csNadfcb) and the NADCON grid cell cache (csNadgrd). The effects of
CSnadinit upon system resources can be undone by calling CSnadcls.

CSnadinit may be called repeatedly without adverse affects. However, be aware that CSnadinit
increments the global variable csNadcnt once each time it is called. CSnadc/s decrements this count
and releases system resource only when the count reaches zero.

ERRORS

CSnadinit will return a negative non-zero value and set cs_Error to the indicated value should any of
the following conditions be encountered:

cs_NO_MEM Insufficient memory is available to allocate the NADCON
database directory, the NADCON file control block cache, or
the NADCON grid cell cache.

CSnadptr North American Datum, return grid cell PoinTeR

extern int cs_Error
Const struct csNadgrd_ *CSnadptr (Const double 11_27 [2]);

CSnaaptrwill return a pointer to a csNadgrd__ grid cell structure appropriate for use in converting the
coordinate given by the Il_27 argument. The NULL pointer is returned if a grid cell for the coordinate

Chapter 4 Chatper 4 -- Library Functions 383

could not be returned. If the cause of the failure was simple non-availability of the data, cs_Error is
set to zero. Otherwise, cs_Error will contain the appropriate error code indicating the nature of the
failure.

CSnaadptrreturns a pointer to an entry in the grid cell cache pointed to by csNadgrd after recording the
returned entry the most recently accessed by making it the first in the linked list. Obviously, if the
required grid cell does not already exist in the cache, it must be fetched from disk. In so doing,
CSnaadjptr always uses the last entry in the linked list that will always be the least recently accessed grid
cell. Therefore, repeated requests for the grid cell covering coordinates in the same local geographic
region will be satisfied with a minimum of disk 1/O.

To a certain extent, increasing the number of entries in the grid cell cache will improve performance on
conversion projects that are large both geographically and in the number of points to be converted.
However, since the cache is searched linearly, a point of diminishing returns can be reached. The
number of grid cell cache entries is specified by the value contained in the csNadccnt (see
CSdcdata.c) global variable. This variable must be set to the desired value prior to the first call to
CS_dftesu.

CSnaaptris normally called by CSnad283to obtain the appropriate grid cell for each coordinate to be
converted. Applications do not normally call this function directly. Should an application need to
access this function directly, CSnadinit must be called prior to the first call to this function.

ERRORS

CSnadptrwill return the NULL pointer, and set cs_Error to the indicated value if any of the following
conditions are encountered:

cs_DTC_NO_SETUP CSnadinit was not called prior to caling this function, or
the affect of calling CSnadinit was canceled by acall to
CSnadcls.

cs_INV_FILE A required NADCON database file is corrupted beyond
use.

cs_DTC_FILE A required NADCON database file that does exist could
not be opened.

¢s_NADCON_CONS Two properly named files that are supposed to represent
asingle NADCON database contain inconsistent
information.

385

CHAPTER 5

Chapter 5 -- Data Modules

In this chapter the several data modules are defined. Most all static data constants are defined in the
modules which do not contain any executable code.

CSdata -- general DATA module

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

char cs_Dir [];

char *cs _DirP;

char cs_DirsepC;

char cs_OptchrC;

char cs_ExtsepC;

int cs_Sortbs;

int cs_Error, cs _Errno;

int cskerrlat, csErring;

char cs_Csname[];

char cs_Dtname[];

char cs_Elname[];

char cs_Envvar [];

char cskErrnam [];

double cs_AnglTest;

double cs_AnglTestl;

double cs_ScliInf;

double cs _MinLat, MaxLat;
double cs_MinLng, MaxlLng;
double cs MinLatFz, MaxLatFz;
double cs_MinLngFz, MaxLngFz;
double cs NPTest, cs SPTest;
double cs EETest, cs WETest;
struct cs_Grptbl_ cs_CsGrptbl
char cs_Mentor [];

short cs_Protect;

char cs_Unique;

-

CSdatais the module in which these global variables are defined and initialized to an appropriate value.
This module contains no executable code.

cs_Dir

This character array must always contain the path to the directory in which all Coordinate System
Mapping Package data files reside. This name must end with directory separator character.

