
Oracle Berkeley DB

Berkeley DB
API Reference

for C++

Release 4.8

.

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third-party
use is permitted without the express prior written consent of Oracle.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 8/14/2009

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents
Preface ... x
1. Introduction to Berkeley DB APIs .. 1
2. The Db Handle ... 2

Database and Related Methods ... 3
Db::associate() .. 5
Db::associate_foreign() .. 9
Db::close() ... 12
Db .. 14
Db::compact() ... 16
Db::del() .. 20
Db::err() .. 23
Db::exists() ... 25
Db::fd() ... 27
Db::get() .. 28
Db::get_bt_minkey() ... 33
Db::get_byteswapped() .. 34
Db::get_cachesize() .. 35
Db::get_create_dir() .. 36
Db::get_dbname() .. 37
Db::get_encrypt_flags() .. 38
Db::get_errfile() ... 39
Db::get_errpfx() ... 40
Db::get_flags() .. 41
Db::get_h_ffactor() ... 42
Db::get_h_nelem() .. 43
Db::get_lorder() ... 44
Db::get_msgfile() ... 45
Db::get_multiple() .. 46
Db::get_open_flags() ... 47
Db::get_partition_callback() .. 48
Db::get_partition_dirs() .. 49
Db::get_partition_keys() ... 50
Db::get_pagesize() .. 51
Db::get_priority() ... 52
Db::get_q_extentsize() ... 53
Db::get_re_delim() ... 54
Db::get_re_len() .. 55
Db::get_re_pad() .. 56
Db::get_re_source() .. 57
Db::get_type() ... 58
Db::join() ... 59
Db::key_range() ... 62
Db::open() .. 65
Db::put() ... 70
Db::remove() .. 74
Db::rename() .. 76

Page iiDB C++ API8/14/2009

Db::set_alloc() ... 78
Db::set_append_recno() ... 80
Db::set_bt_compare() .. 82
Db::set_bt_compress() ... 84
Db::set_bt_minkey() .. 87
Db::set_bt_prefix() ... 88
Db::set_cachesize() ... 90
Db::set_create_dir() .. 92
Db::set_dup_compare() .. 93
Db::set_encrypt() ... 95
Db::set_errcall() .. 97
Db::set_errfile() ... 99
Db::set_error_stream() ... 101
Db::set_errpfx() .. 102
Db::set_feedback() .. 103
Db::set_flags() ... 105
Db::set_h_compare() .. 111
Db::set_h_ffactor() .. 113
Db::set_h_hash() ... 114
Db::set_h_nelem() ... 116
Db::set_lorder() .. 117
Db::set_message_stream() ... 118
Db::set_msgcall() .. 119
Db::set_msgfile() .. 121
Db::set_pagesize() ... 122
Db::set_partition() .. 124
Db::set_partition_dirs() .. 126
Db::set_priority() .. 127
Db::set_q_extentsize() ... 129
Db::set_re_delim() .. 130
Db::set_re_len() ... 131
Db::set_re_pad() ... 133
Db::set_re_source() ... 134
Db::stat() ... 136
Db::stat_print() .. 143
Db::sync() ... 144
Db::truncate() .. 146
Db::upgrade() .. 148
Db::verify() ... 150

3. The Dbc Handle ... 153
Database Cursors and Related Methods .. 154
Db::cursor() ... 155
Dbc::close() ... 158
Dbc::cmp() .. 159
Dbc::count() .. 161
Dbc::del() ... 163
Dbc::dup() .. 165
Dbc::get() ... 167
Dbc::get_priority() .. 175

Page iiiDB C++ API8/14/2009

Dbc::put() ... 176
Dbc::set_priority() ... 180

4. The Dbt Handle ... 182
DBT and Bulk Operations ... 187
DbMultipleIterator ... 188
DbMultipleDataIterator ... 189
DbMultipleKeyDataIterator ... 191
DbMultipleRecnoDataIterator .. 193
DbMultipleBuilder .. 195
DbMultipleDataBuilder .. 196
DbMultipleKeyDataBuilder .. 198
DbMultipleRecnoDataBuilder ... 200

5. The DbEnv Handle .. 202
Database Environments and Related Methods ... 203
Db::get_env() .. 205
DbEnv::add_data_dir() .. 206
DbEnv::close() .. 208
DbEnv .. 210
DbEnv::dbremove() .. 212
DbEnv::dbrename() .. 214
DbEnv::err() .. 216
DbEnv::failchk() .. 218
DbEnv::fileid_reset() .. 220
DbEnv::get_create_dir() .. 222
DbEnv::get_data_dirs() ... 223
DbEnv::get_encrypt_flags() .. 224
DbEnv::get_errfile() ... 225
DbEnv::get_errpfx() ... 226
DbEnv::get_flags() ... 227
DbEnv::get_home() .. 228
DbEnv::get_intermediate_dir_mode() .. 229
DbEnv::get_msgfile() .. 230
DbEnv::get_open_flags() ... 231
DbEnv::get_shm_key() .. 232
DbEnv::get_thread_count() .. 233
DbEnv::get_timeout() ... 234
DbEnv::get_tmp_dir() ... 235
DbEnv::get_verbose() ... 236
DbEnv::lsn_reset() ... 238
DbEnv::open() .. 240
DbEnv::remove() ... 245
DbEnv::set_alloc() ... 248
DbEnv::set_app_dispatch() ... 250
DbEnv::set_data_dir() .. 252
DbEnv::set_create_dir() .. 254
DbEnv::set_encrypt() ... 256
DbEnv::set_event_notify() ... 258
DbEnv::set_errcall() ... 261
DbEnv::set_errfile() ... 263

Page ivDB C++ API8/14/2009

DbEnv::set_error_stream() ... 265
DbEnv::set_errpfx() ... 266
DbEnv::set_feedback() .. 267
DbEnv::set_flags() ... 269
DbEnv::set_intermediate_dir_mode() .. 275
DbEnv::set_isalive() ... 277
DbEnv::set_message_stream() ... 279
DbEnv::set_msgcall() .. 280
DbEnv::set_msgfile() .. 281
DbEnv::set_shm_key() .. 282
DbEnv::set_thread_count() .. 284
DbEnv::set_thread_id() ... 286
DbEnv::set_thread_id_string() ... 288
DbEnv::set_timeout() ... 290
DbEnv::set_tmp_dir() ... 292
DbEnv::set_verbose() ... 294
DbEnv::stat_print() .. 297
DbEnv::strerror() .. 298
DbEnv::version() ... 299

6. The DbException Class ... 300
DB C++ Exceptions ... 301
DbDeadlockException ... 302
DbLockNotGrantedException .. 303
DbMemoryException ... 305
DbRepHandleDeadException ... 306
DbRunRecoveryException .. 307

7. The DbLock Handle .. 308
Locking Subsystem and Related Methods .. 309
DbEnv::get_lk_conflicts() .. 310
DbEnv::get_lk_detect() ... 311
DbEnv::get_lk_max_lockers() .. 312
DbEnv::get_lk_max_locks() .. 313
DbEnv::get_lk_max_objects() ... 314
DbEnv::get_lk_partitions() ... 315
DbEnv::set_lk_conflicts() ... 316
DbEnv::set_lk_detect() ... 318
DbEnv::set_lk_max_lockers() .. 320
DbEnv::set_lk_max_locks() ... 321
DbEnv::set_lk_max_objects() .. 322
DbEnv::set_lk_partitions() ... 323
DbEnv::lock_detect() ... 325
DbEnv::lock_get() ... 327
DbEnv::lock_id() ... 330
DbEnv::lock_id_free() ... 331
DbEnv::lock_put() ... 332
DbEnv::lock_stat() ... 333
DbEnv::lock_stat_print() ... 338
DbEnv::lock_vec() ... 340

8. The DbLsn Handle .. 344

Page vDB C++ API8/14/2009

Logging Subsystem and Related Methods .. 345
DbEnv::get_lg_bsize() ... 346
DbEnv::get_lg_dir() .. 347
DbEnv::get_lg_filemode() .. 348
DbEnv::get_lg_max() .. 349
DbEnv::get_lg_regionmax() .. 350
DbEnv::log_archive() .. 351
DbEnv::log_cursor() ... 353
DbEnv::log_file() ... 354
DbEnv::log_flush() ... 355
DbEnv::log_get_config() .. 356
DbEnv::log_printf() .. 358
DbEnv::log_put() ... 359
DbEnv::log_set_config() .. 361
DbEnv::log_stat() .. 364
DbEnv::log_stat_print() ... 367
DbEnv::set_lg_bsize() ... 368
DbEnv::set_lg_dir() .. 370
DbEnv::set_lg_filemode() .. 372
DbEnv::set_lg_max() .. 373
DbEnv::set_lg_regionmax() .. 375
The DbLogc Handle ... 376
DbLogc::close() .. 377
DbLogc::get() ... 378
DbEnv::log_compare() .. 380

9. The DbMpoolFile Handle .. 381
Memory Pools and Related Methods .. 382
Db::get_mpf() .. 384
DbEnv::get_cache_max() ... 385
DbEnv::get_cachesize() ... 386
DbEnv::get_mp_max_openfd() .. 387
DbEnv::get_mp_max_write() .. 388
DbEnv::get_mp_mmapsize() ... 389
DbEnv::memp_fcreate() .. 390
DbEnv::memp_register() ... 391
DbEnv::memp_stat() .. 393
DbEnv::memp_stat_print() ... 399
DbEnv::memp_sync() .. 400
DbEnv::memp_trickle() ... 401
DbEnv::set_cache_max() ... 402
DbEnv::set_cachesize() ... 404
DbEnv::set_mp_max_openfd() ... 406
DbEnv::set_mp_max_write() ... 407
DbEnv::set_mp_mmapsize() ... 409
DbMpoolFile::close() .. 411
DbMpoolFile::get() ... 412
DbMpoolFile::open() .. 415
DbMpoolFile::put() .. 417
DbMpoolFile::sync() ... 419

Page viDB C++ API8/14/2009

DbMpoolFile::get_clear_len() .. 420
DbMpoolFile::get_fileid() ... 421
DbMpoolFile::get_flags() ... 422
DbMpoolFile::get_ftype() ... 423
DbMpoolFile::get_lsn_offset() ... 424
DbMpoolFile::get_maxsize() ... 425
DbMpoolFile::get_pgcookie() .. 426
DbMpoolFile::get_priority() .. 427
DbMpoolFile::set_clear_len() .. 428
DbMpoolFile::set_fileid() ... 429
DbMpoolFile::set_flags() .. 431
DbMpoolFile::set_ftype() ... 433
DbMpoolFile::set_lsn_offset() ... 434
DbMpoolFile::set_maxsize() .. 435
DbMpoolFile::set_pgcookie() ... 436
DbMpoolFile::set_priority() .. 437

10. Mutex Methods .. 439
Mutex Methods ... 440
DbEnv::mutex_alloc() ... 441
DbEnv::mutex_free() .. 443
DbEnv::mutex_get_align() .. 444
DbEnv::mutex_get_increment() ... 445
DbEnv::mutex_get_max() .. 446
DbEnv::mutex_get_tas_spins() .. 447
DbEnv::mutex_lock() .. 448
DbEnv::mutex_set_align() .. 449
DbEnv::mutex_set_increment() ... 450
DbEnv::mutex_set_max() ... 452
DbEnv::mutex_set_tas_spins() ... 454
DbEnv::mutex_stat() .. 455
DbEnv::mutex_stat_print() ... 457
DbEnv::mutex_unlock() ... 458

11. Replication Methods .. 459
Replication and Related Methods ... 460
DbEnv::rep_elect() .. 461
DbEnv::rep_get_clockskew() ... 464
DbEnv::rep_get_config() .. 465
DbEnv::rep_get_limit() ... 466
DbEnv::rep_get_nsites() .. 467
DbEnv::rep_get_priority() .. 468
DbEnv::rep_get_request() .. 469
DbEnv::rep_get_timeout() ... 470
DbEnv::rep_process_message() .. 471
DbEnv::rep_set_clockskew() ... 474
DbEnv::rep_set_config() .. 476
DbEnv::rep_set_limit() .. 479
DbEnv::rep_set_nsites() .. 481
DbEnv::rep_set_priority() .. 482
DbEnv::rep_set_request() .. 483

Page viiDB C++ API8/14/2009

DbEnv::rep_set_timeout() .. 485
DbEnv::rep_set_transport() .. 488
DbEnv::rep_start() ... 491
DbEnv::rep_stat() .. 493
DbEnv::rep_stat_print() .. 499
DbEnv::rep_sync() ... 500
DbEnv::repmgr_add_remote_site() ... 501
DbEnv::repmgr_get_ack_policy() ... 503
DbEnv::repmgr_set_ack_policy() .. 504
DbEnv::repmgr_set_local_site() ... 506
DbEnv::repmgr_site_list() .. 507
DbEnv::repmgr_start() .. 509
DbEnv::repmgr_stat() ... 511
DbEnv::repmgr_stat_print() .. 513

12. The DbSequence Handle ... 514
Sequences and Related Methods .. 515
DbSequence .. 516
DbSequence::close() .. 518
DbSequence::get() ... 519
DbSequence::get_cachesize() ... 521
DbSequence::get_dbp() ... 522
DbSequence::get_flags() ... 523
DbSequence::get_key() ... 524
DbSequence::get_range() .. 525
DbSequence::initial_value() ... 526
DbSequence::open() ... 527
DbSequence::remove() ... 529
DbSequence::set_cachesize() .. 531
DbSequence::set_flags() .. 532
DbSequence::set_range() ... 534
DbSequence::stat() .. 535
DbSequence::stat_print() .. 537

13. The DbTxn Handle .. 538
Transaction Subsystem and Related Methods ... 539
Db::get_transactional() ... 540
DbEnv::cdsgroup_begin() ... 541
DbEnv::get_tx_max() .. 542
DbEnv::get_tx_timestamp() .. 543
DbEnv::set_tx_max() .. 544
DbEnv::set_tx_timestamp() .. 546
DbTxn::abort() ... 547
DbEnv::txn_begin() .. 548
DbEnv::txn_checkpoint() ... 551
DbTxn::commit() .. 553
DbTxn::discard() ... 555
DbTxn::get_name() .. 556
DbTxn::id() ... 557
DbTxn::prepare() .. 558
DbEnv::txn_recover() ... 559

Page viiiDB C++ API8/14/2009

DbTxn::set_name() .. 561
DbTxn::set_timeout() ... 562
DbEnv::txn_stat() .. 564
DbEnv::txn_stat_print() .. 568

A. Berkeley DB Command Line Utilities .. 569
Utilities .. 570
db_archive .. 571
db_checkpoint ... 573
db_deadlock .. 575
db_dump .. 577
db_hotbackup .. 580
db_load .. 583
db_printlog ... 587
db_recover .. 589
db_sql ... 592
db_stat .. 598
db_upgrade ... 601
db_verify .. 603

Page ixDB C++ API8/14/2009

Preface
Welcome to Berkeley DB (DB). This document describes the C++ API for DB, version 4.8. It is intended
to describe the DB API, including all classes, methods, and functions. As such, this document is intended
for C++ developers who are actively writing or maintaining applications that make use of DB databases.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "Db::open() is a
Db class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number
} VENDOR;

Finally, notes of interest are represented using a note block such as this.☞
For More Information

Beyond this manual, you may also find the following sources of information useful when building a DB
application:

• Getting Started with Berkeley DB for C++ [http://www.oracle.com/technology/documentation/
berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf]

• Getting Started with Transaction Processing for C++ [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf]

• Berkeley DB Getting Started with Replicated Applications for C++ [http://www.oracle.com/
technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf]

• Berkeley DB C API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/C/BDB-C_APIReference.pdf]

• Berkeley DB STL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/STL/BDB-STL_APIReference.pdf]

Page xDB C++ API8/14/2009

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf

• Berkeley DB TCL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/TCL/BDB-TCL_APIReference.pdf]

• Berkeley DB Programmer's Reference Guide [http://www.oracle.com/technology/documentation/
berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf]

Page xiDB C++ API8/14/2009

http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf

Chapter 1. Introduction to Berkeley DB APIs
Welcome to the Berkeley DB API Reference Manual for C++

DB is a general-purpose embedded database engine that is capable of providing a wealth of data
management services. It is designed from the ground up for high-throughput applications requiring
in-process, bullet-proof management of mission-critical data. DB can gracefully scale from managing
a few bytes to terabytes of data. For the most part, DB is limited only by your system's available physical
resources.

This manual describes the various APIs and command line utilities available for use in the DB library.

For a general description of using DB beyond the reference material available in this manual, see the
Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed to work with
one particular aspect of the DB library. In many cases, each such chapter is organized around a "handle",
or class, which provides an interface to DB structures such as databases, environments or locks. However,
in some cases, methods for multiple handles are combined together when they are used to control or
interface with some isolated DB functionality. See, for example, the The DbLsn Handle chapter.

Within each chapter, methods, functions and command line utilities are organized alphabetically.

Page 1DB C++ API8/14/2009

Chapter 2. The Db Handle
The Db is the handle for a single Berkeley DB database. A Berkeley DB database provides a mechanism
for organizing key-data pairs of information. From the perspective of some database systems, a Berkeley
DB database could be thought of as a single table within a larger database.

You create a Db handle using the Db constructor. For most database activities, you must then open
the handle using the Db::open() method. When you are done with them, handles must be closed using
the Db::close() method.

Alternatively, you can create a Db and then rename, remove or verify the database without performing
an open. See Db::rename(), Db::remove() or Db::verify() for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions, recovery,
replication or any other advanced features. For simple Berkeley DB applications, environments still
offer some advantages. For example, they provide some organizational benefits on-disk (all databases
are located on disk relative to the environment). Also, if you are using multiple databases, then
environments allow your databases to share a common in-memory cache, which makes for more efficient
usage of your hardware's resources.

See DbEnv for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue, and
Recno) when you open the database. When you create a database, you are free to specify any of the
available database types. On subsequent opens, you must either specify the access method used when
you first opened the database, or you can specify DB_UNKNOWN in order to have this information retrieved
for you. See the Db::open() method for information on specifying database types.

Page 2DB C++ API8/14/2009

Database and Related Methods

DescriptionDatabase Operations

Associate a secondary indexDb::associate()

Associate a foreign indexDb::associate_foreign()

Close a databaseDb::close()

Create a database handleDb

Compact a databaseDb::compact()

Delete items from a databaseDb::del()

Error messageDb::err()

Return if an item appears in a databaseDb::exists()

Return a file descriptor from a databaseDb::fd()

Get items from a databaseDb::get()

Return if the underlying database is in host orderDb::get_byteswapped()

Return the file and database nameDb::get_dbname()

Return if the database handle references multiple
databases

Db::get_multiple()

Returns the flags specified to Db::openDb::get_open_flags()

Return the database typeDb::get_type()

Perform a database join on cursorsDb::join()

Return estimate of key locationDb::key_range()

Open a databaseDb::open()

Store items into a databaseDb::put()

Remove a databaseDb::remove()

Rename a databaseDb::rename()

Set/get cache page priorityDb::set_priority(), Db::get_priority()

Database statisticsDb::stat()

Display database statisticsDb::stat_print()

Flush a database to stable storageDb::sync()

Empty a databaseDb::truncate()

Upgrade a databaseDb::upgrade()

Verify/salvage a databaseDb::verify()

Create a cursor handleDb::cursor()

Database Configuration

Set local space allocation functionsDb::set_alloc()

Set/get the database cache sizeDb::set_cachesize(), Db::get_cachesize()

Page 3DB C++ API8/14/2009

Database and Related Methods

DescriptionDatabase Operations

Set/get the directory in which a database is placedDb::set_create_dir(), Db::get_create_dir()

Set a duplicate comparison functionDb::set_dup_compare()

Set/get the database cryptographic keyDb::set_encrypt(), Db::get_encrypt_flags()

Set error message callbackDb::set_errcall()

Set/get error message FILEDb::set_errfile(), Db::get_errfile()

Set C++ ostream used for error messagesDb::set_error_stream()

Set/get error message prefixDb::set_errpfx(), Db::get_errpfx()

Set feedback callbackDb::set_feedback()

Set/get general database configurationDb::set_flags(), Db::get_flags()

Set/get the database byte orderDb::set_lorder(), Db::get_lorder()

Set C++ ostream used for informational messagesDb::set_message_stream()

Set informational message callbackDb::set_msgcall()

Set/get informational message FILEDb::set_msgfile(), Db::get_msgfile()

Set/get the underlying database page sizeDb::set_pagesize(), Db::get_pagesize()

Set database partitioningDb::set_partition()

Set/get the directories used for database partitionsDb::set_partition_dirs(), Db::get_partition_dirs()

Btree/Recno Configuration

Set record append callbackDb::set_append_recno()

Set a Btree comparison functionDb::set_bt_compare()

Set Btree compression functionsDb::set_bt_compress()

Set/get the minimum number of keys per Btree
page

Db::set_bt_minkey(), Db::get_bt_minkey()

Set a Btree prefix comparison functionDb::set_bt_prefix()

Set/get the variable-length record delimiterDb::set_re_delim(), Db::get_re_delim()

Set/get the fixed-length record lengthDb::set_re_len(), Db::get_re_len()

Set/get the fixed-length record pad byteDb::set_re_pad(), Db::get_re_pad()

Set/get the backing Recno text fileDb::set_re_source(), Db::get_re_source()

Hash Configuration

Set a Hash comparison functionDb::set_h_compare()

Set/get the Hash table densityDb::set_h_ffactor(), Db::get_h_ffactor()

Set a hashing functionDb::set_h_hash()

Set/get the Hash table sizeDb::set_h_nelem(), Db::get_h_nelem()

Queue Configuration

Set/get Queue database extent sizeDb::set_q_extentsize(), Db::get_q_extentsize()

Page 4DB C++ API8/14/2009

Database and Related Methods

Db::associate()
#include <db_cxx.h>

int
Db::associate(DbTxn *txnid, Db *secondary,
 int (*callback)(Db *secondary,
 const Dbt *key, const Dbt *data, Dbt *result), u_int32_t flags);

The Db::associate() function is used to declare one database a secondary index for a primary database.
The Db handle that you call the associate() method from is the primary database.

After a secondary database has been "associated" with a primary database, all updates to the primary
will be automatically reflected in the secondary and all reads from the secondary will return
corresponding data from the primary. Note that as primary keys must be unique for secondary indices
to work, the primary database must be configured without support for duplicate data items. See
Secondary Indices in the Berkeley DB Programmer's Reference Guide for more information.

The Db::associate() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

callback

The callback parameter is a callback function that creates the set of secondary keys corresponding to
a given primary key and data pair.

The callback parameter may be NULL if both the primary and secondary database handles were opened
with the DB_RDONLY flag.

The callback takes four arguments:

• secondary

The secondary parameter is the database handle for the secondary.

• key

The key parameter is a Dbt referencing the primary key.

• data

The data parameter is a Dbt referencing the primary data item.

• result

The result parameter is a zeroed Dbt in which the callback function should fill in data and size fields
that describe the secondary key or keys.

Page 5DB C++ API8/14/2009

Db::associate()

../../programmer_reference/am_second.html

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

The result Dbt can have the following flags set in its flags field:

• DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than simply pointing
into the primary key or datum), DB_DBT_APPMALLOC should be set in the flags field of the result
Dbt, which indicates that Berkeley DB should free the memory when it is done with it.

• DB_DBT_MULTIPLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of the result
Dbt, which indicates Berkeley DB should treat the size field as the number of secondary keys (zero
or more), and the data field as a pointer to an array of that number of Dbts describing the set of
secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words, there
must be no repeated record numbers in the array for Recno and Queue databases, and keys must
not compare equally using the secondary database's comparison function for Btree and Hash databases.
If keys are repeated, operations may fail and the secondary may become inconsistent with the
primary.

The DB_DBT_APPMALLOC flag may be set for any Dbt in the array of returned Dbt's to indicate that
Berkeley DB should free the memory referenced by that particular Dbt's data field when it is done
with it.

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result Dbt's flag field
to indicate that Berkeley DB should free the array once it is done with all of the returned keys.

In addition, the callback can optionally return the following special value:

• DB_DONOTINDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the secondary
index, the callback function may optionally return DB_DONOTINDEX. Otherwise, the callback function
should return 0 in case of success or an error outside of the Berkeley DB name space in case of failure;
the error code will be returned from the Berkeley DB call that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary database, the
secondary index will not contain any reference to those key/data pairs, and such operations as cursor
iterations and range queries will reflect only the corresponding subset of the database. If this is not
desirable, the application should ensure that the callback function is well-defined for all possible
values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result Dbt and setting
the size field to zero.

Page 6DB C++ API8/14/2009

Db::associate()

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in the empty
secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions, the
entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of control
until the Db::associate() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database being used
to populate a secondary database, in another thread of control, until the Db::associate() call has
returned successfully in the first thread. If transactions are being used, Berkeley DB will perform
appropriate locking and the application need not do any special operation ordering.

• DB_IMMUTABLE_KEY

Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will never be
changed after the primary record is inserted. For immutable secondary keys, a best effort is made
to avoid calling the secondary callback function when primary records are updated. This optimization
may reduce the overhead of update operations significantly if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed. If this
rule is violated, the secondary index will become corrupted, that is, it will become out of sync with
the primary.

secondary

The secondary parameter should be an open database handle of either a newly created and empty
database that is to be used to store a secondary index, or of a database that was previously associated
with the same primary and contains a secondary index. Note that it is not safe to associate as a secondary
database a handle that is in use by another thread of control or has open cursors. If the handle was
opened with the DB_THREAD flag it is safe to use it in multiple threads of control after the
Db::associate() method has returned. Note also that either secondary keys must be unique or the
secondary database must be configured with support for duplicate data items.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Page 7DB C++ API8/14/2009

Db::associate()

Errors

The Db::associate() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EINVAL

If the secondary database handle has already been associated with this or another database handle;
the secondary database handle is not open; the primary database has been configured to allow
duplicates; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 8DB C++ API8/14/2009

Db::associate()

Db::associate_foreign()
#include <db_cxx.h>

int
DB::associate_foreign(Db *secondary,,
 int (*callback)(Db *secondary,
 const Dbt *key, Dbt *data, const Dbt *foreignkey, int *changed),
 u_int32_t flags);

The Db::associate_foreign() function is used to declare one database a foreign constraint for a
secondary database. The Db handle that you call the associate_foreign() method from is the foreign
database.

After a foreign database has been "associated" with a secondary database, all keys inserted into the
secondary must exist in the foreign database. Attempting to add a record with a foreign key that does
not exist in the foreign database will cause the put method to fail and return DB_FOREIGN_CONFLICT.

Deletions in the foreign database affect the secondary in a manner defined by the flags parameter.
See Foreign Indices in the Berkeley DB Programmer's Reference Guide for more information.

The Db::associate_foreign() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

callback

The callback parameter is a callback function that nullifies the foreign key portion of a data Dbt.

The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE is set.

The callback takes four arguments:

• secondary

The secondary parameter is the database handle for the secondary.

• key

The key parameter is a Dbt referencing the primary key.

• data

The data parameter is a Dbt referencing the primary data item to be updated.

• foreignkey

The foreignkey parameter is a Dbt referencing the foreign key which is being deleted.

• changed

Page 9DB C++ API8/14/2009

Db::associate_foreign()

../../programmer_reference/am_foreign.html

The changed parameter is a pointer to a boolean value, indicated whether data has changed.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

flags

The flags parameter must be set to one of the following values:

• DB_FOREIGN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT if that key
exists in the secondary database. The deletion should be protected by a transaction to ensure database
integrity after the aborted delete.

• DB_FOREIGN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary database
(and the corresponding entry in the secondary's primary database.)

• DB_FOREIGN_NULLIFY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

secondary

The secondary parameter should be an open database handle of a database that contains a secondary
index who's keys also exist in the foreign database.

Errors

The Db::associate_foreign() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

Page 10DB C++ API8/14/2009

Db::associate_foreign()

EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been configured
to allow duplicates; the foreign database handle is a renumbering recno database; callback is configured
and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured and callback is not.

Class

Db

See Also

Database and Related Methods

Page 11DB C++ API8/14/2009

Db::associate_foreign()

Db::close()
#include <db_cxx.h>

int
Db::close(u_int32_t flags);

The Db::close() method flushes any cached database information to disk, closes any open cursors,
frees any allocated resources, and closes any underlying files.

Although closing a database handle will close any open cursors, it is recommended that applications
explicitly close all their Dbc handles before closing the database. The reason why is that when the
cursor is explicitly closed, the memory allocated for it is reclaimed; however, this will not happen if
you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DbTxn handles. Simply make sure you close all your
transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always either close
database handles or sync their data to disk (using the Db::sync() method) before exiting, to ensure
that any data cached in main memory are reflected in the underlying file system.

When called on a database that is the primary database for a secondary index, the primary database
should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the Db concurrently, only a single thread may call the Db::close()
method.

The Db handle may not be accessed again after Db::close() is called, regardless of its return.

The Db::close() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or be set to the following value:

• DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only if the
application is doing logging (with transactions) so that the database is recoverable after a system or
application crash, or if the database is always generated from scratch after any system or application
crash.

It is important to understand that flushing cached information to disk only minimizes the window
of opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either: use transactions and logging with automatic
recovery; use logging and application-specific recovery; or edit a copy of the database, and once all

Page 12DB C++ API8/14/2009

Db::close()

applications using the database have successfully called Db::close(), atomically replace the original
database with the updated copy.

Note that this flag only works when the database has been opened using an environment.

Errors

The Db::close() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 13DB C++ API8/14/2009

Db::close()

Db
#include <db_cxx.h>

class Db {
public:
 Db(DbEnv *dbenv, u_int32_t flags);
 ~Db();

 DB *Db::get_DB();
 const DB *Db::get_const_DB() const;
 static Db *Db::get_Db(DB *db);
 static const Db *Db::get_const_Db(const DB *db);
 ...
};

The Db handle is the handle for a Berkeley DB database, which may or may not be part of a database
environment.

Db handles are free-threaded if the DB_THREAD flag is specified to the Db::open() method when the
database is opened or if the database environment in which the database is opened is free-threaded.
The handle should not be closed while any other handle that refers to the database is in use; for
example, database handles must not be closed while cursor handles into the database remain open,
or transactions that include operations on the database have not yet been committed or aborted. Once
the Db::close(), Db::remove(), Db::rename(), or Db::verify() methods are called, the handle may not
be accessed again, regardless of the method's return.

The constructor creates a Db object that is the handle for a Berkeley DB database. The constructor
allocates memory internally; calling the Db::close(), Db::remove(), or Db::rename() methods will free
that memory.

Note that destroying the Db object is synonomous with calling Db::close(0).

Each Db object has an associated DB struct, which is used by the underlying implementation of Berkeley
DB and its C-language API. The Db::get_DB() method returns a pointer to this struct. Given a const
Db object, Db::get_const_DB() returns a const pointer to the same struct.

Given a DB struct, the Db::get_Db() method returns the corresponding Db object, if there is one. If the
DB object was not associated with a Db (that is, it was not returned from a call to the Db::get_DB()
method), then the result of Db::get_Db() is undefined. Given a const DB struct, Db::get_const_Db()
returns the associated const Dbobject, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language software.
It should not be necessary to use these calls in a purely C++ application.

Page 14DB C++ API8/14/2009

Db

Parameters

dbenv

If no dbenv value is specified, the database is standalone; that is, it is not part of any Berkeley DB
environment.

If a dbenv value is specified, the database is created within the specified Berkeley DB environment.
The database access methods automatically make calls to the other subsystems in Berkeley DB, based
on the enclosing environment. For example, if the environment has been configured to use locking,
the access methods will automatically acquire the correct locks when reading and writing pages of the
database.

flags

The flags parameter is currently unused, and must be set to 0.

• DB_CXX_NO_EXCEPTION

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an error
occurs, an exception is thrown that encapsulates the error information. This generally allows for
cleaner logic for transaction processing because a try block can surround a single transaction. However,
if this flag is specified, exceptions are not thrown; instead, each individual function returns an error
code.

If a dbenv value is specified, this flag is ignored, and the error behavior of the specified environment
is used instead.

Class

Db

See Also

Database and Related Methods

Page 15DB C++ API8/14/2009

Db

Db::compact()
#include <db_cxx.h>

int
Db::compact(DbTxn *txnid,
 Dbt *start, Dbt *stop, DB_COMPACT *c_data, u_int32_t flags, Dbt *end);

The Db::compact() method compacts Btree and Recno access method databases, and optionally returns
unused Btree, Hash or Recno database pages to the underlying filesystem.

The Db::compact()method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.

If a transaction handle is supplied to this method, then the operation is performed using that transaction.
In this event, large sections of the tree may be locked during the course of the transaction.

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected using multiple transactions. These transactions will be
periodically committed to avoid locking large sections of the tree. Any deadlocks encountered cause
the compaction operation to be retried from the point of the last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction in a Btree or Recno database.
Compaction will start at the smallest key greater than or equal to the specified key. If NULL, compaction
will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction in a Btree or Recno database.
Compaction will stop at the page with the smallest key greater than the specified key. If NULL,
compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters, and
returns compaction operation statistics, in a structure of type DB_COMPACT.

The following input configuration fields are available from the DB_COMPACT structure:

• int compact_fillpercent;

Page 16DB C++ API8/14/2009

Db::compact()

If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and 100.
Any page in a Btree or Recno databases not at or above this percentage full will be considered for
compaction. The default behavior is to consider every page for compaction, regardless of its page
fill percentage.

• int compact_pages;

If non-zero, the call will return after the specified number of pages have been freed, or no more
pages can be freed.

• db_timeout_t compact_timeout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock timeout used
for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COMPACT structure:

• u_int32_t compact_deadlock;

An output statistics parameter: if no txnid parameter was specified, the number of deadlocks which
occurred.

• u_int32_t compact_pages_examine;

An output statistics parameter: the number of database pages reviewed during the compaction phase.

• u_int32_t compact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction phase.

• u_int32_t compact_levels;

An output statistics parameter: the number of levels removed from the Btree or Recno database
during the compaction phase.

• u_int32_t compact_pages_truncated;

An output statistics parameter: the number of database pages returned to the filesystem.

flags

The flags parameter must be set to 0 or one of the following values:

• DB_FREELIST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at the end
of the file. This flag must be set if the database is a Hash access method database.

• DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as a result
of compaction will be placed on the free list for re-use, but never returned to the filesystem.

Page 17DB C++ API8/14/2009

Db::compact()

Note that only pages at the end of a file can be returned to the filesystem. Because of the one-pass
nature of the compaction algorithm, any unemptied page near the end of the file inhibits returning
pages to the file system. A repeated call to the Db::compact() method with a low compact_fillpercent
may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled in with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the page where
the operation stopped.

Errors

The Db::compact() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EACCES

An attempt was made to modify a read-only database.

Page 18DB C++ API8/14/2009

Db::compact()

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 19DB C++ API8/14/2009

Db::compact()

Db::del()
#include <db_cxx.h>

int
Db::del(DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db::del() method removes key/data pairs from the database. The key/data pair associated with
the specified key is discarded from the database. In the presence of duplicate key values, all records
associated with the designated key will be discarded.

When called on a database that has been made into a secondary index using the Db::associate() method,
the Db::del() method deletes the key/data pair from the primary database and all secondary indices.

The Db::del() method will return DB_NOTFOUND if the specified key is not in the database. The
Db::del() method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted. Unless
otherwise specified, the Db::del() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the queue to
move to the first non-deleted item in the queue. Normally this is only done if the deleted item is
exactly at the head when deleted.

• DB_MULTIPLE

Delete multiple data items using keys from the buffer to which the key parameter refers.

To delete records in bulk by key with the btree or hash access methods, construct a bulk buffer in
the key Dbt using DbMultipleDataBuilder. To delete records in bulk by record number, construct a
bulk buffer in the key Dbt using DbMultipleRecnoDataBuilder with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data pair,
performing a Db::del() for each one.

See the DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTIPLE flag may only be used alone.

• DB_MULTIPLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter refers.

Page 20DB C++ API8/14/2009

Db::del()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

To delete records in bulk with the btree or hash access methods, construct a bulk buffer in the key
Dbt using DbMultipleKeyDataBuilder. To delete records in bulk with the recno or hash access methods,
construct a bulk buffer in the key Dbt using DbMultipleRecnoDataBuilder.

See the DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTIPLE_KEY flag may only be used alone.

key

The key Dbt operated on.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Errors

The Db::del() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

Page 21DB C++ API8/14/2009

Db::del()

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 22DB C++ API8/14/2009

Db::del()

Db::err()
#include <db_cxx.h>

Db::err(int error, const char *fmt, ...);

Db::errx(const char *fmt, ...);

The DbEnv::err(), DbEnv::errx(), Db::err() and Db::errx() methods provide error-messaging
functionality for applications written using the Berkeley DB library.

The Db::err() and DbEnv::err() methods construct an error message consisting of the following elements:

• An optional prefix string

If no error callback function has been set using the DbEnv::set_errcall() method, any prefix string
specified using the DbEnv::set_errpfx() method, followed by two separating characters: a colon and
a <space> character.

• An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf function
specifies how subsequent parameters are converted for output.

• A separator

Two separating characters: a colon and a <space> character.

• A standard error string

The standard system or Berkeley DB library error string associated with the error value, as returned
by the DbEnv::strerror() method.

The Db::errx() and DbEnv::errx() methods are the same as the Db::err() and DbEnv::err() methods,
except they do not append the final separator characters and standard error string to the error message.

This constructed error message is then handled as follows:

• If an error callback function has been set (see Db::set_errcall() and DbEnv::set_errcall()), that
function is called with two parameters: any prefix string specified (see Db::set_errpfx() and
DbEnv::set_errpfx()) and the error message.

• If a C library FILE * has been set (see Db::set_errfile() and DbEnv::set_errfile()), the error message
is written to that output stream.

• If a C++ ostream has been set (see DbEnv::set_error_stream() and Db::set_error_stream()), the error
message is written to that stream.

• If none of these output options have been configured, the error message is written to stderr, the
standard error output stream.

Page 23DB C++ API8/14/2009

Db::err()

Parameters

error

The error parameter is the error value for which the DbEnv::err() and Db::err() methods will display
an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.

Class

Db

See Also

Database and Related Methods

Page 24DB C++ API8/14/2009

Db::err()

Db::exists()
#include <db_cxx.h>

int
Db::exists(DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db::exists() method returns whether the specified key appears in the database.

The Db::exists() method will return DB_NOTFOUND if the specified key is not in the database. The
Db::exists() method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted.

Parameters

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_READ_COMMITTED

Configure a transactional read operation to have degree 2 isolation (the read is not repeatable).

• DB_READ_UNCOMMITTED

Configure a transactional read operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

Because the Db::exists() method will not hold locks across Berkeley DB calls in non-transactional
operations, the DB_RMW flag to the Db::exists() call is meaningful only in the presence of
transactions.

key

The key Dbt operated on.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.

Page 25DB C++ API8/14/2009

Db::exists()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Class

Db

See Also

Database and Related Methods

Page 26DB C++ API8/14/2009

Db::exists()

Db::fd()
#include <db_cxx.h>

int
Db::fd(int *fdp);

The Db::fd() method provides access to a file descriptor representative of the underlying database.
A file descriptor referring to the same file will be returned to all processes that call Db::open() with
the same file parameter.

This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking functions.

The Db::fd() method only supports a coarse-grained form of locking. Applications should instead use
the Berkeley DB lock manager where possible.

The Db::fd() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

fdp

The fdp parameter references memory into which the current file descriptor is copied.

Class

Db

See Also

Database and Related Methods

Page 27DB C++ API8/14/2009

Db::fd()

Db::get()
#include <db_cxx.h>

int
Db::get(DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

int
Db::pget(DbTxn *txnid, Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Db::get() method retrieves key/data pairs from the database. The address and length of the data
associated with the specified key are returned in the structure to which data refers.

In the presence of duplicate key values, Db::get() will return the first data item for the designated
key. Duplicates are sorted by:

• Their sort order, if a duplicate sort function was specified.

• Any explicit cursor designated insertion.

• By insert order. This is the default behavior.

Retrieval of duplicates requires the use of cursor operations. See Dbc::get() for details.

When called on a database that has been made into a secondary index using the Db::associate() method,
the Db::get() and Db::pget() methods return the key from the secondary index and the data item
from the primary database. In addition, the Db::pget() method returns the key from the primary
database. In databases that are not secondary indices, the Db::pget() method will always fail.

The Db::get() method will return DB_NOTFOUND if the specified key is not in the database. The
Db::get() method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted. Unless
otherwise specified, the Db::get() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

data

The data Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:

• DB_CONSUME

Return the record number and data from the available record closest to the head of the queue, and
delete the record. The record number will be returned in key, as described in Dbt. The data will be
returned in the data parameter. A record is available if it is not deleted and is not currently locked.
The underlying database must be of type Queue for DB_CONSUME to be specified.

Page 28DB C++ API8/14/2009

Db::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

• DB_CONSUME_WAIT

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue database
is empty, the thread of control will wait until there is data in the queue before returning. The
underlying database must be of type Queue for DB_CONSUME_WAIT to be specified.

If lock or transaction timeouts have been specified, the Db::get()method with the DB_CONSUME_WAIT
flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not require the enclosing
transaction be aborted.

• DB_GET_BOTH

Retrieve the key/data pair only if both the key and data match the arguments.

When using a secondary index handle, the DB_GET_BOTH: flag causes:

• the Db::pget() version of this method to retun the secondary key/primary key/data tuple only if
both the primary and secondary keys match the arguments.

• the Db::get() version of this method to result in an error.

• DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key and data
items will have been filled in.

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

• DB_IGNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned under all
conditions: if master leases are not configured, if the request is made to a client, if the request is
made to a master with a valid lease, or if the request is made to a master without a valid lease.

• DB_MULTIPLE

Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified key are
entered into the buffer. In the case of Queue or Recno databases, all of the data items in the database,
starting at, and subsequent to, the specified key, are entered into the buffer.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is

Page 29DB C++ API8/14/2009

Db::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and DB_SET_RECNO options.
The DB_MULTIPLE flag may not be used when accessing databases made into secondary indices using
the Db::associate() method.

See the DBT and Bulk Operations for more information on working with bulk get.

• DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not repeatable).

• DB_READ_UNCOMMITTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

Because the Db::get() method will not hold locks across Berkeley DB calls in non-transactional
operations, the DB_RMW flag to the Db::get() call is meaningful only in the presence of transactions.

key

The key Dbt operated on.

pkey

The pkey parameter is the return key from the primary database.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Page 30DB C++ API8/14/2009

Db::get()

Errors

The Db::get() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.

DbMemoryException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_CONSUME_WAIT flag was specified, lock or transaction timers were configured and the lock could
not be granted before the wait-time expired.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

Page 31DB C++ API8/14/2009

Db::get()

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If a record number of 0 was specified; the DB_THREAD flag was specified to the Db::open() method
and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or DB_DBT_USERMEM flags were set in the Dbt;
the Db::pget() method was called with a Db handle that does not refer to a secondary index; or if an
invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 32DB C++ API8/14/2009

Db::get()

Db::get_bt_minkey()
#include <db_cxx.h>

int
Db::get_bt_minkey(u_int32_t *bt_minkeyp);

The Db::get_bt_minkey() method returns the minimum number of key/data pairs intended to be stored
on any single Btree leaf page. This value can be set using the Db::set_bt_minkey() method.

The Db::get_bt_minkey() method may be called at any time during the life of the application.

The Db::get_bt_minkey() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_minkeyp

The Db::get_bt_minkey() method returns the minimum number of key/data pairs intended to be stored
on any single Btree leaf page in bt_minkeyp.

Class

Db

See Also

Database and Related Methods, Db::set_bt_minkey()

Page 33DB C++ API8/14/2009

Db::get_bt_minkey()

Db::get_byteswapped()
#include <db_cxx.h>

int
Db::get_byteswapped(int *isswapped);

The Db::get_byteswapped() method returns whether the underlying database files were created on an
architecture of the same byte order as the current one, or if they were not (that is, big-endian on a
little-endian machine, or vice versa). This information may be used to determine whether application
data needs to be adjusted for this architecture or not.

The Db::get_byteswapped() method may not be called before the Db::open() method is called.

The Db::get_byteswapped() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

isswapped

If the underlying database files were created on an architecture of the same byte order as the current
one, 0 is stored into the memory location referenced by isswapped. If the underlying database files
were created on an architecture of a different byte order as the current one, 1 is stored into the
memory location referenced by isswapped.

Errors

The Db::get_byteswapped() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 34DB C++ API8/14/2009

Db::get_byteswapped()

Db::get_cachesize()
#include <db_cxx.h>

int
Db::get_cachesize(u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The Db::get_cachesize() method returns the current size and composition of the cache. These values
may be set using the Db::set_cachesize() method.

The Db::get_cachesize() method may be called at any time during the life of the application.

The Db::get_cachesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the cache is
copied.

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class

Db

See Also

Database and Related Methods, Db::set_cachesize()

Page 35DB C++ API8/14/2009

Db::get_cachesize()

Db::get_create_dir()
#include <db_cxx.h>

int
Db::get_create_dir(const char **dirp);

Determine which directory a database file will be created in or was found in.

The Db::get_create_dir() method may be called at any time.

The Db::get_create_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The dirp will be set to the directory specified in the call to Db::set_create_dir() method on this handle
or to the directory that the database was found in after Db::open() has been called.

Errors

The Db::get_create_dir() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 36DB C++ API8/14/2009

Db::get_create_dir()

Db::get_dbname()
#include <db_cxx.h>

int
Db::get_dbname(const char **filenamep, const char **dbnamep);

The Db::get_dbname() method returns the filename and database name used by the Db handle.

The Db::get_dbname() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

filenamep

The filenamep parameter references memory into which a pointer to the current filename is copied.

dbnamep

The dbnamep parameter references memory into which a pointer to the current database name is
copied.

Class

Db

See Also

Database and Related Methods

Page 37DB C++ API8/14/2009

Db::get_dbname()

Db::get_encrypt_flags()
#include <db_cxx.h>

int
Db::get_encrypt_flags(u_int32_t *flagsp);

The Db::get_encrypt_flags() method returns the encryption flags. This flag can be set using the
Db::set_encrypt() method.

The Db::get_encrypt_flags() method may be called at any time during the life of the application.

The Db::get_encrypt_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db::get_encrypt_flags() method returns the encryption flags in flagsp.

Class

Db

See Also

Database and Related Methods, Db::set_encrypt()

Page 38DB C++ API8/14/2009

Db::get_encrypt_flags()

Db::get_errfile()
#include <db_cxx.h>

void Db::get_errfile(FILE **errfilep);

The Db::get_errfile() method returns the FILE *, as set by the Db::set_errfile() method.

The Db::get_errfile() method may be called at any time during the life of the application.

Parameters

errfilep

The Db::get_errfile() method returns the FILE * in errfilep.

Class

Db

See Also

Database and Related Methods, Db::set_errfile()

Page 39DB C++ API8/14/2009

Db::get_errfile()

Db::get_errpfx()
#include <db_cxx.h>

void Db::get_errpfx(const char **errpfxp);

The Db::get_errpfx() method returns the error prefix.

The Db::get_errpfx() method may be called at any time during the life of the application.

Parameters

errpfxp

The Db::get_errpfx() method returns a reference to the error prefix in errpfxp.

Class

Db

See Also

Database and Related Methods, Db::set_errpfx()

Page 40DB C++ API8/14/2009

Db::get_errpfx()

Db::get_flags()
#include <db_cxx.h>

int Db::get_flags(u_int32_t *flagsp);

The Db::get_flags() method returns the current database flags as set by the Db::set_flags() method.

The Db::get_flags() method may be called at any time during the life of the application.

The Db::get_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db::get_flags() method returns the current flags in flagsp.