cs_DirP

This character pointer must point to the character that immediately follows the directory separator
character that follows the last directory name in cs_Dir. Thatis, cs_Dir and cs_DirP must be
initialized at all times such that the following code will produce access to any specific Coordinate

System Mapping Package data file:

386

CS-MAP User's Guide User's Guide

extern char cs_Dir [];
extern char *cs_DirP;

(void) strcpy (cs_DirP,"file_name™);
fd = open (cs_Dir,0_MODE);
}

Setting cs_Dir and cs_DirP up properly is very simple using CS_stcpy. For example:
cs_DirP = CS_stcpy (cs_Dir," "C:\\MAPPING\\");

cs_DirsepC

This character variable contains the directory separator character in use on the executing system.
cs_OptchrC

This character variable contains the command line option character in use on the executing system.
cs_ExtsepC

This character variable contains the extension separator character in use on the executing system.

cs_Error cs_Errno

Prior to returning a failed status code (i.e. either -1, TRUE, or the NULL pointer as the case may be)
each function sets cs_Error to a code value indicating the specific nature of the problem. The value
of the system's errno is saved in the cs_Errno variable. Neither of these variables should be
examined unless a function has returned a failed status indication. The specific code values used to
identify specific causes of failure are defined in the cs_map.h file.

csErring csErrlat
These integer variables are used to communicate the integer portion of the latitude and longitude of
datum conversion data availability errors to CS_erpt. In this manner, the specific geographic area for
which coverage doesn't exist can be reported to the user.

cs_Csname
This array carries the Coordinate System Dictionary file name that is currently in use.

cs_Dtname
This array carries the Datum Dictionary file name that is currently in use.

cs_Elname

This array carries the Ellipsoid Dictionary file name that is currently in use.

cs_Envvar

This array carries the environmental variable name currently which CS_a/tdr will use when extracting a
directory path from the environment.

csErrnam

Chapter 5 Chapter 5 -- Data Modules 387

The name that precipitated certain error conditions is communicated to the error function through this
globally defined character array. For example, when a file open fails, the name of the file is copied to
this array before CS erptis called.

Mathematical Constants

Several mathematical constants, used throughout CS_MAP are declared globally here to reduce data
and code space requirements. Some of these deserve special note:

cs_NPTest, cs_SPTest

These doubles are used to test for proximity to the north and south poles, respectively. Both values
are in radians and are 0.001 arc seconds short of the respective pole.

cs_EETest, cs_ WETest
These doubles are used to test for proximity to the singularity points of transverse projections. Read
EETest as eastern extent test value, and WETest as the western extent test value. These values are in
radians and are 0.001 seconds of arc short of +/2.

cs_AnglTest, cs_AngITestl
cs_AnglTest is set to 0.001 seconds of arc in radians. In many cases, especially geographic
coordinates, absolute values less than this are considered zero. cs_AnglTest1 is 1.0 minus
cs_AnglTest.

cs_Sclinf

This double is set to 9.999E+04, and is the value returned by scale functions when the true result
would otherwise require a division by zero.

cs_MinLat, cs_MaxLat

These doubles are used, primarily, to test coordinate system definition parameters. They contain -90
and +90 degrees, respectively.

c¢s_MinLng, cs_MaxLng

These doubles are used, primarily, to test coordinate system definition parameters. They contain -180
and +180 degrees, respectively.

cs_MinLatFz, cs_MaxLatFz

These doubles are used, primarily, to test coordinate system definition parameters. In degrees, they
represent values which are 0.01 seconds of arc short of £90.

cs_MinLngFz, cs_MaxLngFz

These doubles are used, primarily, to test coordinate system definition parameters. In degrees, they
represent values which are 0.01 seconds of arc short of £180.