Class

Db

See Also

Database and Related Methods, Db::set_flags()

Page 41DB C++ API8/14/2009

Db::get_flags()

Db::get_h_ffactor()
#include <db_cxx.h>

int Db::get_h_ffactor(u_int32_t *h_ffactorp);

The Db::get_h_ffactor() method returns the hash table density as set by the Db::set_h_ffactor()
method. The hash table density is the number of items that Berkeley DB tries to place in a hash bucket
before splitting the hash bucket.

The Db::get_h_ffactor() method may be called at any time during the life of the application.

The Db::get_h_ffactor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactorp

The Db::get_h_ffactor() method returns the hash table density in h_ffactorp.

Class

Db

See Also

Database and Related Methods, Db::set_h_ffactor()

Page 42DB C++ API8/14/2009

Db::get_h_ffactor()

Db::get_h_nelem()
#include <db_cxx.h>

int
Db::get_h_nelem(u_int32_t *h_nelemp);

The Db::get_h_nelem() method returns the estimate of the final size of the hash table as set by the
Db::set_h_nelem() method.

The Db::get_h_nelem() method may be called at any time during the life of the application.

The Db::get_h_nelem() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelemp

The Db::get_h_nelem() method returns the estimate of the final size of the hash table in h_nelemp.

Class

Db

See Also

Database and Related Methods, Db::set_h_nelem()

Page 43DB C++ API8/14/2009

Db::get_h_nelem()

Db::get_lorder()
#include <db_cxx.h>

int
Db::get_lorder(int *lorderp);

The Db::get_lorder() method returns the database byte order; a byte order of 4,321 indicates a big
endian order, and a byte order of 1,234 indicates a little endian order. This value is set using the
Db::set_lorder() method.

The Db::get_lorder() method may be called at any time during the life of the application.

The Db::get_lorder() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lorderp

The Db::get_lorder() method returns the database byte order in lorderp.

Class

Db

See Also

Database and Related Methods, Db::set_lorder()

Page 44DB C++ API8/14/2009

Db::get_lorder()

Db::get_msgfile()
#include <db_cxx.h>

void Db::get_msgfile(FILE **msgfilep);

The Db::get_msgfile() method returns the FILE * used to output informational or statistical messages.
This file handle is configured using the Db::set_msgfile() method.

The Db::get_msgfile() method may be called at any time during the life of the application.

Parameters

msgfilep

The Db::get_msgfile() method returns the FILE * in msgfilep.

Class

Db

See Also

Database and Related Methods, Db::set_msgfile()

Page 45DB C++ API8/14/2009

Db::get_msgfile()

Db::get_multiple()
#include <db_cxx.h>

int
Db::get_multiple()

This method returns non-zero if the Db handle references a physical file supporting multiple databases,
and 0 otherwise.

In this case, the Db handle is a handle on a database whose key values are the names of the databases
stored in the physical file and whose data values are opaque objects. No keys or data values may be
modified or stored using the database handle.

This method may not be called before the Db::open() method is called.

Class

Db

See Also

Database and Related Methods

Page 46DB C++ API8/14/2009

Db::get_multiple()

Db::get_open_flags()
#include <db_cxx.h>

int
Db::get_open_flags(u_int32_t *flagsp);

The Db::get_open_flags() method returns the current open method flags. That is, this method returns
the flags that were specified when Db::open() was called.

The Db::get_open_flags() method may not be called before the Db::open() method is called.

The Db::get_open_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db::get_open_flags() method returns the current open method flags in flagsp.

Class

Db

See Also

Database and Related Methods

Page 47DB C++ API8/14/2009

Db::get_open_flags()

Db::get_partition_callback()
#include <db_cxx.h>

int
Db::get_partition_callback(u_int32_t *partsp,
 u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The Db::get_partition_callback() method returns the partitioning information as set by the
Db::set_partition() method.

The Db::get_partition_callback() method may be called at any time during the life of the application.

The Db::get_partition_callback()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partsp

The Db::get_partition_callback() method returns number of partitions in the partsp parameter.

callback_fcn

The callback_fcn parameter will be set to the partitioning function.

Class

Db

See Also

Database and Related Methods, Db::set_partition()

Page 48DB C++ API8/14/2009

Db::get_partition_callback()

Db::get_partition_dirs()
#include <db_cxx.h>

int
Db::get_partition_dirs(const char ***dirsp);

Determine which directorise the database partitions files will be created in or were found in.

The Db::get_partition_dirs() method may be called at any time.

The Db::get_partition_dirs() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirsp

The dirsp will be set to the array of directories specified in the call to Db::set_partition_dirs() method
on this handle or to the directoreies that the database partitions were found in after Db::open() has
been called.

Errors

The Db::get_partition_dirs() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 49DB C++ API8/14/2009

Db::get_partition_dirs()

Db::get_partition_keys()
#include <db_cxx.h>

int
Db::get_partition_keys(u_int32_t *partsp, DBT *keysp);

The Db::get_partition_keys() method returns the partitioning information as set by the
Db::set_partition() method.

The Db::get_partition_keys() method may be called at any time during the life of the application.

The Db::get_partition_keys() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partsp

The Db::get_partition_keys() method returns number of partitions in the partsp parameter.

keysp

The keysp parameter will be set to the array of partitioning keys.

Class

Db

See Also

Database and Related Methods, Db::set_partition()

Page 50DB C++ API8/14/2009

Db::get_partition_keys()

Db::get_pagesize()
#include <db_cxx.h>

int
Db::get_pagesize(u_int32_t *pagesizep);

The Db::get_pagesize() method returns the database's current page size, as set by the
Db::set_pagesize() method. Note that if Db::set_pagesize() was not called by your application, then
the default pagesize is selected based on the underlying filesystem I/O block size. If you call
Db::get_pagesize() before you have opened the database, the value returned by this method is
therefore the underlying filesystem I/O block size.

The Db::get_pagesize() method may be called only after the database has been opened.

The Db::get_pagesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesizep

The Db::get_pagesize() method returns the page size in pagesizep.

Class

Db

See Also

Database and Related Methods, Db::set_pagesize()

Page 51DB C++ API8/14/2009

Db::get_pagesize()

Db::get_priority()
#include <db_cxx.h>

int
Db::get_priority(DB_CACHE_PRIORITY *priorityp);

The Db::get_priority() method returns the cache priority for pages referenced by the Db handle.
This priority value is set using the Db::set_priority() method.

The Db::get_priority() method may be called only after the database has been opened.

The Db::get_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Db::get_priority() method returns a reference to the cache priority in priorityp. See
Db::set_priority() for a list of possible priorities.

Class

Db

See Also

Database and Related Methods, Db::set_priority()

Page 52DB C++ API8/14/2009

Db::get_priority()

Db::get_q_extentsize()
#include <db_cxx.h>

int
Db::get_q_extentsize(u_int32_t *extentsizep);

The Db::get_q_extentsize() method returns the number of pages in an extent. This value is used only
for Queue databases and is set using the Db::set_q_extentsize() method.

The Db::get_q_extentsize() method may be called only after the database has been opened.

The Db::get_q_extentsize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

extentsizep

The Db::get_q_extentsize() method returns the number of pages in an extent in extentsizep. If used
on a handle that has not yet been opened, 0 is returned.

Class

Db

See Also

Database and Related Methods, Db::set_q_extentsize()

Page 53DB C++ API8/14/2009

Db::get_q_extentsize()

Db::get_re_delim()
#include <db_cxx.h>

int
Db::get_re_delim(int *delimp);

The Db::get_re_delim() method returns the delimiting byte, which is used to mark the end of a record
in the backing source file for the Recno access method. This value is set using the Db::set_re_delim()
method.

The Db::get_re_delim() method may be called only after the database has been opened.

The Db::get_re_delim() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

delimp

The Db::get_re_delim() method returns the delimiting byte in delimp. If this method is called on a
handle that has not yet been opened, then the default delimiting byte is returned. See
Db::set_re_delim() for details.

Class

Db

See Also

Database and Related Methods, Db::set_re_delim()

Page 54DB C++ API8/14/2009

Db::get_re_delim()

Db::get_re_len()
#include <db_cxx.h>

int
Db::get_re_len(u_int32_t *re_lenp);

The Db::get_re_len()method returns the length of the records held in a Queue access method database.
This value can be set using the Db::set_re_len() method.

The Db::get_re_len() method may be called only after the database has been opened.

The Db::get_re_len() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_lenp

The Db::get_re_len() method returns the record length in re_lenp. If the record length has never
been set using Db::set_re_len(), then 0 is returned.

Class

Db

See Also

Database and Related Methods, Db::set_re_len()

Page 55DB C++ API8/14/2009

Db::get_re_len()

Db::get_re_pad()
#include <db_cxx.h>

int
Db::get_re_pad(int *re_padp);

The Db::get_re_pad() method returns the pad character used for short, fixed-length records used by
the Queue and Recno access methods. This character is set using the Db::set_re_pad() method.

The Db::get_re_pad() method may be called only after the database has been opened.

The Db::get_re_pad() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_padp

The Db::get_re_pad() method returns the pad character in re_padp. If used on a handle that has not
yet been opened, the default pad character is returned. See the Db::set_re_pad() method description
for what that default value is.

Class

Db

See Also

Database and Related Methods, Db::set_re_pad()

Page 56DB C++ API8/14/2009

Db::get_re_pad()

Db::get_re_source()
#include <db_cxx.h>

int
Db::get_re_source(const char **sourcep);

The Db::get_re_source() method returns the source file used by the Recno access method. This file
is configured for the Recno access method using the Db::set_re_source() method.

The Db::get_re_source() method may be called only after the database has been opened.

The Db::get_re_source() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sourcep

The Db::get_re_source() method returns a reference to the source file in sourcep.

Class

Db

See Also

Database and Related Methods, Db::set_re_source()

Page 57DB C++ API8/14/2009

Db::get_re_source()

Db::get_type()
#include <db_cxx.h>

int
Db::get_type(DBTYPE *type);

The Db::get_type() method returns the type of the underlying access method (and file format). The
type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value may be used to determine
the type of the database after a return from Db::open() with the type parameter set to DB_UNKNOWN.

The Db::get_type() method may not be called before the Db::open() method is called.

The Db::get_type() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

type

The type parameter references memory into which the type of the underlying access method is copied.

Errors

The Db::get_type() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 58DB C++ API8/14/2009

Db::get_type()

Db::join()
#include <db_cxx.h>

int
Db::join(Dbc **curslist, Dbc **dbcp, u_int32_t flags);

The Db::join() method creates a specialized join cursor for use in performing equality or natural joins
on secondary indices. For information on how to organize your data to use this functionality, see
Equality join.

The Db::join() method is called using the Db handle of the primary database.

The join cursor supports only the Dbc::get() and Dbc::close() cursor functions:

• Dbc::get()

Iterates over the values associated with the keys to which each item in curslist was initialized. Any
data value that appears in all items specified by the curslist parameter is then used as a key into
the primary, and the key/data pair found in the primary is returned. The flags parameter must be
set to 0 or the following value:

• DB_JOIN_ITEM

Do not use the data value found in all the cursors as a lookup key for the primary, but simply
return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags parameter:

• DB_READ_UNCOMMITTED

Configure a transactional join operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during
the read part of the cycle so that another thread of control acquiring a read lock for the same
item, in its own read-modify-write cycle, will not result in deadlock.

• Dbc::close()

Close the returned cursor and release all resources. (Closing the cursors in curslist is the responsibility
of the caller.)

The Db::join() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Page 59DB C++ API8/14/2009

Db::join()

../../programmer_reference/am_cursor.html#am_join

Parameters

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have been
initialized to refer to the key on which the underlying database should be joined. Typically, this
initialization is done by a Dbc::get() call with the DB_SET flag specified. Once the cursors have been
passed as part of a curslist, they should not be accessed or modified until the newly created join cursor
has been closed, or else inconsistent results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist parameter,
and a nested iteration over each secondary cursor in the order they are specified in the curslist
parameter. This requires database traversals to search for the current datum in all the cursors after
the first. For this reason, the best join performance normally results from sorting the cursors from the
one that refers to the least number of data items to the one that refers to the most. By default,
Db::join() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in curslist
must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.

flags

The flags parameter must be set to 0 or the following value:

• DB_JOIN_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data are
structured so that cursors with many data items also share many common elements, higher
performance will result from listing those cursors before cursors with fewer data items; that is, a
sort order other than the default. The DB_JOIN_NOSORT flag permits applications to perform join
optimization prior to calling the Db::join() method.

Errors

The Db::join() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

Page 60DB C++ API8/14/2009

Db::join()

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If cursor methods other than Dbc::get() or Dbc::close() were called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 61DB C++ API8/14/2009

Db::join()

Db::key_range()
#include <db_cxx.h>

int
Db::key_range(DbTxn *txnid
 Dbt *key, DB_KEY_RANGE *key_range, u_int32_t flags);

The Db::key_range() method returns an estimate of the proportion of keys that are less than, equal
to, and greater than the specified key. The underlying database must be of type Btree.

The Db::key_range() method fills in a structure of type DB_KEY_RANGE. The following data fields are
available from the DB_KEY_RANGE structure:

• double less;

A value between 0 and 1, the proportion of keys less than the specified key.

• double equal;

A value between 0 and 1, the proportion of keys equal to the specified key.

• double greater;

A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the database
are less than the key parameter. The value for equal will be zero if there is no matching key, and will
be non-zero otherwise.

The Db::key_range() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

key

The key Dbt operated on.

key_range

The estimates are returned in the key_range parameter, which contains three elements of type double:
less, equal, and greater. Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of
the keys in the database are less than the key parameter. The value for equal will be zero if there is
no matching key, and will be non-zero otherwise.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.

Page 62DB C++ API8/14/2009

Db::key_range()

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected. The Db::key_range() method does not retain the locks it
acquires for the life of the transaction, so estimates may not be repeatable.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db::key_range() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was specified.

Class

Db

Page 63DB C++ API8/14/2009

Db::key_range()

See Also

Database and Related Methods

Page 64DB C++ API8/14/2009

Db::key_range()

Db::open()
#include <db_cxx.h>

int
Db::open(DbTxn *txnid, const char *file,
 const char *database, DBTYPE type, u_int32_t flags, int mode);

The Db::open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Queue, and
Recno. The Btree format is a representation of a sorted, balanced tree structure. The Hash format is
an extensible, dynamic hashing scheme. The Queue format supports fast access to fixed-length records
accessed sequentially or by logical record number. The Recno format supports fixed- or variable-length
records, accessed sequentially or by logical record number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see Dbt for
more information.

Calling Db::open() is a relatively expensive operation, and maintaining a set of open databases will
normally be preferable to repeatedly opening and closing the database for each new query.

The Db::open() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success. If Db::open() fails, the Db::close() method
must be called to discard the Db handle.

Parameters

database

The database parameter is optional, and allows applications to have multiple databases in a single
file. Although no database parameter needs to be specified, it is an error to attempt to open a second
database in a file that was not initially created using a database name. Further, the database parameter
is not supported by the Queue format. Finally, when opening multiple databases in the same physical
file, it is important to consider locking and memory cache issues; see Opening multiple databases in a
single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and cannot be
opened by any other thread of control. Thus the database can only be accessed by sharing the single
database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads of control
and will be replicated to client sites in any replication group, regardless of whether the file parameter
is set to NULL.

file

The file parameter is used as the name of an underlying file that will be used to back the database;
see File naming for more information.

Page 65DB C++ API8/14/2009

Db::open()

../../programmer_reference/am_opensub.html
../../programmer_reference/am_opensub.html
../../programmer_reference/env_naming.html

In-memory databases never intended to be preserved on disk may be created by setting the file
parameter to NULL. Whether other threads of control can access this database is driven entirely by
whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_AUTO_COMMIT

Enclose the Db::open() call within a transaction. If the call succeeds, the open operation will be
recoverable and all subsequent database modification operations based on this handle will be
transactionally protected. If the call fails, no database will have been created.

• DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not specified,
the Db::open() will fail.

• DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when specified
with the DB_CREATE. flag.

• DB_MULTIVERSION

Open the database with support for multiversion concurrency control. This will cause updates to the
database to follow a copy-on-write protocol, which is required to support snapshot isolation. The
DB_MULTIVERSION flag requires that the database be transactionally protected during its open and is
not supported by the queue format.

• DB_NOMMAP

Do not map this database into process memory (see the DbEnv::set_mp_mmapsize() method for
further information).

• DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail, regardless
of the actual permissions of any underlying files.

• DB_READ_UNCOMMITTED

Support transactional read operations with degree 1 isolation. Read operations on the database may
request the return of modified but not yet committed data. This flag must be specified on all Db
handles used to perform dirty reads or database updates, otherwise requests for dirty reads may not
be honored and the read may block.

Page 66DB C++ API8/14/2009

Db::open()

../../programmer_reference/transapp_read.html

• DB_THREAD

Cause the Db handle returned by Db::open() to be free-threaded; that is, concurrently usable by
multiple threads in the address space.

• DB_TRUNCATE

Physically truncate the underlying file, discarding all previous databases it might have held. Underlying
filesystem primitives are used to implement this flag. For this reason, it is applicable only to the file
and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify it in a
locking or transaction-protected environment.

mode

On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the database open
are created with mode mode (as described in chmod(2)) and modified by the process' umask value at
the time of creation (see umask(2)). Created files are owned by the process owner; the group ownership
of created files is based on the system and directory defaults, and is not further specified by Berkeley
DB. System shared memory segments created by the database open are created with mode mode,
unmodified by the process' umask value. If mode is 0, the database open will use a default mode of
readable and writable by both owner and group.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the DB_AUTO_COMMIT flag is specified, the operation will be
implicitly transaction protected. Note that transactionally protected operations on a Db handle requires
the Db handle itself be transactionally protected during its open. Also note that the transaction must
be committed before the handle is closed; see Berkeley DB handles for more information.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH, DB_QUEUE, DB_RECNO,
or DB_UNKNOWN. If type is DB_UNKNOWN, the database must already exist and Db::open() will
automatically determine its type. The Db::get_type() method may be used to determine the underlying
type of databases opened using DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may
be used as the path of the database environment home.

Page 67DB C++ API8/14/2009

Db::open()

../../programmer_reference/program_scope.html

Db::open() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

• TMPDIR

If the file and dbenv parameters to Db::open() are NULL, the environment variable TMPDIR may be
used as a directory in which to create temporary backing files

Errors

The Db::open() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

ENOENT

The file or directory does not exist.

ENOENT

A nonexistent re_source file was specified.

DB_OLD_VERSION

The database cannot be opened without being first upgraded.

EEXIST

DB_CREATE and DB_EXCL were specified and the database exists.

EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value or parameter
that is incompatible with the specified database was specified; the DB_THREAD flag was specified and
fast mutexes are not available for this architecture; the DB_THREAD flag was specified to Db::open(),
but was not specified to the DbEnv::open() call for the environment in which the Db handle was created;
a backing flat text file was specified with either the DB_THREAD flag or the provided database
environment supports transaction processing; or if an invalid flag value or parameter was specified.

Page 68DB C++ API8/14/2009

Db::open()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

Class

Db

See Also

Database and Related Methods

Page 69DB C++ API8/14/2009

Db::open()

Db::put()
#include <db_cxx.h>

int
Db::put(DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

The Db::put() method stores key/data pairs in the database. The default behavior of the Db::put()
function is to enter the new key/data pair, replacing any previously existing key if duplicates are
disallowed, or adding a duplicate data item if duplicates are allowed. If the database supports duplicates,
the Db::put() method adds the new data value at the end of the duplicate set. If the database supports
sorted duplicates, the new data value is inserted at the correct sorted location.

Unless otherwise specified, the Db::put() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be specified, the
underlying database must be a Queue or Recno database. The record number allocated to the record
is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for the
DB_APPEND flag. If a transaction enclosing a Db::put() operation with the DB_APPEND flag aborts,
the record number may be reallocated in a subsequent DB_APPEND operation if you are using the
Recno access method, but it will not be reallocated if you are using the Queue access method.

• DB_NODUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it does not
already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been configured to
support sorted duplicates. The DB_NODUPDATA flag may not be specified to the Queue or Recno
access methods.

The Db::put() method will return DB_KEYEXIST if DB_NODUPDATA is set and the key/data pair already
appears in the database.

• DB_NOOVERWRITE

Enter the new key/data pair only if the key does not already appear in the database. The Db::put()
method call with the DB_NOOVERWRITE flag set will fail if the key already exists in the database,
even if the database supports duplicates.

Page 70DB C++ API8/14/2009

Db::put()

The Db::put() method will return DB_KEYEXIST if DB_NOOVERWRITE is set and the key already
appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior of insertions
into secondary databases is not affected by the DB_NOOVERWRITE flag. In particular, the insertion
of a record that would result in the creation of a duplicate key in a secondary database that allows
duplicates would not be prevented by the use of this flag.

• DB_MULTIPLE

Put multiple data items using keys from the buffer to which the key parameter refers and data values
from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk buffers in the key and
data Dbt using DbMultipleDataBuilder. To put records in bulk with the recno or queue access methods,
construct bulk buffers in the data Dbt as before, but construct the key Dbt using
DbMultipleRecnoDataBuilder with a data size of zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair, performing
a Db::put() for each one.

See DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTIPLE flag may only be used alone, or with the DB_OVERWRITE_DUP option.

• DB_MULTIPLE_KEY

Put multiple data items using keys and data from the buffer to which the key parameter refers.

To put records in bulk with the btree or hash access methods, construct a bulk buffer in the key Dbt
using DbMultipleKeyDataBuilder. To put records in bulk with the recno or queue access methods,
construct a bulk buffer in the key Dbt using DbMultipleRecnoDataBuilder.

See DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTIPLE_KEY flag may only be used alone, or with the DB_OVERWRITE_DUP option.

• DB_OVERWRITE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that compares
identically to a record already existing in the database will fail. Using this flag causes the put to
silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB_MULTIPLE or DB_MULTIPLE_KEY
flags). Depending on the number of records you are writing to the database with a bulk put, you may
not want the operation to fail in the event that a duplicate record is encountered. Using this flag
along with the DB_MULTIPLE or DB_MULTIPLE_KEY flags allows the bulk put to complete, even if a
duplicate record is encountered.

Page 71DB C++ API8/14/2009

Db::put()

This flag is also useful if you are using a custom comparison function that compares only part of the
data portion of a record. In this case, two records can compare equally when, in fact, they are not
equal. This flag allows the put to complete, even if your custom comparison routine claims the two
records are equal.

data

The data Dbt operated on.

key

The key Dbt operated on.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Errors

The Db::put() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

Page 72DB C++ API8/14/2009

Db::put()

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length database
that was too large to fit; an attempt was made to do a partial put; an attempt was made to add a
record to a secondary index; or if an invalid flag value or parameter was specified.

ENOSPC

A btree exceeded the maximum btree depth (255).

Class

Db

See Also

Database and Related Methods

Page 73DB C++ API8/14/2009

Db::put()

Db::remove()
#include <db_cxx.h>

int
Db::remove(const char *file, const char *database, u_int32_t flags);

The Db::remove() method removes the database specified by the file and database parameters. If no
database is specified, the underlying file represented by file is removed, incidentally removing all of
the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing a file,
when any database in the file has an open handle. For example, some architectures do not permit the
removal of files with open system handles. On these architectures, attempts to remove databases
currently in use by any thread of control in the system may fail.

The Db::remove() method should not be called if the remove is intended to be transactionally safe;
the DbEnv::dbremove() method should be used instead.

The Db::remove() method may not be called after calling the Db::open() method on any Db handle. If
the Db::open() method has already been called on a Db handle, close the existing handle and create
a new one before calling Db::remove. ()

The Db handle may not be accessed again after Db::remove() is called, regardless of its return.

The Db::remove() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

database

The database parameter is the database to be removed.

file

The file parameter is the physical file which contains the database(s) to be removed.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may be
used as the path of the database environment home.

Db::remove() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db::remove() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

Page 74DB C++ API8/14/2009

Db::remove()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class

Db

See Also

Database and Related Methods

Page 75DB C++ API8/14/2009

Db::remove()

Db::rename()
#include <db_cxx.h>

int
Db::rename(const char *file,
 const char *database, const char *newname, u_int32_t flags);

The Db::rename() method renames the database specified by the file and database parameters to
newname. If no database is specified, the underlying file represented by file is renamed, incidentally
renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is being renamed
and logging is currently enabled in the database environment, no database in the file may be open
when the Db::rename() method is called. In particular, some architectures do not permit renaming
files with open handles. On these architectures, attempts to rename databases that are currently in
use by any thread of control in the system may fail.

The Db::rename() method should not be called if the rename is intended to be transactionally safe;
the DbEnv::dbrename() method should be used instead.

The Db::rename() method may not be called after calling the Db::open() method on any Db handle. If
the Db::open() method has already been called on a Db handle, close the existing handle and create
a new one before calling Db::rename().

The Db handle may not be accessed again after Db::rename() is called, regardless of its return.

The Db::rename() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

database

The database parameter is the database to be renamed.

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter is currently unused, and must be set to 0.

newname

The newname parameter is the new name of the database or file.

Page 76DB C++ API8/14/2009

Db::rename()

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may be
used as the path of the database environment home.

Db::rename() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db::rename() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class

Db

See Also

Database and Related Methods

Page 77DB C++ API8/14/2009

Db::rename()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Db::set_alloc()
#include <db_cxx.h>

int
Db::set_alloc(db_malloc_fcn_type app_malloc,
 db_realloc_fcn_type app_realloc,
 db_free_fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory owned by
the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and then
given to the application. For example, the DB_DBT_MALLOC flag, when specified in the Dbt object,
will cause the Db methods to allocate and reallocate memory which then becomes the responsibility
of the calling application. (See Dbt for more information.) Other examples are the Berkeley DB interfaces
which return statistical information to the application: Db::stat(), DbEnv::lock_stat(),
DbEnv::log_archive(), DbEnv::log_stat(), DbEnv::memp_stat(), and DbEnv::txn_stat(). There is one
method in Berkeley DB where memory is allocated by the application and then given to the library:
Db::associate().

On systems in which there may be multiple library versions of the standard allocation routines (notably
Windows NT), transferring memory between the library and the application will fail because the Berkeley
DB library allocates memory from a different heap than the application uses to free it. To avoid this
problem, the DbEnv::set_alloc() and Db::set_alloc() methods can be used to pass Berkeley DB
references to the application's allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to these
interfaces; however, in that case the specified interfaces must be compatible with the standard library
interfaces, as they will be used together. The functions specified must match the calling conventions
of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces specified to
the environment, it is an error to attempt to set those interfaces in a database created within an
environment.

The Db::set_alloc() method may not be called after the Db::open() method is called.

The Db::set_alloc() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The Db::set_alloc() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If called in a database environment, or called after Db::open() was called; or if an invalid flag value
or parameter was specified.

Page 78DB C++ API8/14/2009

Db::set_alloc()

Class

Db

See Also

Database and Related Methods

Page 79DB C++ API8/14/2009

Db::set_alloc()

Db::set_append_recno()
#include <db_cxx.h>

int
Db::set_append_recno(int (*db_append_recno_fcn)(DB *dbp, Dbt *data, db_recno_t recno));

When using the DB_APPEND option of the Db::put() method, it may be useful to modify the stored data
based on the generated key. If a callback function is specified using the Db::set_append_recno()
method, it will be called after the record number has been selected, but before the data has been
stored.

The Db::set_append_recno() method configures operations performed using the specified Db handle,
not all operations performed on the underlying database.

The Db::set_append_recno() method may not be called after the Db::open() method is called.

The Db::set_append_recno() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been selected
but before the data has been stored into the database. The function takes three parameters:

• dbp

The dbp parameter is the enclosing database handle.

• data

The data parameter is the data Dbt to be stored.

• recno

The recno parameter is the generated record number.

The called function may modify the data Dbt. If the function needs to allocate memory for the data
field, the flags field of the returned Dbt should be set to DB_DBT_APPMALLOC, which indicates that
Berkeley DB should free the memory when it is done with it.

The callback function must return 0 on success and errno or a value outside of the Berkeley DB error
name space on failure.

Page 80DB C++ API8/14/2009

Db::set_append_recno()

Errors

The Db::set_append_recno() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 81DB C++ API8/14/2009

Db::set_append_recno()

Db::set_bt_compare()
#include <db_cxx.h>

extern "C" {
 typedef int (*bt_compare_fcn_type)(DB *db, const DBT *dbt1, const DBT *dbt2);
};
int
Db::set_bt_compare(bt_compare_fcn_type bt_compare_fcn);

Set the Btree key comparison function. The comparison function is called whenever it is necessary to
compare a key specified by the application with a key currently stored in the tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys collating
before longer keys.

The Db::set_bt_compare() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db::set_bt_compare() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_bt_compare()
must be the same as that historically used to create the database or corruption can occur.

The Db::set_bt_compare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The comparison
function takes three parameters:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is the Dbt representing the application supplied key.

• dbt2

The dbt2 parameter is the Dbt representing the current tree's key.

The bt_compare_fcn function must return an integer value less than, equal to, or greater than zero
if the first key parameter is considered to be respectively less than, equal to, or greater than the
second key parameter. In addition, the comparison function must cause the keys in the database to
be well-ordered. The comparison function must correctly handle any key values used by the application
(possibly including zero-length keys). In addition, when Btree key prefix comparison is being performed
(see Db::set_bt_prefix() for more information), the comparison routine may be passed a prefix of any

Page 82DB C++ API8/14/2009

Db::set_bt_compare()

database key. The data and size fields of the Dbt are the only fields that may be used for the purposes
of this comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

Errors

The Db::set_bt_compare() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 83DB C++ API8/14/2009

Db::set_bt_compare()

Db::set_bt_compress()
#include <db_cxx.h>

extern "C" {
 typedef int (*bt_compress_fcn_type)(DB *db, const DBT *prevKey,
 const DBT *prevData, const DBT *key, const DBT *data, DBT *dest);
 typedef int (*bt_decompress_fcn_typ)(DB *db, const DBT *prevKey,
 const DBT *prevData, DBT *compressed, DBT *destKey,
 DBT *destData);
};
int
Db::set_bt_compress(bt_compress_fcn_type bt_compress_fcn,
 bt_decompress_fcn_type bt_decompress_fcn);

Set the Btree compression and decompression functions. The compression function is called whenever
a key/data pair is added to the tree and the decompression function is called whenever data is requested
from the tree.

If NULL function pointers are specified, then default compression and decompression functions are
used. Berkeley DB's default compression function performs prefix compression on all keys and prefix
compression on data values for duplicate keys. If using default compression, both the default compression
and decompression functions must be used.

The Db::set_bt_compress() method configures operations performed using the specified Db handle,
not all operations performed on the underlying database.

The Db::set_bt_compress() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_bt_compress()
must be the same as that historically used to create the database or corruption can occur.

The Db::set_bt_compress() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The compression
function takes six parameters:

• db

The db parameter is the enclosing database handle.

• prevKey

The prevKey parameter is the Dbt representing the key immediately preceding the application
supplied key.

• prevData

Page 84DB C++ API8/14/2009

Db::set_bt_compress()

The prevData parameter is the Dbt representing the data associated with prevKey.

• key

The key parameter is the Dbt representing the application supplied key.

• data

The data parameter is the Dbt representing the application supplied data.

• dest

The dest parameter is the Dbt representing the data stored in the tree, where the function should
write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If the
compressed data cannot fit in dest->set_data() (the size of which is returned by dest->get_ulen()),
the function should identify the required buffer size in dest->set_size() and return DB_BUFFER_SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function. The
decompression function takes six parameters:

• db

The db parameter is the enclosing database handle.

• prevKey

The prevKey parameter is the Dbt representing the key immediately preceding the key being
decompressed.

• prevData

The prevData parameter is the Dbt representing the data associated with prevKey.

• compressed

The compressed parameter is the Dbt representing the data stored in the tree, that is, the compressed
data.

• key

The key parameter is the Dbt where the decompression function should store the decompressed key.

• data

The data parameter is the Dbt where the decompression function should store the decompressed
key.

Page 85DB C++ API8/14/2009

Db::set_bt_compress()

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If the
decompressed data cannot fit in key->set_data() or data->set_data() (the size of which is returned
by the Dbt's get_ulen() method), the function should identify the required buffer size using the Dbt's
set_size() method and return DB_BUFFER_SMALL.

Errors

The Db::set_bt_compress() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 86DB C++ API8/14/2009

Db::set_bt_compress()

Db::set_bt_minkey()
#include <db_cxx.h>

int
Db::set_bt_minkey(u_int32_t bt_minkey);

Set the minimum number of key/data pairs intended to be stored on any single Btree leaf page.

This value is used to determine if key or data items will be stored on overflow pages instead of Btree
leaf pages. For more information on the specific algorithm used, see Minimum keys per page. The
bt_minkey value specified must be at least 2; if bt_minkey is not explicitly set, a value of 2 is used.

The Db::set_bt_minkey() method configures a database, not only operations performed using the
specified Db handle.

The Db::set_bt_minkey() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_bt_minkey()
will be ignored.

The Db::set_bt_minkey() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on any
single Btree leaf page.

Errors

The Db::set_bt_minkey() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 87DB C++ API8/14/2009

Db::set_bt_minkey()

../../programmer_reference/bt_conf.html#am_conf_bt_minkey

Db::set_bt_prefix()
#include <db_cxx.h>

extern "C" {
 typedef size_t (*bt_prefix_fcn_type)(DB *, const DBT *, const DBT *);
};
int
Db::set_bt_prefix(bt_prefix_fcn_type bt_prefix_fcn);

Set the Btree prefix function. The prefix function is used to determine the amount by which keys stored
on the Btree internal pages can be safely truncated without losing their uniqueness. See the Btree
prefix comparison section of the Berkeley DB Reference Guide for more details about how this works.
The usefulness of this is data-dependent, but can produce significantly reduced tree sizes and search
times in some data sets.

If no prefix function or key comparison function is specified by the application, a default lexical
comparison function is used as the prefix function. If no prefix function is specified and a key comparison
function is specified, no prefix function is used. It is an error to specify a prefix function without also
specifying a Btree key comparison function.

The Db::set_bt_prefix() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db::set_bt_prefix() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_bt_prefix()
must be the same as that historically used to create the database or corruption can occur.

The Db::set_bt_prefix() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix function takes
three parameters:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is a Dbt representing a database key.

• dbt2

The dbt2 parameter is a Dbt representing a database key.

Page 88DB C++ API8/14/2009

Db::set_bt_prefix()

../../programmer_reference/bt_conf.html#am_conf_bt_prefix
../../programmer_reference/bt_conf.html#am_conf_bt_prefix

The bt_prefix_fcn function must return the number of bytes of the second key parameter that would
be required by the Btree key comparison function to determine the second key parameter's ordering
relationship with respect to the first key parameter. If the two keys are equal, the key length should
be returned. The prefix function must correctly handle any key values used by the application (possibly
including zero-length keys). The data and size fields of the Dbt are the only fields that may be used
for the purposes of this determination, and no particular alignment of the memory to which the data
field refers may be assumed.

Errors

The Db::set_bt_prefix() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 89DB C++ API8/14/2009

Db::set_bt_prefix()

Db::set_cachesize()
#include <db_cxx.h>

int
Db::set_cachesize(u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the size of
the normal working data set of the application, with some small amount of additional memory for
unusual situations. (Note: the working set is not the same as the number of pages accessed
simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size less than
500MB is automatically increased by 25% to account for buffer pool overhead; cache sizes larger than
500MB are used as specified. The maximum size of a single cache is 4GB on 32-bit systems and 10TB
on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB is 2^18 not 256,000.) For information
on tuning the Berkeley DB cache size, see Selecting a cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated contiguously on
some architectures. For example, some releases of Solaris limit the amount of memory that may be
allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated contiguously in
memory. If it is greater than 1, the cache will be split across ncache separate regions, where the
region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to the environment,
it is an error to attempt to set a cache in a database created within an environment.

The Db::set_cachesize() method may not be called after the Db::open() method is called.

The Db::set_cachesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytes

The size of the cache is set to gbytes gigabytes plus bytes.

gbytes

The size of the cache is set to gbytes gigabytes plus bytes.

ncache

The ncache parameter is the number of caches to create.

Errors

The Db::set_cachesize() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

Page 90DB C++ API8/14/2009

Db::set_cachesize()

../../programmer_reference/general_am_conf.html#am_conf_cachesize

EINVAL

If the specified cache size was impossibly small; the method was called after Db::open() was called;
or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 91DB C++ API8/14/2009

Db::set_cachesize()

Db::set_create_dir()
#include <db_cxx.h>

int
Db::set_create_dir(const char *dir);

Specify which directory a database should be created in or looked for.

The Db::set_create_dir() method may not be called after the Db::open() method is called.

The Db::set_create_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir will be used to create or locate the database file specified in the Db::open() method call. The
directory must be one of the directories in the environment list specified by DbEnv::add_data_dir().

Errors

The Db::set_create_dir() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 92DB C++ API8/14/2009

Db::set_create_dir()

Db::set_dup_compare()
#include <db_cxx.h>

extern "C" {
 typedef int (*dup_compare_fcn_type)(DB *db, const DBT *dbt1,
 const DBT *dbt2);
};
int
Db::set_dup_compare(dup_compare_fcn_type dup_compare_fcn);

Set the duplicate data item comparison function. The comparison function is called whenever it is
necessary to compare a data item specified by the application with a data item currently stored in the
database. Calling Db::set_dup_compare() implies calling Db::set_flags() with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter data items
collating before longer data items.

The Db::set_dup_compare() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_dup_compare()
must be the same as that historically used to create the database or corruption can occur.

The Db::set_dup_compare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison function.
The function takes three arguments:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is a Dbt representing the application supplied data item.

• dbt2

The dbt2 parameter is a Dbt representing the current tree's data item.

The dup_compare_fcn function must return an integer value less than, equal to, or greater than zero
if the first data item parameter is considered to be respectively less than, equal to, or greater than
the second data item parameter. In addition, the comparison function must cause the data items in
the set to be well-ordered. The comparison function must correctly handle any data item values used
by the application (possibly including zero-length data items). The data and size fields of the Dbt are
the only fields that may be used for the purposes of this comparison, and no particular alignment of
the memory to which the data field refers may be assumed.

Page 93DB C++ API8/14/2009

Db::set_dup_compare()

Errors

The Db::set_dup_compare() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 94DB C++ API8/14/2009

Db::set_dup_compare()

Db::set_encrypt()
#include <db_cxx.h>

int
Db::set_encrypt(const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to the
environment, it is an error to attempt to set a password in a database created within an environment.

The Db::set_encrypt() method may not be called after the Db::open() method is called.

The Db::set_encrypt() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal Information
Processing Standard (FIPS) 197) algorithm for encryption or decryption.

passwd

The passwd parameter is the password used to perform encryption and decryption.

Errors

The Db::set_encrypt() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.

Class

Db

Page 95DB C++ API8/14/2009

Db::set_encrypt()

See Also

Database and Related Methods

Page 96DB C++ API8/14/2009

Db::set_encrypt()

Db::set_errcall()
#include <db_cxx.h>

void Db::set_errcall(void (*db_errcall_fcn)
 (const DbEnv *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return value is
returned by the interface. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error, especially during initial application debugging.

The DbEnv::set_errcall() and Db::set_errcall() methods are used to enhance the mechanism for
reporting error messages to the application. In some cases, when an error occurs, Berkeley DB will call
db_errcall_fcn() with additional error information. It is up to the db_errcall_fcn() function to display
the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the additional information via an output stream, or the Db::set_errfile() or Db::set_errfile() methods
to display the additional information via a C library FILE *. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_errcall() method
affects the entire environment and is equivalent to calling the DbEnv::set_errcall() method.

When used on a database that was not opened in an environment, the Db::set_errcall() method
configures operations performed using the specified Db handle, not all operations performed on the
underlying database.

The Db::set_errcall() method may be called at any time during the life of the application.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The function takes
three parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

• errpfx

Page 97DB C++ API8/14/2009

Db::set_errcall()

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() or DbEnv::set_errpfx()
).

• msg

The msg parameter is the error message string.

Class

Db

See Also

Database and Related Methods

Page 98DB C++ API8/14/2009

Db::set_errcall()

Db::set_errfile()
#include <db_cxx.h>

void Db::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return value is
returned by the interface. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error, especially during initial application debugging.

The DbEnv::set_errfile() and Db::set_errfile() methods are used to enhance the mechanism for
reporting error messages to the application by setting a C library FILE * to be used for displaying
additional Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output
an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the additional messages via an output stream, or the DbEnv::set_errcall() or Db::set_errcall() methods
to capture the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using Db::set_errpfx() or DbEnv::set_errpfx()), an error string, and a trailing <newline>
character.

The default configuration when applications first create Db or DbEnv handles is as if the
DbEnv::set_errfile() or Db::set_errfile() methods were called with the standard error output (stderr)
specified as the FILE * argument. Applications wanting no output at all can turn off this default
configuration by calling the DbEnv::set_errfile() or Db::set_errfile() methods with NULL as the FILE
* argument. Additionally, explicitly configuring the error output channel using any of the following
methods will also turn off this default output for the application:

• Db::set_errfile()

• DbEnv::set_errfile()

• DbEnv::set_errcall()

• Db::set_errcall()

• DbEnv::set_error_stream()

• Db::set_error_stream()

This error logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_errfile() method
affects the entire environment and is equivalent to calling the DbEnv::set_errfile() method.

Page 99DB C++ API8/14/2009

Db::set_errfile()

When used on a database that was not opened in an environment, the Db::set_errfile() method
configures operations performed using the specified Db handle, not all operations performed on the
underlying database.

The Db::set_errfile() method may be called at any time during the life of the application.

Parameters

errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB error
information.

Class

Db

See Also

Database and Related Methods

Page 100DB C++ API8/14/2009

Db::set_errfile()

Db::set_error_stream()
#include <db_cxx.h>

void Db::set_error_stream(class ostream*);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is returned
by the interface. In some cases, however, the errno value may be insufficient to completely describe
the cause of the error, especially during initial application debugging.

The DbEnv::set_error_stream() and Db::set_error_stream()methods are used to enhance the mechanism
for reporting error messages to the application by setting the C++ ostream used for displaying additional
Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output an additional
error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using Db::set_errpfx(), an error string, and a trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() or Db::set_errfile() methods to display the additional
information via a C Library FILE *, or the DbEnv::set_errcall() and Db::set_errcall() methods to capture
the additional error information in a way that does not use either output streams or C Library FILE
*'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_error_stream() method
affects the entire environment and is equivalent to calling the DbEnv::set_error_stream() method.

The Db::set_error_stream() method may be called at any time during the life of the application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional error
information.

Class

Db

See Also

Database and Related Methods

Page 101DB C++ API8/14/2009

Db::set_error_stream()

Db::set_errpfx()
#include <db_cxx.h>

void Db::set_errpfx(const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The Db::set_errpfx() and DbEnv::set_errpfx() methods do not copy the memory to which the errpfx
parameter refers; rather, they maintain a reference to it. Although this allows applications to modify
the error message prefix at any time (without repeatedly calling the interfaces), it means the memory
must be maintained until the handle is closed.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_errpfx() method
affects the entire environment and is equivalent to calling the DbEnv::set_errpfx() method.

The Db::set_errpfx() method configures operations performed using the specified Db handle, not all
operations performed on the underlying database.

The Db::set_errpfx() method may be called at any time during the life of the application.

Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.

Class

Db

See Also

Database and Related Methods

Page 102DB C++ API8/14/2009

Db::set_errpfx()

Db::set_feedback()
#include <db_cxx.h>

int
Db::set_feedback(void (*db_feedback_fcn)(DB *dbp, int opcode, int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time. The
Db::set_feedback() method can be used by applications to monitor progress within these operations.
When an operation is likely to take a long time, Berkeley DB will call the specified callback function
with progress information.

It is up to the callback function to display this information in an appropriate manner.

The Db::set_feedback() method may be called at any time during the life of the application.

The Db::set_feedback() method returns a non-zero error value on failure and 0 on success.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to report Berkeley
DB operation progress. The callback function must take three parameters:

• dbp

The dbp parameter is a reference to the enclosing database.

• opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the following
values:

• DB_UPGRADE

The underlying database is being upgraded.

• DB_VERIFY

The underlying database is being verified.

• percent

The percent parameter is the percent of the operation that has been completed, specified as an
integer value between 0 and 100.

Page 103DB C++ API8/14/2009

Db::set_feedback()

Class

Db

See Also

Database and Related Methods

Page 104DB C++ API8/14/2009

Db::set_feedback()

Db::set_flags()
#include <db_cxx.h>

int
Db::set_flags(u_int32_t flags);

Configure a database. Calling Db::set_flags() is additive; there is no way to clear flags.

The Db::set_flags() method may not be called after the Db::open() method is called.

The Db::set_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

General

The following flags may be specified for any Berkeley DB access method:

• DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley DB uses
the SHA1 Secure Hash Algorithm if encryption is configured and a general hash algorithm if it is not.

Calling Db::set_flags() with the DB_CHKSUM flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() is called, the DB_CHKSUM flag will be ignored.

• DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the DbEnv::set_encrypt() or
Db::set_encrypt() methods.

Calling Db::set_flags() with the DB_ENCRYPT flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() is called, the DB_ENCRYPT flag must be the same as
the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that is, encrypted
databases created on big-endian machines cannot be read on little-endian machines, and vice versa.

• DB_TXN_NOT_DURABLE

Page 105DB C++ API8/14/2009

Db::set_flags()

If set, Berkeley DB will not write log records for this database. This means that updates of this
database exhibit the ACI (atomicity, consistency, and isolation) properties, but not D (durability);
that is, database integrity will be maintained, but if the application or system fails, integrity will
not persist. The database file must be verified and/or restored from backup after a failure. In order
to ensure integrity after application shut down, the database handles must be closed without specifying
DB_NOSYNC, or all database changes must be flushed from the database environment cache using
either the DbEnv::txn_checkpoint() or DbEnv::memp_sync() methods. All database handles for a
single physical file must set DB_TXN_NOT_DURABLE, including database handles for different databases
in a physical file.

Calling Db::set_flags() with the DB_TXN_NOT_DURABLE flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

Btree

The following flags may be specified for the Btree access method:

• DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the order of insertion, unless the ordering is otherwise specified by use
of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag should only
be used by applications wanting to order duplicate data items manually.

Calling Db::set_flags() with the DB_DUP flag affects the database, including all threads of control
accessing the database.

If the database already exists when Db::open() is called, the DB_DUP flag must be the same as the
existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.

• DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the duplicate comparison function. If the application does not specify a
comparison function using the Db::set_dup_compare() method, a default lexical comparison will be
used. It is an error to specify both DB_DUPSORT and DB_RECNUM.

Calling Db::set_flags() with the DB_DUPSORT flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_DUPSORT flag must be the same as
the existing database or an error will be returned.

• DB_RECNUM

Page 106DB C++ API8/14/2009

Db::set_flags()

Support retrieval from the Btree using record numbers. For more information, see the DB_SET_RECNO
flag to the Db::get() and Dbc::get() methods.

Logical record numbers in Btree databases are mutable in the face of record insertion or deletion.
See the DB_RENUMBER flag in the Recno access method information for further discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely the page
locations where the record counts are stored. In addition, the entire database must be locked during
both insertions and deletions, effectively single-threading the database for those operations. Specifying
DB_RECNUM can result in serious performance degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling Db::set_flags() with the DB_RECNUM flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_RECNUM flag must be the same as
the existing database or an error will be returned.

• DB_REVSPLITOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley DB Btree
implementation attempts to coalesce empty pages into higher-level pages in order to keep the
database as small as possible and minimize search time. This can hurt performance in applications
with cyclical data demands; that is, applications where the database grows and shrinks repeatedly.
For example, because Berkeley DB does page-level locking, the maximum level of concurrency in a
database of two pages is far smaller than that in a database of 100 pages, so a database that has
shrunk to a minimal size can cause severe deadlocking when a new cycle of data insertion begins.