388 CS-MAP User's Guide User's Guide

cs_SclRedMin, cs_SclRedMax

These doubles carry the minimum and maximum values of scale reduction which the coordinate
system definition check functions (i.e. the projection Q functions) will accept. Note, that these values
are set to accept values equal to, and slightly greater than, 1.0. Such values are occasionally used.

cs_DelMax, cs_RotMax, cs_SclMax

These doubles carry the maximum values allowed for Molodensky, Seven Parameter, and Bursa/Wolf
datum conversions. cs_Delmax, cs_RotMax, and cs_SclMax are the maximum values allowed for
translation, rotation, and scaling respectively.

cs_Protect

This variable controls how the dictionary protection system operates. Set this variable to -1 to disable
the entire protection scheme. Set this variable to zero to enable the protection of distribution
definitions, but to disable the protection of user defined definitions. A value greater than zero indicates
the number of days after which an unchanged user definition becomes protected.

Mentor distributions have this variable set to 60. This implies that a user defined definition which
remains unaltered for 60 days automatically becomes protected and cannot be deleted or further
modified.

Note, for the purpose of this feature, a distribution system is defined as one produced by the Dictionary
compiler. (Actually, any definition whose protect member is set to +1.)

cs_Unique

CS-MAP normally requires that the key names applied to user defined dictionary entries contain the
colon character in the key name somewhere. Since Mentor never generates a definition with a key
name containing a colon, user definitions are unambiguously defined using this technique. Thus, the
update procedure will never cause a user definition to be replaced with a distribution system. This
feature is controlled by the value of this global variable.

cs_Unique carries the character which is actually used for this purpose. If you like this feature, but
prefer a different character, simply change the character to which this variable is set. If you don't like
this feature, setting the value of this variable to "\0', i.e. the null character, essentially disables the entire
feature.

Coordinate System Group Table

The coordinate system group table isinitialized in this module. It consists of an array of cs_Grptbl_
structures, terminated by an entry that has the null string as a group name. The group table performs
two functions. First, presence of an entry in this table makes a specific group name valid. Second, it
associ ates a descriptive string with the group name.

CSdataPJ -- DATA, ProJection table

extern struct cs Prjtab_ cs Prjtab [];
extern struct cs_PrjprmMap_ cs_PrjprmMap []1;

Chapter5 Chapter 5 -- Data Modules 389

extern struct cs_Prjprm_ cs_Prjprm [1;

CSdataPJ carries the definition and initialization of the projection table used within the Coordinate
System Mapping Package. This module contains no executable code. The projection table assigns a
code name to each supported projection and associates this name with a setup function and a
projection code number.

The table also includes a full textual name for each projection, a numeric code which will uniquely
identify each projection, and a bit mapped flag word which will provide information specific to each
projection. The meaning of each bit in the flag word is defined by manifest constants in cs_map.h. Itis
this flag word that is copied to the cs_Csprm_ structure when a coordinate system definition is
initialized by CS csloc. The manifest constants and their meaning are:

390

CS-MAP User's Guide User's Guide

cs_PRIFLG_SPHERE

aspherical form of thisprojectionis
supported.

cs_PRIFLG_ELLIPS

an elipsoidal form of this projection
is supported.

cs_PRIFLG_SCALK

analytical K scaleisavailable

cs_PRIFLG_SCALH

analytical H scaleis available.

cs_PRIFLG_CNFRM

projection is generally considered to
be conformal.

cs_PRIFLG_EAREA

projection is generally considered to
be equal area.

cs_PRIFLG_EDIST

projection is generally considered to
be equidistant.

cs_PRIFLG_AZMTH

projection is generally considered to
be azimuthal.

cs_PRIFLG_GEOGR

projection returns geographic
coordinates (i.e. Unity).

cs_PRIFLG_OBLQ

oblique projection.

cs_PRIFLG_TRNSV

transverse projection.

cs_PRIFLG_PSEUDO

generally considered a pseudo
projection, i.e. pseudo cylindrical.

cs_PRIFLG_INTR

projection isinterruptable..

cs_PRIFLG_CYLND

generally considered cylindrical.

cs_PRIFLG_CONIC

generally considered to be a conic.

cs_PRIFLG_FLAT

generally considered to be an
azimuthal (i.e. flat plane).

cs_PRIFLG_OTHER

something other than cylindrical,
conic, or azimuthal.

cs_PRIFLG_SCLRED

the projection requires the
specification of scale reduction.

cs_PRIFLG_ORGFLS

the projection does not use either
false origin feature.