Calling Db::set_flags() with the DB_REVSPLITOFF flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

Hash

The following flags may be specified for the Hash access method:

• DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the order of insertion, unless the ordering is otherwise specified by use
of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag should only
be used by applications wanting to order duplicate data items manually.

Calling Db::set_flags() with the DB_DUP flag affects the database, including all threads of control
accessing the database.

If the database already exists when Db::open() is called, the DB_DUP flag must be the same as the
existing database or an error will be returned.

Page 107DB C++ API8/14/2009

Db::set_flags()

• DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the duplicate comparison function. If the application does not specify a
comparison function using the Db::set_dup_compare() method, a default lexical comparison will be
used.

Calling Db::set_flags() with the DB_DUPSORT flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_DUPSORT flag must be the same as
the existing database or an error will be returned.

Queue

The following flags may be specified for the Queue access method:

• DB_INORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT flags to
Db::get() to return key/data pairs in order. That is, they will always return the key/data item from
the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does not guarantee
that record will be retrieved in the order they are added to the queue. Specifically, if a writing
thread adds multiple records to an empty queue, reading threads may skip some of the initial records
when the next Db::get() call returns.

This flag modifies the Db::get() call to verify that the record being returned is in fact the head of
the queue. This will increase contention and reduce concurrency when there are many reading
threads.

Calling Db::set_flags() with the DB_INORDER flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

Recno

The following flags may be specified for the Recno access method:

• DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and change as
records are added to and deleted from the database.

Using the Db::put() or Dbc::put() interfaces to create new records will cause the creation of multiple
records if the record number is more than one greater than the largest record currently in the
database. For example, creating record 28, when record 25 was previously the last record in the
database, will create records 26 and 27 as well as 28. Attempts to retrieve records that were created
in this manner will result in an error return of DB_KEYEMPTY.

Page 108DB C++ API8/14/2009

Db::set_flags()

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

If a created record is not at the end of the database, all records following the new record will be
automatically renumbered upward by one. For example, the creation of a new record numbered 8
causes records numbered 8 and greater to be renumbered upward by one. If a cursor was positioned
to record number 8 or greater before the insertion, it will be shifted upward one logical record,
continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed record will
be automatically renumbered downward by one. For example, deleting the record numbered 8 causes
records numbered 9 and greater to be renumbered downward by one. If a cursor was positioned to
record number 9 or greater before the removal, it will be shifted downward one logical record,
continuing to refer to the same record as it did before.

If a record is deleted, all cursors that were positioned on that record prior to the removal will no
longer be positioned on a valid entry. This includes cursors used to delete an item. For example, if
a cursor was positioned to record number 8 before the removal of that record, subsequent calls to
Dbc::get() with flags of DB_CURRENT will result in an error return of DB_KEYEMPTY until the cursor
is moved to another record. A call to Dbc::get() with flags of DB_NEXT will return the new record
numbered 8 - which is the record that was numbered 9 prior to the delete (if such a record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag specified may
be largely meaningless, although it is supported.

Calling Db::set_flags() with the DB_RENUMBER flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_RENUMBER flag must be the same
as the existing database or an error will be returned.

• DB_SNAPSHOT

This flag specifies that any specified re_source file be read in its entirety when Db::open() is called.
If this flag is not specified, the re_source file may be read lazily.

See the Db::set_re_source() method for information on the re_source file.

Calling Db::set_flags() with the DB_SNAPSHOT flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

Errors

The Db::set_flags() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

Page 109DB C++ API8/14/2009

Db::set_flags()

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

See Also

Database and Related Methods

Page 110DB C++ API8/14/2009

Db::set_flags()

Db::set_h_compare()
#include <db_cxx.h>

extern "C" {
 typedef int (*compare_fcn_type)(DB *db, const DBT *dbt1, const DBT *dbt2);
};
int
Db::set_h_compare(compare_fcn_type compare_fcn);

Set the Hash key comparison function. The comparison function is called whenever it is necessary to
compare a key specified by the application with a key currently stored in the database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The Db::set_h_compare() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db::set_h_compare() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_h_compare()
must be the same as that historically used to create the database or corruption can occur.

The Db::set_h_compare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The comparison
function takes three parameters:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is the Dbt representing the application supplied key.

• dbt2

The dbt2 parameter is the Dbt representing the current database's key.

The compare_fcn function must return an integer value less than, equal to, or greater than zero if
the first key parameter is considered to be respectively less than, equal to, or greater than the second
key parameter. The comparison function must correctly handle any key values used by the application
(possibly including zero-length keys). The data and size fields of the Dbt are the only fields that may
be used for the purposes of this comparison, and no particular alignment of the memory to which by
the data field refers may be assumed.

Page 111DB C++ API8/14/2009

Db::set_h_compare()

Errors

The Db::set_h_compare() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 112DB C++ API8/14/2009

Db::set_h_compare()

Db::set_h_ffactor()
#include <db_cxx.h>

int
Db::set_h_ffactor(u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be selected
dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one bucket,
determining when the hash table grows or shrinks. If you know the average sizes of the keys and data
in your data set, setting the fill factor can enhance performance. A reasonable rule computing fill
factor is to set it to the following:

 (pagesize - 32) / (average_key_size + average_data_size + 8)

The Db::set_h_ffactor() method configures a database, not only operations performed using the
specified Db handle.

The Db::set_h_ffactor() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_h_ffactor()
will be ignored.

The Db::set_h_ffactor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactor

The h_ffactor parameter is the desired density within the hash table.

Errors

The Db::set_h_ffactor() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 113DB C++ API8/14/2009

Db::set_h_ffactor()

Db::set_h_hash()
#include <db_cxx.h>

extern "C" {
 typedef u_int32_t (*h_hash_fcn_type)
 (DB *, const void *bytes, u_int32_t length);
};
int
Db::set_h_hash(h_hash_fcn_type h_hash_fcn);

Set a user-defined hash function; if no hash function is specified, a default hash function is used.
Because no hash function performs equally well on all possible data, the user may find that the built-in
hash function performs poorly with a particular data set.

The Db::set_h_hash() method configures operations performed using the specified Db handle, not all
operations performed on the underlying database.

The Db::set_h_hash() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_h_hash() must be the
same as that historically used to create the database or corruption can occur.

The Db::set_h_hash() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_hash_fcn

The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as parameters, and
return a value of type u_int32_t. The hash function must handle any key values used by the application
(possibly including zero-length keys).

Errors

The Db::set_h_hash() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

Page 114DB C++ API8/14/2009

Db::set_h_hash()

See Also

Database and Related Methods

Page 115DB C++ API8/14/2009

Db::set_h_hash()

Db::set_h_nelem()
#include <db_cxx.h>

int
Db::set_h_nelem(u_int32_t h_nelem);

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the Db::set_h_ffactor() method must
also be called. If the estimate or fill factor are not set or are set too low, hash tables will still expand
gracefully as keys are entered, although a slight performance degradation may be noticed.

The Db::set_h_nelem()method configures a database, not only operations performed using the specified
Db handle.

The Db::set_h_nelem() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_h_nelem()will be ignored.

The Db::set_h_nelem() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelem

The h_nelem parameter is an estimate of the final size of the hash table.

Errors

The Db::set_h_nelem() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 116DB C++ API8/14/2009

Db::set_h_nelem()

Db::set_lorder()
#include <db_cxx.h>

int
Db::set_lorder(int lorder);

Set the byte order for integers in the stored database metadata. The host byte order of the machine
where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data stored
in the database, and applications are responsible for maintaining any necessary ordering.

The Db::set_lorder() method configures a database, not only operations performed using the specified
Db handle.

The Db::set_lorder() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_lorder() will be ignored.

If creating additional databases in a single physical file, information specified to Db::set_lorder() will
be ignored and the byte order of the existing databases will be used.

The Db::set_lorder() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lorder

The lorder parameter should represent the byte order as an integer; for example, big endian order is
the number 4,321, and little endian order is the number 1,234.

Errors

The Db::set_lorder() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 117DB C++ API8/14/2009

Db::set_lorder()

Db::set_message_stream()
#include <db_cxx.h>

void Db::set_message_stream(class ostream*);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations. For example, the DbEnv::set_verbose() and DbEnv::stat_print() methods.

The DbEnv::set_message_stream() and Db::set_message_stream() methods are used to display these
messages for the application. In this case, the message will include a trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_msgfile() or Db::set_msgfile() methods to display the additional
information via a C Library FILE *, or the DbEnv::set_msgcall() and Db::set_msgcall() methods to
capture the additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_message_stream()
method affects the entire environment and is equivalent to calling the DbEnv::set_message_stream()
method.

The Db::set_message_stream() method configures operations performed using the specified Db handle,
not all operations performed on the underlying database.

The Db::set_message_stream() method may be called at any time during the life of the application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional message
information.

Class

Db

See Also

Database and Related Methods

Page 118DB C++ API8/14/2009

Db::set_message_stream()

Db::set_msgcall()
#include <db_cxx.h>

void Db::set_msgcall(void (*db_msgcall_fcn)(const DbEnv *dbenv, char *msg));

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DbEnv::set_verbose() and DbEnv::stat_print().

The DbEnv::set_msgcall() and Db::set_msgcall() methods are used to pass these messages to the
application, and Berkeley DB will call db_msgcall_fcn with each message. It is up to the db_msgcall_fcn
function to display the message in an appropriate manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the messages via an output stream, or the Db::set_msgfile() or Db::set_msgfile() methods to display
the messages via a C library FILE *. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_msgcall() method
affects the entire environment and is equivalent to calling the DbEnv::set_msgcall() method.

The Db::set_msgcall() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db::set_msgcall() method may be called at any time during the life of the application.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The function
takes two parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

• msg

The msg parameter is the message string.

Class

Db

Page 119DB C++ API8/14/2009

Db::set_msgcall()

See Also

Database and Related Methods

Page 120DB C++ API8/14/2009

Db::set_msgcall()

Db::set_msgfile()
#include <db_cxx.h>

void Db::set_msgfile(FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DbEnv::set_verbose() and DbEnv::stat_print().

The DbEnv::set_msgfile() and Db::set_msgfile() methods are used to display these messages for the
application. In this case the message will include a trailing <newline> character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_message_stream() and Db::set_message_stream() methods
to display the messages via an output stream, or the DbEnv::set_msgcall() or Db::set_msgcall() methods
to capture the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_msgfile() method
affects the entire environment and is equivalent to calling the DbEnv::set_msgfile() method.

The Db::set_msgfile() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db::set_msgfile() method may be called at any time during the life of the application.

Parameters

msgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.

Class

Db

See Also

Database and Related Methods

Page 121DB C++ API8/14/2009

Db::set_msgfile()

Db::set_pagesize()
#include <db_cxx.h>

int
Db::set_pagesize(u_int32_t pagesize);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size is 512
bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two. If the page size
is not explicitly set, one is selected based on the underlying filesystem I/O block size. The automatically
selected size has a lower limit of 512 bytes and an upper limit of 16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The Db::set_pagesize() method configures a database, not only operations performed using the
specified Db handle.

The Db::set_pagesize()method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_pagesize() will be
ignored.

If creating additional databases in a single physical file, information specified to Db::set_pagesize()
will be ignored and the page size of the existing databases will be used.

The Db::set_pagesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

The Db::set_pagesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesize

The pagesize parameter sets the database page size.

Errors

The Db::set_pagesize() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

Page 122DB C++ API8/14/2009

Db::set_pagesize()

../../programmer_reference/general_am_conf.html#am_conf_pagesize

See Also

Database and Related Methods

Page 123DB C++ API8/14/2009

Db::set_pagesize()

Db::set_partition()
#include <db_cxx.h>

int
Db::set_partition(u_int32_t parts, DBT *kyes,
 u_int32_t (*db_partition_fcn) (Db *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH databases.
Partitions may be specified by either a set of keys specifying a range of values in each partition or with
a callback function that returns the number of the partition to put a specific key. Partition range keys
may only be specified for BTREE databases.

Partitions are implimented as separate database files and can help reduce contention within a logical
database. Contention can come from multiple threads of control accessing database pages simultaniously.
Typically these pages are the root of a btree and the metadata page which contains allocation
information in both BTREE and HASH databases. Each partition has its own metadata and root pages.

Parameters

Exactly one of the parameters keys and partition_fcn must be NULL.

parts

The parts parameter is the number of partitions to create. The value must be 2 or greater.

keys

The keys parameter is an array of DBT structures containing the keys that specify the range of key
values to be stored in each partition. Each key specifies the minimum value that may be stored in the
corresponding partition. The number of keys must be one less than the number of partitions specified
by the parts parameter since the first partition will hold any key less than the first key in the array.

db_partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The function returns
an integer which will be used modulo the number of partitions specified by the parts parameter. The
function will be called with two parameters:

• db

The db parameter is the database handle.

• key

The key parameter is the key for which a partition number should be returned.

Class

Db

Page 124DB C++ API8/14/2009

Db::set_partition()

See Also

Database and Related Methods

Page 125DB C++ API8/14/2009

Db::set_partition()

Db::set_partition_dirs()
#include <db_cxx.h>

int
Db::set_partition_dirs(const char **dirs);

Specify which directories the database extents should be created in or looked for. If the number of
directories is less than the number of partitions, the directories will be used in a round robin fashion.

The Db::set_partition_dirs() method may not be called after the Db::open() method is called.

The Db::set_partition_dirs() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirs

The dirs points to an array of directories that will be used to create or locate the database extent files
specified in the Db::open() method call. The directories must be included in the environment list
specified by DbEnv::add_data_dir().

Errors

The Db::set_partition_dirs() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 126DB C++ API8/14/2009

Db::set_partition_dirs()

Db::set_priority()
#include <db_cxx.h>

int
Db::set_priority(DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the Db handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the buffer pool. The bias is temporary, and pages will eventually be discarded
if they are not referenced again. The Db::set_priority() method is only advisory, and does not
guarantee pages will be treated in a specific way.

The Db::set_priority() method may be called at any time during the life of the application.

The Db::set_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be set to one of the following values:

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Class

Db

Page 127DB C++ API8/14/2009

Db::set_priority()

See Also

Database and Related Methods

Page 128DB C++ API8/14/2009

Db::set_priority()

Db::set_q_extentsize()
#include <db_cxx.h>

int
Db::set_q_extentsize(u_int32_t extentsize);

Set the size of the extents used to hold pages in a Queue database, specified as a number of pages.
Each extent is created as a separate physical file. If no extent size is set, the default behavior is to
create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The Db::set_q_extentsize() method configures a database, not only operations performed using the
specified Db handle.

The Db::set_q_extentsize() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_q_extentsize()
will be ignored.

The Db::set_q_extentsize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

extentsize

The extentsize parameter is the number of pages in a Queue database extent.

Errors

The Db::set_q_extentsize() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 129DB C++ API8/14/2009

Db::set_q_extentsize()

../../programmer_reference/rq_conf.html#am_conf_extentsize

Db::set_re_delim()
#include <db_cxx.h>

int
Db::set_re_delim(int re_delim);

Set the delimiting byte used to mark the end of a record in the backing source file for the Recno access
method.

This byte is used for variable length records if the re_source file is specified using the
Db::set_re_source() method. If the re_source file is specified and no delimiting byte was specified,
<newline> characters (that is, ASCII 0x0a) are interpreted as end-of-record markers.

The Db::set_re_delim() method configures a database, not only operations performed using the
specified Db handle.

The Db::set_re_delim()method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_re_delim() will be
ignored.

The Db::set_re_delim() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_delim

The re_delim parameter is the delimiting byte used to mark the end of a record.

Errors

The Db::set_re_delim() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 130DB C++ API8/14/2009

Db::set_re_delim()

Db::set_re_len()
#include <db_cxx.h>

int
Db::set_re_len(u_int32_t re_len);

For the Queue access method, specify that the records are of length re_len. For the Queue access
method, the record length must be enough smaller than the database's page size that at least one
record plus the database page's metadata information can fit on each database page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited, and are
of length re_len.

Any records added to the database that are less than re_len bytes long are automatically padded (see
Db::set_re_pad() for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will cause the
call to fail immediately and return an error.

The Db::set_re_len() method configures a database, not only operations performed using the specified
Db handle.

The Db::set_re_len() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_re_len() will be ignored.

The Db::set_re_len() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.

Errors

The Db::set_re_len() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

Page 131DB C++ API8/14/2009

Db::set_re_len()

See Also

Database and Related Methods

Page 132DB C++ API8/14/2009

Db::set_re_len()

Db::set_re_pad()
#include <db_cxx.h>

int
Db::set_re_pad(int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access methods.

If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The Db::set_re_pad() method configures a database, not only operations performed using the specified
Db handle.

The Db::set_re_pad() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db::set_re_pad() will be ignored.

The Db::set_re_pad() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno access
methods.

Errors

The Db::set_re_pad() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 133DB C++ API8/14/2009

Db::set_re_pad()

Db::set_re_source()
#include <db_cxx.h>

int
Db::set_re_source(char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is to
provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize a transient
record number index. In the case of variable length records, the records are separated, as specified
by Db::set_re_delim(). For example, standard UNIX byte stream files can be interpreted as a sequence
of variable length records separated by <newline> characters.

In addition, when cached data would normally be written back to the underlying database file (for
example, the Db::close() or Db::sync() methods are called), the in-memory copy of the database will
be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file until they
are requested by the application. If multiple processes (not threads) are accessing a Recno database
concurrently, and are either inserting or deleting records, the backing source file must be read in
its entirety before more than a single process accesses the database, and only that process should
specify the backing source file as part of the Db::open() call. See the DB_SNAPSHOT flag for more
information.

Reading and writing the backing source file specified by source cannot be transaction-protected
because it involves filesystem operations that are not part of the Db transaction methodology. For
this reason, if a temporary database is used to hold the records, it is possible to lose the contents of
the source file, for example, if the system crashes at the right instant. If a file is used to hold the
database, normal database recovery on that file can be used to prevent information loss, although it
is still possible that the contents of source will be lost if the system crashes.

The source file must already exist (but may be zero-length) when Db::open() is called.

It is not an error to specify a read-only source file when creating a database, nor is it an error to modify
the resulting database. However, any attempt to write the changes to the backing source file using
either the Db::sync() or Db::close() methods will fail, of course. Specify the DB_NOSYNC flag to the
Db::close() method to stop it from attempting to write the changes to the backing file; instead, they
will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are read-only
for Berkeley DB applications; and that are either generated on the fly by software tools or modified
using a different mechanism — for example, a text editor.

The Db::set_re_source() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

Page 134DB C++ API8/14/2009

Db::set_re_source()

The Db::set_re_source() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db::set_re_source()
must be the same as that historically used to create the database or corruption can occur.

The Db::set_re_source() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

source

The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The Db::set_re_source() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods

Page 135DB C++ API8/14/2009

Db::set_re_source()

Db::stat()
#include <db_cxx.h>

int
Db::stat(void *sp, u_int32_t flags);

The Db::stat() method creates a statistical structure and copies a pointer to it into user-specified
memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the database are copied
into the memory location to which it refers.

The Db::stat() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things, this flag
makes it possible for applications to request key and record counts without incurring the performance
penalty of traversing the entire database.

• DB_READ_COMMITTED

Database items read during a transactional call will have degree 2 isolation. This ensures the stability
of the data items read during the stat operation but permits that data to be modified or deleted by
other transactions prior to the commit of the specified transaction.

• DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when
the underlying database was opened.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the

Page 136DB C++ API8/14/2009

Db::stat()

memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the Db::stat() method will access some of or all the
pages in the database, incurring a severe performance penalty as well as possibly flushing the underlying
buffer pool.

In the presence of multiple threads or processes accessing an active database, the information returned
by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the cached
key and record numbers will be updated after the statistical information has been gathered.

The Db::stat() method may not be called before the Db::open() method is called.

The Db::stat() method returns a non-zero error value on failure and 0 on success.

Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB_HASH_STAT. The
following fields will be filled in:

• u_int32_t hash_magic;

Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.

• u_int32_t hash_version;

The version of the Hash database. Returned if DB_FAST_STAT is set.

• u_int32_t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

• u_int32_t hash_ndata;

The number of key/data pairs in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

• u_int32_t hash_pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.

• u_int32_t hash_pagesize;

The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t hash_ffactor;

Page 137DB C++ API8/14/2009

Db::stat()

The desired fill factor (number of items per bucket) specified at database-creation time. Returned
if DB_FAST_STAT is set.

• u_int32_t hash_buckets;

The number of hash buckets. Returned if DB_FAST_STAT is set.

• u_int32_t hash_free;

The number of pages on the free list.

• uintmax_t hash_bfree;

The number of bytes free on bucket pages.

• u_int32_t hash_bigpages;

The number of big key/data pages.

• uintmax_t hash_big_bfree;

The number of bytes free on big item pages.

• u_int32_t hash_overflows;

The number of overflow pages (overflow pages are pages that contain items that did not fit in the
main bucket page).

• uintmax_t hash_ovfl_free;

The number of bytes free on overflow pages.

• u_int32_t hash_dup;

The number of duplicate pages.

• uintmax_t hash_dup_free;

The number of bytes free on duplicate pages.

Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type DB_BTREE_STAT.
The following fields will be filled in:

• u_int32_t bt_magic;

Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.

• u_int32_t bt_version;

The version of the Btree database. Returned if DB_FAST_STAT is set.

Page 138DB C++ API8/14/2009

Db::stat()

• u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT flag is not
specified or the database was configured to support record numbers (see DB_RECNUM), the count
will be exact. Otherwise, the count will be the last saved value unless it has never been calculated,
in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was configured
with mutable record numbers (see DB_RENUMBER), the count will be exact. Otherwise, if the
DB_FAST_STAT flag is specified the count will be exact but will include deleted and implicitly created
records; if the DB_FAST_STAT flag is not specified, the count will be exact and will not include
deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

• u_int32_t bt_ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the DB_FAST_STAT
flag is not specified, the count will be exact. Otherwise, the count will be the last saved value unless
it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was configured
with mutable record numbers (see DB_RENUMBER), the count will be exact. Otherwise, if the
DB_FAST_STAT flag is specified the count will be exact but will include deleted and implicitly created
records; if the DB_FAST_STAT flag is not specified, the count will be exact and will not include
deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

• u_int32_t bt_pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.

• u_int32_t bt_pagesize;

The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t bt_minkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.

• u_int32_t bt_re_len;

The length of fixed-length records. Returned if DB_FAST_STAT is set.

• u_int32_t bt_re_pad;

The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.

• u_int32_t bt_levels;

Number of levels in the database.

Page 139DB C++ API8/14/2009

Db::stat()

• u_int32_t bt_int_pg;

Number of database internal pages.

• u_int32_t bt_leaf_pg;

Number of database leaf pages.

• u_int32_t bt_dup_pg;

Number of database duplicate pages.

• u_int32_t bt_over_pg;

Number of database overflow pages.

• u_int32_t bt_empty_pg;

Number of empty database pages.

• u_int32_t bt_free;

Number of pages on the free list.

• uintmax_t bt_int_pgfree;

Number of bytes free in database internal pages.

• uintmax_t bt_leaf_pgfree;

Number of bytes free in database leaf pages.

• uintmax_t bt_dup_pgfree;

Number of bytes free in database duplicate pages.

• uintmax_t bt_over_pgfree;

Number of bytes free in database overflow pages.

Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type DB_QUEUE_STAT. The
following fields will be filled in:

• u_int32_t qs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.

• u_int32_t qs_version;

The version of the Queue file type. Returned if DB_FAST_STAT is set.

Page 140DB C++ API8/14/2009

Db::stat()

• u_int32_t qs_nkeys;

The number of records in the database. If DB_FAST_STAT was specified the count will be the last
saved value unless it has never been calculated, in which case it will be 0. Returned if DB_FAST_STAT
is set.

• u_int32_t qs_ndata;

The number of records in the database. If DB_FAST_STAT was specified the count will be the last
saved value unless it has never been calculated, in which case it will be 0. Returned if DB_FAST_STAT
is set.

• u_int32_t qs_pagesize;

Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t qs_extentsize;

Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.

• u_int32_t qs_pages;

Number of pages in the database.

• u_int32_t qs_re_len;

The length of the records. Returned if DB_FAST_STAT is set.

• u_int32_t qs_re_pad;

The padding byte value for the records. Returned if DB_FAST_STAT is set.

• u_int32_t qs_pgfree;

Number of bytes free in database pages.

• u_int32_t qs_first_recno;

First undeleted record in the database. Returned if DB_FAST_STAT is set.

• u_int32_t qs_cur_recno;

Next available record number. Returned if DB_FAST_STAT is set.

Errors

The Db::stat() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

Page 141DB C++ API8/14/2009

Db::stat()

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 142DB C++ API8/14/2009

Db::stat()

Db::stat_print()
#include <db_cxx.h>

int
Db::stat_print(u_int32_t flags);

The Db::stat_print() method displays the database statistical information, as described for the
Db::stat() method. The information is printed to a specified output channel (see the
DbEnv::set_msgfile() method for more information), or passed to an application callback function (see
the DbEnv::set_msgcall() method for more information).

The Db::stat_print() method may not be called before the Db::open() method is called.

The Db::stat_print() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things, this flag
makes it possible for applications to request key and record counts without incurring the performance
penalty of traversing the entire database.

• DB_STAT_ALL

Display all available information.

Class

Db

See Also

Database and Related Methods

Page 143DB C++ API8/14/2009

Db::stat_print()

Db::sync()
#include <db_cxx.h>

int
Db::sync(u_int32_t flags);

The Db::sync() method flushes any cached information to disk.

If the database is in memory only, the Db::sync() method has no effect and will always succeed.

It is important to understand that flushing cached information to disk only minimizes the window
of opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either: use transactions and logging with automatic recovery;
use logging and application-specific recovery; or edit a copy of the database, and once all applications
using the database have successfully called Db::close(), atomically replace the original database with
the updated copy.

The Db::sync() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db::sync() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Page 144DB C++ API8/14/2009

Db::sync()

Class

Db

See Also

Database and Related Methods

Page 145DB C++ API8/14/2009

Db::sync()

Db::truncate()
#include <db_cxx.h>

int
Db::truncate(DbTxn *txnid, u_int32_t *countp, u_int32_t flags);

The Db::truncate() method empties the database, discarding all records it contains. The number of
records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the Db::associate() method, the
Db::truncate() method truncates the primary database and all secondary indices. A count of the
records discarded from the primary database is returned.

It is an error to call the Db::truncate() method on a database with open cursors.

The Db::truncate() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

countp

The countp parameter references memory into which the number of records discarded from the
database is copied.

flags

The flags parameter is currently unused, and must be set to 0.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Errors

The Db::truncate() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

Page 146DB C++ API8/14/2009

Db::truncate()

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods

Page 147DB C++ API8/14/2009

Db::truncate()

Db::upgrade()
#include <db_cxx.h>

int
Db::upgrade(const char *file, u_int32_t flags);

The Db::upgrade() method upgrades all of the databases included in the file file, if necessary. If no
upgrade is necessary, Db::upgrade() always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to be allocated
and no disk space is available, the database may be left corrupted. Backups should be made before
databases are upgraded. See Upgrading databases for more information.

Unlike all other database operations, Db::upgrade() may only be done on a system with the same
byte-order as the database.

The Db::upgrade()method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.

flags

The flags parameter must be set to 0 or the following value:

• DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley DB 3.1
release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-disk format of
duplicate data items changed. To correctly upgrade the format requires applications to specify
whether duplicate data items in the database are sorted or not. Specifying the DB_DUPSORT flag
informs Db::upgrade() that the duplicates are sorted; otherwise they are assumed to be unsorted.
Incorrectly specifying the value of this flag may lead to database corruption.

Further, because the Db::upgrade() method upgrades a physical file (including all the databases it
contains), it is not possible to use Db::upgrade() to upgrade files in which some of the databases it
includes have sorted duplicate data items, and some of the databases it includes have unsorted
duplicate data items. If the file does not have more than a single database, if the databases do not
support duplicate data items, or if all of the databases that support duplicate data items support
the same style of duplicates (either sorted or unsorted), Db::upgrade() will work correctly as long
as the DB_DUPSORT flag is correctly specified. Otherwise, the file cannot be upgraded using
Db::upgrade;() it must be upgraded manually by dumping and reloading the databases.

Page 148DB C++ API8/14/2009

Db::upgrade()

../../programmer_reference/am_upgrade.html

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may be
used as the path of the database environment home.

Db::upgrade() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db::upgrade() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_OLD_VERSION

The database cannot be upgraded by this version of the Berkeley DB software.

Class

Db

See Also

Database and Related Methods

Page 149DB C++ API8/14/2009

Db::upgrade()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Db::verify()
#include <db_cxx.h>

int
Db::verify(const char *file,
 const char *database, ostream *outfile, u_int32_t flags);

The Db::verify() method verifies the integrity of all databases in the file specified by the file
parameter, and optionally outputs the databases' key/data pairs to the file stream specified by the
outfile parameter.

The Db::verify() method does not perform any locking, even in Berkeley DB environments that
are configured with a locking subsystem. As such, it should only be used on files that are not being
modified by another thread of control.

The Db::verify() method may not be called after the Db::open() method is called.

The Db handle may not be accessed again after Db::verify() is called, regardless of its return.

The Db::verify() method will return DB_VERIFY_BAD if a database is corrupted. When the DB_SALVAGE
flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the file may not have
been successfully output. Unless otherwise specified, the Db::verify() method either returns a non-zero
error value or throws an exception that encapsulates a non-zero error value on failure, and returns 0
on success.

Parameters

database

The database parameter is the database in file on which the database checks for btree and duplicate
sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.

file

The file parameter is the physical file in which the databases to be verified are found.

flags

The flags parameter must be set to 0 or the following value:

• DB_SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the outfile
parameter. Key values are written for Btree, Hash and Queue databases, but not for Recno databases.

The output format is the same as that specified for the db_dump utility, and can be used as input
for the db_load utility.

Page 150DB C++ API8/14/2009

Db::verify()

Because the key/data pairs are output in page order as opposed to the sort order used by db_dump,
using Db::verify() to dump key/data pairs normally produces less than optimal loads for Btree
databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

• DB_AGGRESSIVE

Output all the key/data pairs in the file that can be found. By default, Db::verify() does not assume
corruption. For example, if a key/data pair on a page is marked as deleted, it is not then written to
the output file. When DB_AGGRESSIVE is specified, corruption is assumed, and any key/data pair
that can be found is written. In this case, key/data pairs that are corrupted or have been deleted
may appear in the output (even if the file being salvaged is in no way corrupt), and the output will
almost certainly require editing before being loaded into a database.

• DB_PRINTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing characters
(as defined by isprint(3)), use printing characters to represent them. This flag permits users to use
standard text editors and tools to modify the contents of databases or selectively remove data from
salvager output.

Note: different systems may have different notions about what characters are considered printing
characters, and databases dumped in this manner may be less portable to external systems.

• DB_NOORDERCHK

Skip the database checks for btree and duplicate sort order and for hashing.

The Db::verify() method normally verifies that btree keys and duplicate items are correctly sorted,
and hash keys are correctly hashed. If the file being verified contains multiple databases using
differing sorting or hashing algorithms, some of them must necessarily fail database verification
because only one sort order or hash function can be specified before Db::verify() is called. To verify
files with multiple databases having differing sorting orders or hashing functions, first perform
verification of the file as a whole by using the DB_NOORDERCHK flag, and then individually verify
the sort order and hashing function for each database in the file using the DB_ORDERCHKONLY flag.

• DB_ORDERCHKONLY

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating the database
in the physical file which is to be checked. This flag is only safe to use on databases that have already
successfully been verified using Db::verify() with the DB_NOORDERCHK flag set.

outfile

The outfile parameter is an optional file stream to which the databases' key/data pairs are written.

Page 151DB C++ API8/14/2009

Db::verify()

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may be
used as the path of the database environment home.

Db::verify() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db::verify() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class

Db

See Also

Database and Related Methods

Page 152DB C++ API8/14/2009

Db::verify()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Chapter 3. The Dbc Handle
A Dbc object is a handle for a cursor into a Berkeley DB database.

Dbc handles are not free-threaded. Cursor handles may be shared by multiple threads if access is
serialized by the application.

You create a Dbc using the Db::cursor() method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be opened
and closed within the context of that single transaction.

Once Dbc::close() has been called, the handle may not be accessed again, regardless of the method's
return.

Page 153DB C++ API8/14/2009

Database Cursors and Related Methods

DescriptionDatabase Cursors and Related Methods

Create a cursor handleDb::cursor()

Close a cursor handleDbc::close()

Compare two cursors for equality.Dbc::cmp()

Return count of duplicates for current keyDbc::count()

Delete current key/data pairDbc::del()

Duplicate the cursor handleDbc::dup()

Retrieve by cursorDbc::get()

Store by cursorDbc::put()

Set/get the cursor's cache priorityDbc::set_priority(), Dbc::get_priority()

Page 154DB C++ API8/14/2009

Database Cursors and Related Methods

Db::cursor()
#include <db_cxx.h>

int
Db::cursor(DbTxn *txnid, Dbc **cursorp, u_int32_t flags);

The Db::cursor() method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to the cursor
handle.

The Db::cursor() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp

The cursorp parameter references memory into which a pointer to the allocated cursor is copied.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor configured
with this flag attempts to continue on the same database page as the previous operation, falling
back to a search if a different page is required. This avoids searching if there is a high degree of
locality between cursor operations. This flag is currently only effective with the btree access method:
for other access methods it is ignored.

• DB_READ_COMMITTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the current
data item read by this cursor but permits data read by this cursor to be modified or deleted prior to
the commit of the transaction for this cursor.

• DB_READ_UNCOMMITTED

Configure a transactional cursor to have degree 1 isolation. Read operations performed by the cursor
may return modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED
flag was not specified when the underlying database was opened.

• DB_WRITECURSOR

Specify that the cursor will be used to update the database. The underlying database environment
must have been opened using the DB_INIT_CDB flag.

Page 155DB C++ API8/14/2009

Db::cursor()

• DB_TXN_SNAPSHOT

Configure a transactional cursor to operate with read-only snapshot isolation. For databases with
the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is opened,
without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if a transaction
is supplied in the txnid parameter.

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the context of a
transaction. The txnid parameter specifies the transaction context in which the cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT flag is
specified to the DbEnv::set_flags() or Db::open() methods. If cursor operations are to be
transaction-protected, the txnid parameter must be a transaction handle returned from
DbEnv::txn_begin(); otherwise, NULL.

Errors

The Db::cursor() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

Page 156DB C++ API8/14/2009

Db::cursor()

../../programmer_reference/transapp_read.html

See Also

Database Cursors and Related Methods

Page 157DB C++ API8/14/2009

Db::cursor()

Dbc::close()
#include <db_cxx.h>

int
Dbc::close(void);

The Dbc::close() method discards the cursor.

It is possible for the Dbc::close() method to return DB_LOCK_DEADLOCK, signaling that any enclosing
transaction should be aborted. If the application is already intending to abort the transaction, this
error should be ignored, and the application should proceed.

After Dbc::close() has been called, regardless of its return, the cursor handle may not be used again.

The Dbc::close() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Errors

The Dbc::close() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods

Page 158DB C++ API8/14/2009

Dbc::close()

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

Dbc::cmp()
#include <db_cxx.h>

int
Dbc::cmp(Dbc *other_cursor, int *result, u_int32_t flags);

The Dbc::cmp() method compares two cursors for equality. Two cursors are equal if and only if they
are positioned on the same item in the same database.

The Dbc::cmp() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

other_cursor

The other_cursor parameter references another cursor handle that will be used as the comparator.

result

If the call is successful and both cursors are positioned on the same item, result is set to zero. If the
call is successful but the cursors are not positioned on the same item, result is set to a non-zero value.
If the call is unsuccessful, the value of result should be ignored.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Dbc::cmp() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

EINVAL

• If either of the cursors are already closed.

• If the cursors have been opened against different databases.

• If either of the cursors have not been positioned.

• If the other_dbc parameter is NULL.

• If the result parameter is NULL.

Class

Dbc

Page 159DB C++ API8/14/2009

Dbc::cmp()

See Also

Database Cursors and Related Methods

Page 160DB C++ API8/14/2009

Dbc::cmp()

Dbc::count()
#include <db_cxx.h>

int
Dbc::count(db_recno_t *countp, u_int32_t flags);

The Dbc::count() method returns a count of the number of data items for the key to which the cursor
refers.

The Dbc::count() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

countp

The countp parameter references memory into which the count of the number of duplicate data items
is copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Dbc::count() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.

Class

Dbc

Page 161DB C++ API8/14/2009

Dbc::count()

See Also

Database Cursors and Related Methods

Page 162DB C++ API8/14/2009

Dbc::count()

Dbc::del()
#include <db_cxx.h>

int
Dbc::del(u_int32_t flags);

The Dbc::del() method deletes the key/data pair to which the cursor refers.

When called on a cursor opened on a database that has been made into a secondary index using the
Db::associate() method, the Db::del() method deletes the key/data pair from the primary database
and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions expecting the
cursor to refer to an existing key will fail.

The Dbc::del() method will return DB_KEYEMPTY if the element has already been deleted. The
Dbc::del() method either returns a non-zero error value or throws an exception that encapsulates a
non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the queue to
move to the first non-deleted item in the queue. Normally this is only done if the deleted item is
exactly at the head when deleted.

Errors

The Dbc::del() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

Page 163DB C++ API8/14/2009

Dbc::del()

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DbEnv::open().

Class

Dbc

See Also

Database Cursors and Related Methods

Page 164DB C++ API8/14/2009

Dbc::del()

Dbc::dup()
#include <db_cxx.h>

int
Dbc::dup(Dbc **cursorp, u_int32_t flags);

The Dbc::dup() method creates a new cursor that uses the same transaction and locker ID as the original
cursor. This is useful when an application is using locking and requires two or more cursors in the same
thread of control.

The Dbc::dup() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp

The Dbc::dup() method returns the newly created cursor in cursorp.

flags

The flags parameter must be set to 0 or the following flag:

• DB_POSITION

The newly created cursor is initialized to refer to the same position in the database as the original
cursor (if any) and hold the same locks (if any). If the DB_POSITION flag is not specified, or the
original cursor does not hold a database position and locks, the created cursor is uninitialized and
will behave like a cursor newly created using the Db::cursor() method.

Errors

The Dbc::dup() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

Page 165DB C++ API8/14/2009

Dbc::dup()

EINVAL

An invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods

Page 166DB C++ API8/14/2009

Dbc::dup()

Dbc::get()
#include <db_cxx.h>

int
Dbc::get(Dbt *key, Dbt *data, u_int32_t flags);

int
Dbc::pget(Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Dbc::get() method retrieves key/data pairs from the database. The address and length of the key
are returned in the object to which key refers (except for the case of the DB_SET flag, in which the
key object is unchanged), and the address and length of the data are returned in the object to which
data refers.

When called on a cursor opened on a database that has been made into a secondary index using the
Db::associate() method, the Dbc::get() and Dbc::pget() methods return the key from the secondary
index and the data item from the primary database. In addition, the Dbc::pget() method returns the
key from the primary database. In databases that are not secondary indices, the Dbc::pget() method
will always fail.

Modifications to the database during a sequential scan will be reflected in the scan; that is, records
inserted behind a cursor will not be returned while records inserted in front of a cursor will be returned.

In Queue and Recno databases, missing entries (that is, entries that were never explicitly created or
that were created and then deleted) will be skipped during a sequential scan.

Unless otherwise specified, the Dbc::get() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

If Dbc::get() fails for any reason, the state of the cursor will be unchanged.

Parameters

data

The data Dbt operated on.

flags

The flags parameter must be set to one of the following values:

• DB_CURRENT

Return the key/data pair to which the cursor refers.

The Dbc::get() method will return DB_KEYEMPTY if DB_CURRENT is set and the cursor key/data pair
was deleted.

• DB_FIRST

Page 167DB C++ API8/14/2009

Dbc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

The cursor is set to refer to the first key/data pair of the database, and that pair is returned. If the
first key has duplicate values, the first data item in the set of duplicates is returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_FIRST flag will ignore any
keys that exist but were never explicitly created by the application, or were created and later
deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_FIRST is set and the database is empty.

• DB_GET_BOTH

Move the cursor to the specified key/data pair of the database. The cursor is positioned to a key/data
pair if both the key and data match the values provided on the key and data parameters.

In all other ways, this flag is identical to the DB_SET flag.

When used with Dbc::pget() on a secondary index handle, both the secondary and primary keys must
be matched by the secondary and primary key item in the database. It is an error to use the
DB_GET_BOTH flag with the Dbc::get() version of this method and a cursor that has been opened
on a secondary index handle.

• DB_GET_BOTH_RANGE

Move the cursor to the specified key/data pair of the database. The key parameter must be an exact
match with a key in the database. The data item retrieved is the item in a duplicate set that is the
smallest value which is greater than or equal to the value provided by the data parameter (as
determined by the comparison function). If this flag is specified on a database configured without
sorted duplicate support, the behavior is identical to the DB_GET_BOTH flag. Returns the datum
associated with the given key/data pair.

In all other ways, this flag is identical to the DB_GET_BOTH flag.

• DB_GET_RECNO

Return the record number associated with the cursor. The record number will be returned in data,
as described in Dbt. The key parameter is ignored.

For DB_GET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

When called on a cursor opened on a database that has been made into a secondary index, the
Dbc::get() and Dbc::pget() methods return the record number of the primary database in data. In
addition, the Dbc::pget() method returns the record number of the secondary index in pkey. If
either underlying database is not of type Btree or is not created with the DB_RECNUM flag, the
out-of-band record number of 0 is returned.

• DB_JOIN_ITEM

Do not use the data value found in all of the cursors as a lookup key for the primary database, but
simply return it in the key parameter instead. The data parameter is left unchanged.

Page 168DB C++ API8/14/2009

Dbc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

For DB_JOIN_ITEM to be specified, the underlying cursor must have been returned from the Db::join()
method.

• DB_LAST

The cursor is set to refer to the last key/data pair of the database, and that pair is returned. If the
last key has duplicate values, the last data item in the set of duplicates is returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_LAST flag will ignore any
keys that exist but were never explicitly created by the application, or were created and later
deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_LAST is set and the database is empty.

• DB_NEXT

If the cursor is not yet initialized, DB_NEXT is identical to DB_FIRST. Otherwise, the cursor is moved
to the next key/data pair of the database, and that pair is returned. In the presence of duplicate
key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc::get() using the DB_NEXT flag will skip any keys
that exist but were never explicitly created by the application, or those that were created and later
deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_NEXT is set and the cursor is already on the
last record in the database.

• DB_NEXT_DUP

If the next key/data pair of the database is a duplicate data record for the current key/data pair,
the cursor is moved to the next key/data pair of the database, and that pair is returned.

The Dbc::get() method will return DB_NOTFOUND if DB_NEXT_DUP is set and the next key/data pair
of the database is not a duplicate data record for the current key/data pair.

• DB_NEXT_NODUP

If the cursor is not yet initialized, DB_NEXT_NODUP is identical to DB_FIRST. Otherwise, the cursor
is moved to the next non-duplicate key of the database, and that key/data pair is returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_NEXT_NODUP flag will ignore
any keys that exist but were never explicitly created by the application, or those that were created
and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_NEXT_NODUP is set and no non-duplicate
key/data pairs exist after the cursor position in the database.

• DB_PREV

Page 169DB C++ API8/14/2009

Dbc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

If the cursor is not yet initialized, DB_PREV is identical to DB_LAST. Otherwise, the cursor is moved
to the previous key/data pair of the database, and that pair is returned. In the presence of duplicate
key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc::get() using the DB_PREV flag will skip any keys
that exist but were never explicitly created by the application, or those that were created and later
deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_PREV is set and the cursor is already on the
first record in the database.

• DB_PREV_DUP

If the previous key/data pair of the database is a duplicate data record for the current key/data
pair, the cursor is moved to the previous key/data pair of the database, and that pair is returned.

The Dbc::get() method will return DB_NOTFOUND if DB_PREV_DUP is set and the previous key/data
pair of the database is not a duplicate data record for the current key/data pair.

• DB_PREV_NODUP

If the cursor is not yet initialized, DB_PREV_NODUP is identical to DB_LAST. Otherwise, the cursor
is moved to the previous non-duplicate key of the database, and that key/data pair is returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_PREV_NODUP flag will ignore
any keys that exist but were never explicitly created by the application, or those that were created
and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_PREV_NODUP is set and no non-duplicate
key/data pairs exist before the cursor position in the database.

• DB_SET

Move the cursor to the specified key/data pair of the database, and return the datum associated
with the given key.

The Dbc::get() method will return DB_NOTFOUND if DB_SET is set and no matching keys are found.
The Dbc::get() method will return DB_KEYEMPTY if DB_SET is set and the database is a Queue or
Recno database, and the specified key exists, but was never explicitly created by the application or
was later deleted. In the presence of duplicate key values, Dbc::get() will return the first data item
for the given key.

• DB_SET_RANGE

Move the cursor to the specified key/data pair of the database. In the case of the Btree access
method, the key is returned as well as the data item and the returned key/data pair is the smallest
key greater than or equal to the specified key (as determined by the Btree comparison function),
permitting partial key matches and range searches.

In all other ways the behavior of this flag is the same as the DB_SET flag.

Page 170DB C++ API8/14/2009

Dbc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

• DB_SET_RECNO

Move the cursor to the specific numbered record of the database, and return the associated key/data
pair. The data field of the specified key must be a pointer to a memory location from which a
db_recno_t may be read, as described in Dbt. This memory location will be read to determine the
record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

• DB_IGNORE_LEASE

This flag is relevant only when using a replicated environment.

Return the data item irrespective of the state of master leases. The item will be returned under all
conditions: if master leases are not configured, if the request is made to a client, if the request is
made to a master with a valid lease, or if the request is made to a master without a valid lease.

• DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not repeatable).

• DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when
the underlying database was opened.

• DB_MULTIPLE

Return multiple data items in the data parameter.

In the case of Btree or Hash databases, duplicate data items for the current key, starting at the
current cursor position, are entered into the buffer. Subsequent calls with both the DB_NEXT_DUP
and DB_MULTIPLE flags specified will return additional duplicate data items associated with the
current key or DB_NOTFOUND if there are no additional duplicate data items to return. Subsequent
calls with both the DB_NEXT and DB_MULTIPLE flags specified will return additional duplicate data
items associated with the current key or if there are no additional duplicate data items will return
the next key and its data items or DB_NOTFOUND if there are no additional keys in the database.

In the case of Queue or Recno databases, data items starting at the current cursor position are
entered into the buffer. The record number of the first record will be returned in the key parameter.
The record number of each subsequent returned record must be calculated from this value. Subsequent
calls with the DB_MULTIPLE flag specified will return additional data items or DB_NOTFOUND if there
are no additional data items to return.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is

Page 171DB C++ API8/14/2009

Dbc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The multiple data items can be iterated over using the DbMultipleDataIterator class.

The DB_MULTIPLE flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE, and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases made
into secondary indices using the Db::associate() method.

• DB_MULTIPLE_KEY

Return multiple key and data pairs in the data parameter.

Key and data pairs, starting at the current cursor position, are entered into the buffer. Subsequent
calls with both the DB_NEXT and DB_MULTIPLE_KEY flags specified will return additional key and
data pairs or DB_NOTFOUND if there are no additional key and data items to return.

In the case of Btree or Hash databases, the multiple key and data pairs can be iterated over using
the DbMultipleKeyDataIterator class.

In the case of Queue or Recno databases, the multiple record number and data pairs can be iterated
over using the DbMultipleRecnoDataIterator class.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is
insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The DB_MULTIPLE_KEY flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE, and
DB_SET_RECNO options. The DB_MULTIPLE_KEY flag may not be used when accessing databases made
into secondary indices using the Db::associate() method.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

key

The key Dbt operated on.

Page 172DB C++ API8/14/2009

Dbc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

pkey

The secondary index key Dbt operated on.

Errors

The Dbc::get() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.