Chapter 5 Chapter 5 -- Data Modules 391

¢s_PRIFLG_ORGLAT the projection does not use the origin
|atitude parameter.

¢s_PRIFLG_ORGLNG the projection does not use the origin
longitude parameter.

To add new projections to the system, one adds an entry to this table providing the name that is to be
used to reference the projection and the setup module to be called to prepare for the use of the
projection. Of course, one must code the setup function and its companions.

The cs_PrjprmMap array defines the use of all 31 (currently) parameters for each of the 38 supported
projections. Each of the definitions consists of an index into the cs_Prjprm array described next.

The cs_Prjprm_ array carries a definition for each of the (currently 31) different parameter types
used in coordinate system definitions. For example, a "Northern Standard Parallel" parameter may be
used in four or more projections, but is defined once in this array.

At times, such as our own dictionary compiler CS_COMP, it is desirable to have access to portions of
the projection table, without incurring the penalty of having the entire repertoire of CS-MAP projection
functions added to your executable module. You may now compile CSdataPJwith the
__NO_SETUP___ manifest constant defined and obtain a projection table with the NULL pointer for all
setup functions. Similarly, compiling with __NO_QCHK___ defined will provide NULL pointers for the
projection check functions. Combining the two will provide a projection table suitable for, as an
example, checking projection names without referencing any other code.

CSdataU -- DATA module, Units table

extern struct cs_Unittab_ cs_Unittab [];

The units table, i.e. that which enables CS unit/uto perform its function in life, is defined in this module.
This module contains no executable code. An entry appears in the table for each supported unit, and
each unit is classified as being of the length or angular type. The table has provisions for a full name
and an abbreviation for each supported unit. The factor for each entry must be the multiplier required
to convert values in the units being defined to meters or degrees.

The table is terminated by an entry with a zero type value. The string " z" (i.e. space lowercase z) is
used to indicate that an abbreviation entry is not to be used. The table is searched linearly, so the
order of entries is, currently, unimportant.

Currently supported linear and angular units of length are listed in the tables given below. Check the
source module for the latest unit definitions. Of course, you can add additional units by simply making
a new table entry and recompiling.

Note, as of release 11, the table has been modified such that it includes the plural name of the unit (i.e.
FEET in addition to FOOT) and also classifies each linear unit as belonging to the metric or english
class of units.

392 CS-MAP User's Guide User's Guide

Name Abbreviation Description

Meter MT Meter

Foot FT US Survey Foot
Inch IN US Survey Inch
Ifoot IFT International Foot
ClarkeFoot Clarke's Foot
linch [IN International Inch
Centimeter CM Centimeter
Kilometer KM Kilometer
Yard YD English Yard
SearsYard Sears Yard

Mile Ml US Survey Statue

Mile

lyard YD International Yard
Imile IMI International Mile
Knot KT Nautical Mile
NautM NM Nautical Mile
Decimeter DM Decimeter
Millimeter KM Millimeter
Decameter Decameter
Hectometer Hectometer
GermanMeter German Legal Meter
CaGrid Canadian Grid Unit
GunterChain Chain, Gunter
ClarkeChain Chain, Clarke

Chapter5 Chapter 5 -- Data Modules

393

BenoitChain Chain, Benoit
SearsChain Chain,Sears
GunterLink Link, Gunter
ClarkeLink Link, Clarke
BenoitLink Link, Benoit
SearsLink Link, Sears
Rod Rod

Perch Perch

Pole Pole

Furlong Furlong

Rood South African Rood
CapeFoot Cape Foot

Supported Linear Units

Bredey

Bredey Unit

394

CS-MAP User's Guide User's Guide

Name Abbreviation Description

DEGREE DG Degrees

GRAD GR. Grad

GRADE GR. Grad

MAPINFO Ml Degrees* 1,000,000 for Maplnfo

MIL 6400 mils = 1 degree

MINUTE MN 1/60th of adegree

RADIAN RD 57.295.... degrees

SECOND SEC 1/3600th of a degree

DECISECOND 1/10th of a second of arc

CENTISECOND 1/100th of a second of arc
MILLISECOND 1/1,000 of a second of arc

Supported Angular Units