DbMemoryException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

Page 173DB C++ API8/14/2009

Dbc::get()

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If the DB_CURRENT, DB_NEXT_DUP or DB_PREV_DUP flags were specified and the cursor has not been
initialized; the Dbc::pget() method was called with a cursor that does not refer to a secondary index;
or if an invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods

Page 174DB C++ API8/14/2009

Dbc::get()

Dbc::get_priority()
#include <db_cxx.h>

int
Dbc::get_priority(DB_CACHE_PRIORITY *priorityp);

The Dbc::get_priority() method returns the cache priority for pages referenced by the Dbc handle.

The Dbc::get_priority() method may be called at any time during the life of the application.

The Dbc::get_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Dbc::get_priority() method returns a reference to the cache priority for pages referenced by
the Dbc handle in priorityp.

Class

Dbc

See Also

Database Cursors and Related Methods

Page 175DB C++ API8/14/2009

Dbc::get_priority()

Dbc::put()
#include <db_cxx.h>

int
Dbc::put(Dbt *key, Dbt *data, u_int32_t flags);

The Dbc::put() method stores key/data pairs into the database.

Unless otherwise specified, the Dbc::put() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

If Dbc::put() fails for any reason, the state of the cursor will be unchanged. If Dbc::put() succeeds
and an item is inserted into the database, the cursor is always positioned to refer to the newly inserted
item.

Parameters

data

The data Dbt operated on.

flags

The flags parameter must be set to one of the following values:

• DB_AFTER

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately after the current cursor
position. It is an error to specify DB_AFTER if the underlying Btree or Hash database is not configured
for unsorted duplicate data items. The key parameter is ignored.

In the case of the Recno access method, it is an error to specify DB_AFTER if the underlying Recno
database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag was specified, a
new key is created, all records after the inserted item are automatically renumbered, and the key
of the new record is returned in the structure to which the key parameter refers. The initial value
of the key parameter is ignored. See Db::open() for more information.

The DB_AFTER flag may not be specified to the Queue access method.

The Dbc::put() method will return DB_NOTFOUND if the current cursor record has already been
deleted and the underlying access method is Hash.

• DB_BEFORE

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately before the current
cursor position. It is an error to specify DB_AFTER if the underlying Btree or Hash database is not
configured for unsorted duplicate data items. The key parameter is ignored.

Page 176DB C++ API8/14/2009

Dbc::put()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

In the case of the Recno access method, it is an error to specify DB_BEFORE if the underlying Recno
database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag was specified, a
new key is created, the current record and all records after it are automatically renumbered, and
the key of the new record is returned in the structure to which the key parameter refers. The initial
value of the key parameter is ignored. See Db::open() for more information.

The DB_BEFORE flag may not be specified to the Queue access method.

The Dbc::put() method will return DB_NOTFOUND if the current cursor record has already been
deleted and the underlying access method is Hash.

• DB_CURRENT

Overwrite the data of the key/data pair to which the cursor refers with the specified data item. The
key parameter is ignored.

The Dbc::put() method will return DB_NOTFOUND if the current cursor record has already been
deleted.

• DB_KEYFIRST

Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in the database
and a duplicate sort function has been specified, the inserted data item is added in its sorted location.
If the key already exists in the database and no duplicate sort function has been specified, the
inserted data item is added as the first of the data items for that key.

• DB_KEYLAST

Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in the database
and a duplicate sort function has been specified, the inserted data item is added in its sorted location.
If the key already exists in the database, and no duplicate sort function has been specified, the
inserted data item is added as the last of the data items for that key.

• DB_NODUPDATA

In the case of the Btree and Hash access methods, insert the specified key/data pair into the database,
unless a key/data pair comparing equally to it already exists in the database. If a matching key/data
pair already exists in the database, DB_KEYEXIST is returned. The DB_NODUPDATA flag may only be
specified if the underlying database has been configured to support sorted duplicate data items.

The DB_NODUPDATA flag may not be specified to the Queue or Recno access methods.

key

The key Dbt operated on.

Page 177DB C++ API8/14/2009

Dbc::put()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Errors

The Dbc::put() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_KEYEXIST

An attempt was made to insert a duplicate key into a database not configured for duplicate data.

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKOUT is returned.

Page 178DB C++ API8/14/2009

Dbc::put()

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the DB_AFTER, DB_BEFORE or DB_CURRENT flags were specified and the cursor has not been initialized;
the DB_AFTER or DB_BEFORE flags were specified and a duplicate sort function has been specified; the
DB_CURRENT flag was specified, a duplicate sort function has been specified, and the data item of the
referenced key/data pair does not compare equally to the data parameter; the DB_AFTER or DB_BEFORE
flags were specified, and the underlying access method is Queue; an attempt was made to add a record
to a fixed-length database that was too large to fit; an attempt was made to add a record to a secondary
index; or if an invalid flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DbEnv::open().

Class

Dbc

See Also

Database Cursors and Related Methods

Page 179DB C++ API8/14/2009

Dbc::put()

Dbc::set_priority()
#include <db_cxx.h>

int
Dbc::set_priority(DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the Dbc handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the buffer pool. The bias is temporary, and pages will eventually be discarded
if they are not referenced again. The Dbc::set_priority() method is only advisory, and does not
guarantee pages will be treated in a specific way.

The Dbc::set_priority() method may be called at any time during the life of the application.

The Dbc::set_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be set to one of the following values:

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Class

Dbc

Page 180DB C++ API8/14/2009

Dbc::set_priority()

See Also

Database Cursors and Related Methods

Page 181DB C++ API8/14/2009

Dbc::set_priority()

Chapter 4. The Dbt Handle
#include <db_cxx.h>

class Dbt {
public:
 Dbt(void *data, size_t size);
 Dbt();
 Dbt(const Dbt &);
 Dbt &operator = (const Dbt &);
 ~Dbt();

 void *get_data() const;
 void set_data(void *);

 u_int32_t get_size() const;
 void set_size(u_int32_t);

 u_int32_t get_ulen() const;
 void set_ulen(u_int32_t);

 u_int32_t get_dlen() const;
 void set_dlen(u_int32_t);

 u_int32_t get_doff() const;
 void set_doff(u_int32_t);

 u_int32_t get_flags() const;
 void set_flags(u_int32_t);

 DBT *Dbt::get_DBT();
 const DBT *Dbt::get_const_DBT() const;
 static Dbt *Dbt::get_Dbt(DBT *dbt);
 static const Dbt *Dbt::get_const_Dbt(const DBT *dbt);
};

The Dbt class is used to encode key and data items in a Berkeley DB database.

Storage and retrieval for the Db access methods are based on key/data pairs. Both key and data items
are represented by Dbt objects. Key and data byte strings may refer to strings of zero length up to
strings of essentially unlimited length. See Database limits for more information.

In the case when the flags structure element is set to 0, when the application is providing Berkeley DB
a key or data item to store into the database, Berkeley DB expects the data object to point to a byte
string of size bytes. When returning a key/data item to the application, Berkeley DB will store into
the data object a pointer to a byte string of size bytes, and the memory to which the pointer refers
will be allocated and managed by Berkeley DB. Note that using the default flags for returned Dbts is
only compatible with single threaded usage of Berkeley DB.

Page 182DB C++ API8/14/2009

../../programmer_reference/am_misc_dbsizes.html

Access to Dbt objects is not re-entrant. In particular, if multiple threads simultaneously access the
same Dbt object using Db API calls, the results are undefined, and may result in a crash. One easy way
to avoid problems is to use Dbt objects that are constructed as stack variables.

Each Dbt object has an associated DBT struct, which is used by the underlying implementation of Berkeley
DB and its C-language API. The Dbt::get_DBT() method returns a pointer to this struct. Given a const
Dbt object, Dbt::get_const_DBT() returns a const pointer to the same struct.

Given a DBT struct, the Dbt::get_Dbt() method returns the corresponding Dbt object, if there is one.
If the DBT object was not associated with a Dbt (that is, it was not returned from a call to
Dbt::get_DBT()), then the result of Dbt::get_Dbt() is undefined. Given a const DBT struct,
Dbt::get_const_Dbt() returns the associated const Dbt object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language software.
It should not be necessary to use these calls in a purely C++ application.

• Dbt::set_data(void *data)

Set the data array.

The data parameter is an array of bytes to be used to set the content for the Dbt.

• Dbt::get_data()

Return the data array.

• Dbt::set_size(u_int32_t size)

Sets the byte size of the data array, in bytes.

• Dbt::get_size()

Return the data array size.

• Dbt::set_ulen(u_int32_t value)

Set the byte size of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to 0 and checking
the return value in the size field. See the DB_DBT_USERMEM flag for more information.

• Dbt::get_ulen()

Return the length in bytes of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to 0 and checking
the return value in the size field. See the DB_DBT_USERMEM flag for more information.

• Dbt::set_dlen(u_int32_t dlen)

Page 183DB C++ API8/14/2009

Set the length of the partial record being read or written by the application, in bytes. See the
DB_DBT_PARTIAL flag for more information.

• Dbt::get_dlen()

Return the length of the partial record, in bytes.

• Dbt::set_doff(u_int32_t value)

Sets the offset of the partial record being read or written by the application, in bytes. See the
DB_DBT_PARTIAL flag for more information.

• Dbt::get_doff()

Return the offset of the partial record, in bytes.

• Dbt::set_flags(u_int32_t flags)

Set the object flag value.

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_DBT_MALLOC

When this flag is set, Berkeley DB will allocate memory for the returned key or data item (using
malloc(3), or the user-specified malloc function), and return a pointer to it in the data field of
the key or data DBT structure. Because any allocated memory becomes the responsibility of the
calling application, the caller must determine whether memory was allocated using the returned
value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and DB_DBT_USERMEM.

• DB_DBT_REALLOC

When this flag is set Berkeley DB will allocate memory for the returned key or data item (using
realloc(3), or the user-specified realloc function), and return a pointer to it in the data field of
the key or data DBT structure. Because any allocated memory becomes the responsibility of the
calling application, the caller must determine whether memory was allocated using the returned
value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and DB_DBT_USERMEM.

• DB_DBT_USERMEM

The data field of the key or data structure must refer to memory that is at least ulen bytes in
length. If the length of the requested item is less than or equal to that number of bytes, the item
is copied into the memory to which the data field refers. Otherwise, the size field is set to the
length needed for the requested item, and the error DB_BUFFER_SMALL is returned.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and DB_DBT_USERMEM.

Page 184DB C++ API8/14/2009

If DB_DBT_MALLOC or DB_DBT_REALLOC is specified, Berkeley DB allocates a properly sized byte array
to contain the data. This can be convenient if you know little about the nature of the data, specifically
the size of data in the database. However, if your application makes repeated calls to retrieve keys
or data, you may notice increased garbage collection due to this allocation. If you know the maximum
size of data you are retrieving, you might decrease the memory burden and speed your application
by allocating your own byte array and using DB_DBT_USERMEM. Even if you don't know the maximum
size, you can use this option and reallocate your array whenever your retrieval API call returns an
DB_BUFFER_SMALL error or throws an exception encapsulating an DB_BUFFER_SMALL.

• DB_DBT_PARTIAL

Do partial retrieval or storage of an item. If the calling application is doing a get, the dlen bytes
starting doff bytes from the beginning of the retrieved data record are returned as if they comprised
the entire record. If any or all of the specified bytes do not exist in the record, the get is successful,
and any existing bytes are returned.

For example, if the data portion of a retrieved record was 100 bytes, and a partial retrieval was
done using a DBT having a dlen field of 20 and a doff field of 85, the get call would succeed, the
data field would refer to the last 15 bytes of the record, and the size field would be set to 15.

If the calling application is doing a put, the dlen bytes starting doff bytes from the beginning of
the specified key's data record are replaced by the data specified by the data and size structure
elements. If dlen is smaller than size the record will grow; if dlen is larger than size the record
will shrink. If the specified bytes do not exist, the record will be extended using nul bytes as
necessary, and the put call will succeed.

It is an error to attempt a partial put using the Db::put() method in a database that supports
duplicate records. Partial puts in databases supporting duplicate records must be done using a
Dbc::put() method.

It is an error to attempt a partial put with differing dlen and size values in Queue or Recno
databases with fixed-length records.

For example, if the data portion of a retrieved record was 100 bytes, and a partial put was done
using a DBT having a dlen field of 20, a doff field of 85, and a size field of 30, the resulting record
would be 115 bytes in length, where the last 30 bytes would be those specified by the put call.

• DB_DBT_APPMALLOC

After an application-supplied callback routine passed to either Db::associate() or
Db::set_append_recno() is executed, the data field of a DBT may refer to memory allocated with
malloc(3) or realloc(3). In that case, the callback sets the DB_DBT_APPMALLOC flag in the DBT so
that Berkeley DB will call free(3) to deallocate the memory when it is no longer required.

• DB_DBT_MULTIPLE

Set in a secondary key creation callback routine passed to Db::associate() to indicate that multiple
secondary keys should be associated with the given primary key/data pair. If set, the size field
indicates the number of secondary keys and the data field refers to an array of that number of
DBT structures.

Page 185DB C++ API8/14/2009

The DB_DBT_APPMALLOC flag may be set on any of the DBT structures to indicate that their data
field needs to be freed.

Page 186DB C++ API8/14/2009

DBT and Bulk Operations

DescriptionDBT and Bulk Operations

Base class for bulk get retrievalDbMultipleIterator

Bulk retrieval iterator for data itemsDbMultipleDataIterator

Bulk retrieval iterator for key/data pairsDbMultipleKeyDataIterator

Bulk retrieval iterator for record number / data
item pairs

DbMultipleRecnoDataIterator

Base class for bulk buffer buildingDbMultipleBuilder

Bulk buffer builder for data itemsDbMultipleDataBuilder

Bulk buffer builder for key/data pairsDbMultipleKeyDataBuilder

Bulk buffer builder for record number / data pairsDbMultipleRecnoDataBuilder

Page 187DB C++ API8/14/2009

DBT and Bulk Operations

DbMultipleIterator
#include <db_cxx.h>

class DbMultipleIterator
{ };

The DbMultipleIterator class is a shared package-private base class for the three types of bulk-return
Iterator; it should never be instantiated directly, but it handles the functionality shared by its subclasses.

Class

DbMultipleIterator

See Also

DBT and Bulk Operations

Page 188DB C++ API8/14/2009

DbMultipleIterator

DbMultipleDataIterator
#include <db_cxx.h>

class DbMultipleDataIterator
{
public:
 DbMultipleDataIterator(const Dbt &dbt);

 bool next(Dbt &data);
};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() or Dbc::get()
methods, the data Dbt returned by those interfaces will refer to a buffer that is filled with data. Access
to that data is through the classes.

The DbMultipleDataIterator class is used to iterate through data returned using the DB_MULTIPLE flag
from a database belonging to any access method.

The constructor takes the The Dbt Handle returned by the call to Db::get() or Dbc::get() that used
the DB_MULTIPLE flag.

All instances of the bulk retrieval classes may be used only once, and to traverse the bulk retrieval
buffer in the forward direction only. However, they are nondestructive, so multiple iterators can
be instantiated and used on the same returned data Dbt.

☞

Parameters are:

• dbt

The dbt parameter is a data The Dbt Handle returned by the call to Db::get() or Dbc::get() that
used the DB_MULTIPLE flag.

DbMultipleDataIterator.next()

The DbMultipleDataIterator.next() method returns the next data item in the original bulk retrieval
buffer.

The DbMultipleDataIterator.next() method method returns false if no more data are available, and
true otherwise.

Parameters are:

• data

The data parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

Class

DbMultipleIterator

Page 189DB C++ API8/14/2009

DbMultipleDataIterator

See Also

DBT and Bulk Operations

Page 190DB C++ API8/14/2009

DbMultipleDataIterator

DbMultipleKeyDataIterator
#include <db_cxx.h>

class DbMultipleKeyDataIterator
{
public:
 DbMultipleKeyDataIterator(const Dbt &dbt);

 bool next(Dbt &key, Dbt &data);
};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() or Dbc::get()
methods, the data Dbt returned by those interfaces will refer to a buffer that is filled with data. Access
to that data is through these classes.

The DbMultipleDataIterator class is used to iterate through data returned using the DB_MULTIPLE_KEY
flag from a database belonging to Btree or Hash access methods.

The constructor takes the The Dbt Handle returned by the call to Db::get() or Dbc::get() that used
the DB_MULTIPLE_KEY flag.

All instances of the bulk retrieval classes may be used only once, and to traverse the bulk retrieval
buffer in the forward direction only. However, they are nondestructive, so multiple iterators can
be instantiated and used on the same returned data Dbt.

☞

Parameters are:

• dbt

The dbt parameter is a data The Dbt Handle returned by the call to Db::get() or Dbc::get() that
used the DB_MULTIPLE_KEY flag.

DbMultipleKeyDataIterator.next()

The DbMultipleKeyDataIterator.next() method returns the next data item in the original bulk retrieval
buffer.

The DbMultipleKeyDataIterator.next() method method returns false if no more data are available,
and true otherwise.

Parameters are:

• key

The key parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

• data

The data parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

Page 191DB C++ API8/14/2009

DbMultipleKeyDataIterator

Class

DbMultipleIterator

See Also

DBT and Bulk Operations

Page 192DB C++ API8/14/2009

DbMultipleKeyDataIterator

DbMultipleRecnoDataIterator
#include <db_cxx.h>

class DbMultipleRecnoDataIterator
{
public:
 DbMultipleRecnoDataIterator(const Dbt &dbt);

 bool next(db_recno_t &key, Dbt &data);
};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() or Dbc::get()
methods, the data Dbt returned by those interfaces will refer to a buffer that is filled with data. Access
to that data is through these classes.

The DbMultipleDataIterator class is used to iterate through data returned using the DB_MULTIPLE_KEY
flag from a database belonging to Queue or Recno access methods.

The constructor takes the The Dbt Handle returned by the call to Db::get() or Dbc::get() that used
the DB_MULTIPLE_KEY flag.

All instances of the bulk retrieval classes may be used only once, and to traverse the bulk retrieval
buffer in the forward direction only. However, they are nondestructive, so multiple iterators can
be instantiated and used on the same returned data Dbt.

☞

Parameters are:

• dbt

The dbt parameter is a data The Dbt Handle returned by the call to Db::get() or Dbc::get() that
used the DB_MULTIPLE_KEY flag.

DbMultipleRecnoDataIterator.next()

The DbMultipleRecnoDataIterator.next() method returns the next data item in the original bulk
retrieval buffer.

The DbMultipleRecnoDataIterator.next() method method returns false if no more data are available,
and true otherwise.

Parameters are:

• key

The key parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

• data

The data parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

Page 193DB C++ API8/14/2009

DbMultipleRecnoDataIterator

Class

DbMultipleIterator

See Also

DBT and Bulk Operations

Page 194DB C++ API8/14/2009

DbMultipleRecnoDataIterator

DbMultipleBuilder
#include <db_cxx.h>

class DbMultipleBuilder
{ };

The DbMultipleBuilder class is a shared package-private base class for the three types of bulk buffer
builders; it should never be instantiated directly, but it handles the functionality shared by its subclasses.

Class

Dbt

See Also

DBT and Bulk Operations

Page 195DB C++ API8/14/2009

DbMultipleBuilder

DbMultipleDataBuilder
#include <db_cxx.h>

class DbMultipleDataBuilder
{
public:
 DbMultipleDataBuilder(Dbt &dbt);

 bool append(void *dbuf, size_t dlen);
 bool reserve(void *&ddest, size_t dlen);
};

This class builds a bulk buffer for use when the DB_MULTIPLE flag is specified to either the Db::put()
or Db::del() methods. The buffer in the Dbt passed to the constructor is filled by calls to
DbMultipleDataBuilder.append() or DbMultipleDataBuilder.reserve().

The constructor takes a The Dbt Handle that must be configured to contain a buffer managed by the
application, with the ulen field set to the size of the buffer.

All instances of the bulk retrieval classes may be used only once, and to build the bulk buffer in
the forward direction only.☞

Parameters are:

• dbt

The dbt parameter is a The Dbt Handle that must already be configured to contain a buffer managed
by the application, with the ulen field set to the size of the buffer, which must be a multiple of 4.

DbMultipleDataBuilder.append()

The DbMultipleDataBuilder.append() method copies a data item to the end of the buffer.

The DbMultipleDataBuilder.append() method returns false if the data does not fit in the buffer and
true otherwise.

Parameters are:

• dbuf

A pointer to the data to be copied into the bulk buffer.

• dlen

The number of bytes to be copied.

Page 196DB C++ API8/14/2009

DbMultipleDataBuilder

DbMultipleDataBuilder.reserve()

The DbMultipleDataBuilder.reserve() method reserves space for the next data item in the bulk buffer.
Unlike the append(), no data is actually copied into the bulk buffer by reserve(): copying the data is
the responsibility of the application.

The DbMultipleDataBuilder.reserve() method returns false if the data does not fit in the buffer and
true otherwise.

Parameters are:

• ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough space is
available.

• dlen

The number of bytes to reserve.

Class

Dbt

See Also

DBT and Bulk Operations

Page 197DB C++ API8/14/2009

DbMultipleDataBuilder

DbMultipleKeyDataBuilder
#include <db_cxx.h>

class DbMultipleKeyDataBuilder
{
public:
 DbMultipleKeyDataBuilder(Dbt &dbt);

 bool append(void *kbuf, size_t klen, void *dbuf, size_t dlen);
 bool reserve(void *&kdest, size_t klen, void *&ddest, size_t dlen);
};

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to either the Db::put()
or Db::del() methods with the btree or hash access methods. The buffer in the Dbt passed to the
constructor is filled by calls to DbMultipleKeyDataBuilder.append() or
DbMultipleKeyDataBuilder.reserve().

The constructor takes a The Dbt Handle that must be configured to contain a buffer managed by the
application, with the ulen field set to the size of the buffer.

All instances of the bulk retrieval classes may be used only once, and to build the bulk buffer in
the forward direction only.☞

Parameters are:

• dbt

The dbt parameter is a The Dbt Handle that must already be configured to contain a buffer managed
by the application, with the ulen field set to the size of the buffer, which must be a multiple of 4.

DbMultipleKeyDataBuilder.append()

The DbMultipleKeyDataBuilder.append() method copies a key/data pair to the end of the buffer.

The DbMultipleKeyDataBuilder.append() method returns false if the key/data pair does not fit in the
buffer and true otherwise.

Parameters are:

• kbuf

A pointer to the key to be copied into the bulk buffer.

• klen

The number of bytes of the key to be copied.

• dbuf

A pointer to the data item to be copied into the bulk buffer.

Page 198DB C++ API8/14/2009

DbMultipleKeyDataBuilder

• dlen

The number of bytes of the data item to be copied.

DbMultipleKeyDataBuilder.reserve()

The DbMultipleKeyDataBuilder.reserve() method reserves space for the next key/data pair in the
bulk buffer. Unlike the append(), no data is actually copied into the bulk buffer by reserve(): copying
the data is the responsibility of the application.

The DbMultipleKeyDataBuilder.reserve() method returns false if the data does not fit in the buffer
and true otherwise.

Parameters are:

• kdest

Set to a pointer to the position in the bulk buffer reserved for the key, if enough space is available.

• klen

The number of bytes to reserve for the key.

• ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough space is
available.

• dlen

The number of bytes to reserve for the data item.

Class

DbMultipleBuilder

See Also

DBT and Bulk Operations

Page 199DB C++ API8/14/2009

DbMultipleKeyDataBuilder

DbMultipleRecnoDataBuilder
#include <db_cxx.h>

class DbMultipleRecnoDataBuilder
{
public:
 DbMultipleRecnoDataBuilder(Dbt &dbt);

 bool append(db_recno_t recno, void *dbuf, size_t dlen);
 bool reserve(db_recno_t recno, void *&ddest, size_t dlen);
};

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to either the Db::put()
or Db::del() methods with the recno or queue access methods, or for the key when the DB_MULTIPLE
flag is used. The buffer in the Dbt passed to the constructor is filled by calls to
DbMultipleRecnoDataBuilder.append() or DbMultipleRecnoDataBuilder.reserve().

The constructor takes a The Dbt Handle that must be configured to contain a buffer managed by the
application, with the ulen field set to the size of the buffer.

All instances of the bulk retrieval classes may be used only once, and to build the bulk buffer in
the forward direction only.☞

Parameters are:

• dbt

The dbt parameter is a The Dbt Handle that must already be configured to contain a buffer managed
by the application, with the ulen field set to the size of the buffer, which must be a multiple of 4.

bool append(db_recno_t recno, void *dbuf, size_t dlen);

DbMultipleRecnoDataBuilder.append()

The DbMultipleRecnoDataBuilder.append() method copies a record number / data pair to the end of
the buffer.

The DbMultipleRecnoDataBuilder.append() method returns false if the record number / data pair
does not fit in the buffer and true otherwise.

Parameters are:

• recno

The record number to append.

• dbuf

A pointer to the data item to be copied into the bulk buffer.

Page 200DB C++ API8/14/2009

DbMultipleRecnoDataBuilder

• dlen

The number of bytes of the data item to be copied.

DbMultipleRecnoDataBuilder.reserve()

The DbMultipleRecnoDataBuilder.reserve() method reserves space for the next record number / data
pair in the bulk buffer. The record number is appended, but unlike the append(), the data is not copied
into the bulk buffer by reserve(): copying the data is the responsibility of the application.

The DbMultipleRecnoDataBuilder.reserve() method returns false if the record does not fit in the
buffer and true otherwise.

Parameters are:

• recno

The record number to append.

• ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough space is
available.

• dlen

The number of bytes to reserve for the data item.

Class

DbMultipleBuilder

See Also

DBT and Bulk Operations

Page 201DB C++ API8/14/2009

DbMultipleRecnoDataBuilder

Chapter 5. The DbEnv Handle
The DbEnv object is the handle for a Berkeley DB environment — a collection including support for some
or all of caching, locking, logging and transaction subsystems, as well as databases and log files. Methods
of the DbEnv handle are used to configure the environment as well as to operate on subsystems and
databases in the environment.

DbEnv handles are opened using the DbEnv::open() method.

When you are done using your environment, close it using the DbEnv::close() method. Before closing
your environment, make sure all open database handles are closed first. See the Db::close() method
for more information.

Page 202DB C++ API8/14/2009

Database Environments and Related Methods

DescriptionDatabase Environment Operations

Return the Db's underlying DbEnv handleDb::get_env()

Close an environmentDbEnv::close()

Create an environment handleDbEnv

Remove a databaseDbEnv::dbremove()

Rename a databaseDbEnv::dbrename()

Error messageDbEnv::err()

Check for thread failureDbEnv::failchk()

Reset database file IDsDbEnv::fileid_reset()

Return environment's home directoryDbEnv::get_home()

Return flags with which the environment was
opened

DbEnv::get_open_flags()

Reset database file LSNsDbEnv::lsn_reset()

Open an environmentDbEnv::open()

Remove an environmentDbEnv::remove()

Environment statisticsDbEnv::stat_print()

Error stringsDbEnv::strerror()

Return version informationDbEnv::version()

Environment Configuration

add an environment data directoryDbEnv::add_data_dir()

Set local space allocation functionsDbEnv::set_alloc()

Configure application recovery callbackDbEnv::set_app_dispatch()

Set/get the environment data directoryDbEnv::set_data_dir(), DbEnv::get_data_dirs()

add an environment data directoryDbEnv::set_create_dir(), DbEnv::get_create_dir()

Set/get the environment cryptographic keyDbEnv::set_encrypt(), DbEnv::get_encrypt_flags()

Set event notification callbackDbEnv::set_event_notify()

Set error message callbacksDbEnv::set_errcall()

Set/get error message FILEDbEnv::set_errfile(), DbEnv::get_errfile()

Set C++ ostream used for error messagesDbEnv::set_error_stream()

Set/get error message prefixDbEnv::set_errpfx(), DbEnv::get_errpfx()

Set feedback callbackDbEnv::set_feedback()

Environment configurationDbEnv::set_flags(), DbEnv::get_flags()

Set/get intermediate directory creation modeDbEnv::set_intermediate_dir_mode(),
DbEnv::get_intermediate_dir_mode()

Page 203DB C++ API8/14/2009

Database Environments and Related
Methods

DescriptionDatabase Environment Operations

Set thread is-alive callbackDbEnv::set_isalive()

Set C++ ostream used for informational messagesDbEnv::set_message_stream()

Set informational message callbackDbEnv::set_msgcall()

Set/get informational message FILEDbEnv::set_msgfile(), DbEnv::get_msgfile()

Set/get system memory shared segment IDDbEnv::set_shm_key(), DbEnv::get_shm_key()

Set/get approximate thread countDbEnv::set_thread_count(),
DbEnv::get_thread_count()

Set thread of control ID functionDbEnv::set_thread_id()

Set thread of control ID format functionDbEnv::set_thread_id_string()

Set/get lock and transaction timeoutDbEnv::set_timeout(), DbEnv::get_timeout()

Set/get the environment temporary file directoryDbEnv::set_tmp_dir(), DbEnv::get_tmp_dir()

Set/get verbose messagesDbEnv::set_verbose(), DbEnv::get_verbose()

Set/get the environment cache sizeDbEnv::set_cachesize(), DbEnv::get_cachesize()

Page 204DB C++ API8/14/2009

Database Environments and Related
Methods

Db::get_env()
#include <db_cxx.h>

DbEnv *
Db::get_env();

The Db::get_env() method returns the handle for the database environment underlying the database.

The Db::get_env() method may be called at any time during the life of the application.

Class

Db

See Also

Database and Related Methods

Page 205DB C++ API8/14/2009

Db::get_env()

DbEnv::add_data_dir()
#include <db_cxx.h>

int
DbEnv::add_data_dir(const char *dir);

Add the path of a directory to be used as the location of the access method database files. Paths
specified to the Db::open() function will be searched relative to this path. Paths set using this method
are additive, and specifying more than one will result in each specified directory being searched for
database files.

If no database directories are specified, database files must be named either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's data directories may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "add_data_dir", one or more
whitespace characters, and the directory name.

The DbEnv::add_data_dir() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::add_data_dir() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::add_data_dir() must be consistent with the existing environment or corruption can occur.

The DbEnv::add_data_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::add_data_dir() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

Page 206DB C++ API8/14/2009

DbEnv::add_data_dir()

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Database Environments and Related Methods

Page 207DB C++ API8/14/2009

DbEnv::add_data_dir()

DbEnv::close()
#include <db_cxx.h>

DbEnv::close(u_int32_t flags);

The DbEnv::close() method closes the Berkeley DB environment, freeing any allocated resources and
closing any underlying subsystems.

The DbEnv handle should not be closed while any other handle that refers to it is not yet closed; for
example, database environment handles must not be closed while database handles remain open, or
transactions in the environment have not yet been committed or aborted. Specifically, this includes
the Db, Dbc, DbTxn, DbLogc and DbMpoolFile handles.

Where the environment was initialized with the DB_INIT_LOCK flag, calling DbEnv::close() does not
release any locks still held by the closing process, providing functionality for long-lived locks. Processes
that want to have all their locks released can do so by issuing the appropriate DbEnv::lock_vec() call.

Where the environment was initialized with the DB_INIT_MPOOL flag, calling DbEnv::close() implies
calls to DbMpoolFile::close() for any remaining open files in the memory pool that were returned to
this process by calls to DbMpoolFile::open(). It does not imply a call to DbMpoolFile::sync() for those
files.

Where the environment was initialized with the DB_INIT_TXN flag, calling DbEnv::close() aborts any
unresolved transactions. Applications should not depend on this behavior for transactions involving
Berkeley DB databases; all such transactions should be explicitly resolved. The problem with depending
on this semantic is that aborting an unresolved transaction involving database operations requires a
database handle. Because the database handles should have been closed before calling DbEnv::close(),
it will not be possible to abort the transaction, and recovery will have to be run on the Berkeley DB
environment before further operations are done.

Where log cursors were created using the DbEnv::log_cursor() method, calling DbEnv::close() does
not imply closing those cursors.

In multithreaded applications, only a single thread may call the DbEnv::close() method.

After DbEnv::close() has been called, regardless of its return, the Berkeley DB environment handle
may not be accessed again.

The DbEnv::close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Page 208DB C++ API8/14/2009

DbEnv::close()

Class

DbEnv

See Also

Database Environments and Related Methods

Page 209DB C++ API8/14/2009

DbEnv::close()

DbEnv
#include <db_cxx.h>

class DbEnv {
public:
 DbEnv(u_int32 flags);
 ~DbEnv();

 DB_ENV *DbEnv::get_DB_ENV();
 const DB_ENV *DbEnv::get_const_DB_ENV() const;
 static DbEnv *DbEnv::get_DbEnv(DB_ENV *dbenv);
 static const DbEnv *DbEnv::get_const_DbEnv(const DB_ENV *dbenv);
 ...
};

The DbEnv object is the handle for a Berkeley DB environment — a collection including support for some
or all of caching, locking, logging and transaction subsystems, as well as databases and log files. Methods
of the DbEnv handle are used to configure the environment as well as to operate on subsystems and
databases in the environment.

DbEnv handles are free-threaded if the DB_THREAD flag is specified to the DbEnv::open() method when
the environment is opened. The DbEnv handle should not be closed while any other handle remains
open that is using it as a reference (for example, Db or DbTxn). Once either the DbEnv::close() or
DbEnv::remove() methods are called, the handle may not be accessed again, regardless of the method's
return.

The constructor creates the DbEnv object. The constructor allocates memory internally; calling the
DbEnv::close() or DbEnv::remove() methods will free that memory.

Before the handle may be used, you must open it using the DbEnv::open() method.

The flags parameter must be set to 0.

• DB_CXX_NO_EXCEPTIONS

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an error
occurs, an exception is thrown that encapsulates the error information. This generally allows for
cleaner logic for transaction processing because a try block can surround a single transaction. However,
if DB_CXX_NO_EXCEPTIONS is specified, exceptions are not thrown; instead, each individual function
returns an error code.

Each DbEnv object has an associated DB_ENV structure, which is used by the underlying implementation
of Berkeley DB and its C-language API. The DbEnv::get_DB_ENV() method returns a pointer to this struct.
Given a const DbEnv object, DbEnv::get_const_DB_ENV() returns a const pointer to the same struct.

Given a DB_ENV struct, the DbEnv::get_DbEnv() method returns the corresponding DbEnv object, if there
is one. If the DB_ENV struct was not associated with a DbEnv (that is, it was not returned from a call to
DbEnv::get_DB_ENV()), then the result of DbEnv::get_DbEnv() is undefined. Given a const DB_ENV
struct, DbEnv::get_const_Db_Env() returns the associated const DbEnv object, if there is one.

Page 210DB C++ API8/14/2009

DbEnv

These methods may be useful for Berkeley DB applications including both C and C++ language software.
It should not be necessary to use these calls in a purely C++ application.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 211DB C++ API8/14/2009

DbEnv

DbEnv::dbremove()
#include <db_cxx.h>

int
DbEnv::dbremove(DbTxn *txnid,
 const char *file, const char *database, u_int32_t flags);

The DbEnv::dbremove() method removes the database specified by the file and database parameters.
If no database is specified, the underlying file represented by file is removed, incidentally removing
all of the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing a file,
when any database in the file has an open handle.

The DbEnv::dbremove() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

DbEnv::dbremove() is affected by any database directory specified using the DbEnv::set_data_dir()
method, or by setting the set_data_dir string in the environment's DB_CONFIG file.

Parameters

database

The database parameter is the database to be removed.

file

The file parameter is the physical file which contains the database(s) to be removed.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the DB_AUTO_COMMIT flag is specified to either this method or
the environment handle, the operation will be implicitly transaction protected.

flags

The flags parameter must be set to 0 or the following value:

• DB_AUTO_COMMIT

Enclose the DbEnv::dbremove() call within a transaction. If the call succeeds, changes made by the
operation will be recoverable. If the call fails, the operation will have made no changes.

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment home.

Page 212DB C++ API8/14/2009

DbEnv::dbremove()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Errors

The DbEnv::dbremove() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the method was called before DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 213DB C++ API8/14/2009

DbEnv::dbremove()

DbEnv::dbrename()
#include <db_cxx.h>

int
DbEnv::dbrename(DbTxn *txnid, const char *file,
 const char *database, const char *newname, u_int32_t flags);

The DbEnv::dbrename() method renames the database specified by the file and database parameters
to newname. If no database is specified, the underlying file represented by file is renamed using the
value supplied to newname, incidentally renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is being renamed
and logging is currently enabled in the database environment, no database in the file may be open
when the DbEnv::dbrename() method is called.

The DbEnv::dbrename() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

DbEnv::dbrename() is affected by any database directory specified using the DbEnv::set_data_dir()
method, or by setting the set_data_dir string in the environment's DB_CONFIG file.

Parameters

database

The database parameter is the database to be renamed.

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to 0 or the following value:

• DB_AUTO_COMMIT

Enclose the DbEnv::dbrename() call within a transaction. If the call succeeds, changes made by the
operation will be recoverable. If the call fails, the operation will have made no changes.

newname

The newname parameter is the new name of the database or file.

Page 214DB C++ API8/14/2009

DbEnv::dbrename()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the DB_AUTO_COMMIT flag is specified to either this method or
the environment handle, the operation will be implicitly transaction protected.

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment home.

Errors

The DbEnv::dbrename() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the method was called before DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 215DB C++ API8/14/2009

DbEnv::dbrename()

DbEnv::err()
#include <db_cxx.h>

DbEnv::err(int error, const char *fmt, ...);

DbEnv::errx(const char *fmt, ...);

The DbEnv::err(), DbEnv::errx,(), Db::err() and Db::errx() methods provide error-messaging
functionality for applications written using the Berkeley DB library.

The Db::err() and DbEnv::err() methods constructs an error message consisting of the following elements:

• An optional prefix string

If no error callback function has been set using the DbEnv::set_errcall() method, any prefix string
specified using the DbEnv::set_errpfx() method, followed by two separating characters: a colon and
a <space> character.

• An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf function
specifies how subsequent parameters are converted for output.

• A separator

Two separating characters: a colon and a <space> character.

• A standard error string

The standard system or Berkeley DB library error string associated with the error value, as returned
by the DbEnv::strerror() method.

This constructed error message is then handled as follows:

• If an error callback function has been set (see Db::set_errcall() and DbEnv::set_errcall()), that
function is called with two parameters: any prefix string specified (see Db::set_errpfx() and
DbEnv::set_errpfx()) and the error message.

• If a C library FILE * has been set (see Db::set_errfile() and DbEnv::set_errfile()), the error message
is written to that output stream.

• If a C++ ostream has been set (see DbEnv::set_error_stream() and Db::set_error_stream()), the error
message is written to that stream.

• If none of these output options have been configured, the error message is written to stderr, the
standard error output stream.

Page 216DB C++ API8/14/2009

DbEnv::err()

Parameters

error

The error parameter is the error value for which the DbEnv::err() and Db::err() methods will display
a explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 217DB C++ API8/14/2009

DbEnv::err()

DbEnv::failchk()
#include <db_cxx.h>

int
DbEnv::failchk(u_int32_t flags);

The DbEnv::failchk() method checks for threads of control (either a true thread or a process) that
have exited while manipulating Berkeley DB library data structures, while holding a logical database
lock, or with an unresolved transaction (that is, a transaction that was never aborted or committed).
For more information, see Architecting Data Store and Concurrent Data Store applications, and
Architecting Transactional Data Store applications, both in the Berkeley DB Programmer's Reference
Guide.

The DbEnv::failchk() method is based on the thread_id and is_alive functions specified to the
DbEnv::set_thread_id() and DbEnv::set_isalive() methods. Applications calling the DbEnv::failchk()
method must have already called the DbEnv::set_isalive() method, on the same DbEnv, and must have
configured their database environment using the DbEnv::set_thread_count() method.

If DbEnv::failchk() determines a thread of control exited while holding database read locks, it will
release those locks. If DbEnv::failchk() determines a thread of control exited with an unresolved
transaction, the transaction will be aborted. In either of these cases, DbEnv::failchk() will return 0
and the application may continue to use the database environment.

In either of these cases, the DbEnv::failchk() method will also report the process and thread IDs
associated with any released locks or aborted transactions. The information is printed to a specified
output channel (see the DbEnv::set_msgfile() method for more information), or passed to an application
callback function (see the DbEnv::set_msgcall() method for more information).

If DbEnv::failchk() determines a thread of control has exited such that database environment recovery
is required, it will return DB_RUNRECOVERY. In this case, the application should not continue to use
the database environment. For a further description as to the actions the application should take when
this failure occurs, see Handling failure in Data Store and Concurrent Data Store applications, and
Handling failure in Transactional Data Store applications, both in the Berkeley DB Programmer's
Reference Guide.

In multiprocess applications, it is recommended that the DbEnv handle used to invoke the
DbEnv::failchk() method not be shared and therefore not free-threaded.

The DbEnv::failchk() method may not be called by the application before the DbEnv::open() method
is called.

The DbEnv::failchk() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Page 218DB C++ API8/14/2009

DbEnv::failchk()

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/cam_fail.html
../../programmer_reference/transapp_fail.html

Errors

The DbEnv::failchk() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 219DB C++ API8/14/2009

DbEnv::failchk()

DbEnv::fileid_reset()
#include <db_cxx.h>

int
DbEnv::fileid_reset(const char *file, u_int32_t flags);

The DbEnv::fileid_reset() method allows database files to be copied, and then the copy used in the
same database environment as the original.

All databases contain an ID string used to identify the database in the database environment cache. If
a physical database file is copied, and used in the same environment as another file with the same ID
strings, corruption can occur. The DbEnv::fileid_reset() method creates new ID strings for all of the
databases in the physical file.

The DbEnv::fileid_reset() method modifies the physical file, in-place. Applications should not reset
IDs in files that are currently in use.

The DbEnv::fileid_reset() method may be called at any time during the life of the application.

The DbEnv::fileid_reset() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The name of the physical file in which new file IDs are to be created.

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT

The file contains encrypted databases.

Errors

The DbEnv::fileid_reset() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

Page 220DB C++ API8/14/2009

DbEnv::fileid_reset()

See Also

Database Environments and Related Methods

Page 221DB C++ API8/14/2009

DbEnv::fileid_reset()

DbEnv::get_create_dir()
#include <db_cxx.h>

int
DbEnv::get_create_dir(const char **dirp);

The DbEnv::get_create_dir()method returns a pointer to the name of the directory to create databases
in.

The DbEnv::get_create_dir() method may be called at any time during the life of the application.

The DbEnv::get_create_dir() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The DbEnv::get_create_dir() method returns a ponter to the name of the directory in dirp.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 222DB C++ API8/14/2009

DbEnv::get_create_dir()

DbEnv::get_data_dirs()
#include <db_cxx.h>

int
DbEnv::get_data_dirs(const char ***dirpp);

The DbEnv::get_data_dirs() method returns the NULL-terminated array of directories.

The DbEnv::get_data_dirs() method may be called at any time during the life of the application.

The DbEnv::get_data_dirs() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirpp

The DbEnv::get_data_dirs() method returns a reference to the NULL-terminated array of directories
in dirpp.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 223DB C++ API8/14/2009

DbEnv::get_data_dirs()

DbEnv::get_encrypt_flags()
#include <db_cxx.h>

int
DbEnv::get_encrypt_flags(u_int32_t *flagsp);

The DbEnv::get_encrypt_flags() method returns the encryption flags.

The DbEnv::get_encrypt_flags() method may be called at any time during the life of the application.

The DbEnv::get_encrypt_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv::get_encrypt_flags() method returns the encryption flags in flagsp.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 224DB C++ API8/14/2009

DbEnv::get_encrypt_flags()

DbEnv::get_errfile()
#include <db_cxx.h>

void
DbEnv::get_errfile(FILE **errfilep);

The DbEnv::get_errfile() method returns the FILE * used for displaying additional Berkeley DB error
messages. This C library is set using the DbEnv::set_errfile() method.

The DbEnv::get_errfile() method may be called at any time during the life of the application.

Parameters

errfilep

The DbEnv::get_errfile() method returns the FILE * in errfilep.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 225DB C++ API8/14/2009

DbEnv::get_errfile()

DbEnv::get_errpfx()
#include <db_cxx.h>

void
DbEnv::get_errpfx(const char **errpfxp);

The DbEnv::get_errpfx() method returns the error prefix that appears before error messages issued
by Berkeley DB. This error prefix is set using the DbEnv::set_errpfx() method.

The DbEnv::get_errpfx() method may be called at any time during the life of the application.

Parameters

errpfxp

The DbEnv::get_errpfx() method returns a reference to the error prefix in errpfxp.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 226DB C++ API8/14/2009

DbEnv::get_errpfx()

DbEnv::get_flags()
#include <db_cxx.h>

int
DbEnv::get_flags(u_int32_t *flagsp)

The DbEnv::get_flags() method returns the configuration flags set for a DbEnv handle. These flags
are set using the DbEnv::set_flags() method.

The DbEnv::get_flags() method may be called at any time during the life of the application.

The DbEnv::get_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv::get_flags() method returns the configuration flags in flagsp.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 227DB C++ API8/14/2009

DbEnv::get_flags()

DbEnv::get_home()
#include <db_cxx.h>

int
DbEnv::get_home(const char **homep);

The DbEnv::get_home() method returns the database environment home directory. This directory is
normally identified when the DbEnv::open() method is called.

The DbEnv::get_home() method may be called at any time during the life of the application.

The DbEnv::get_home() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 228DB C++ API8/14/2009

DbEnv::get_home()

DbEnv::get_intermediate_dir_mode()
#include <db_cxx.h>

int
DbEnv::get_intermediate_dir_mode(u_int32_t *modep);

The DbEnv::get_intermediate_dir_mode() method returns the intermediate directory permissions.

Intermediate directories are directories needed for recovery. Normally, Berkeley DB does not create
these directories and will do so only if the DbEnv::set_intermediate_dir_mode() method is called.

The DbEnv::get_intermediate_dir_mode() method may be called at any time during the life of the
application.

The DbEnv::get_intermediate_dir_mode() method returns a non-zero error value on failure and 0 on
success.

Parameters

modep

The DbEnv::get_intermediate_dir_mode() method returns a reference to the intermediate directory
permissions in modep.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 229DB C++ API8/14/2009

DbEnv::get_intermediate_dir_mode()

DbEnv::get_msgfile()
#include <db_cxx.h>

void
DbEnv::get_msgfile(FILE **msgfilep);

The DbEnv::get_msgfile() method returns the FILE * used for displaying messages. This is set using
the DbEnv::set_msgfile() method.

The DbEnv::get_msgfile() method may be called at any time during the life of the application.

Parameters

msgfilep

The DbEnv::get_msgfile() method returns the FILE * in msgfilep.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::set_msgfile()

Page 230DB C++ API8/14/2009

DbEnv::get_msgfile()

DbEnv::get_open_flags()
#include <db_cxx.h>

int
DbEnv::get_open_flags(u_int32_t *flagsp);

The DbEnv::get_open_flags() method returns the open method flags originally used to create the
database environment.

The DbEnv::get_open_flags() method may not be called before the DbEnv::open() method is called.

The DbEnv::get_open_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv::get_open_flags() method returns the open method flags originally used to create the
database environment in flagsp.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::open()

Page 231DB C++ API8/14/2009

DbEnv::get_open_flags()

DbEnv::get_shm_key()
#include <db_cxx.h>

int
DbEnv::get_shm_key(long *shm_keyp);

The DbEnv::get_shm_key()method returns the base segment ID. This is used for Berkeley DB environment
shared memory regions created in system memory on VxWorks or systems supporting X/Open-style
shared memory interfaces. It may be specified using the DbEnv::set_shm_key() method.

The DbEnv::get_shm_key() method may be called at any time during the life of the application.

The DbEnv::get_shm_key() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

shm_keyp

The DbEnv::get_shm_key() method returns the base segment ID in shm_keyp.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::set_shm_key()

Page 232DB C++ API8/14/2009

DbEnv::get_shm_key()

DbEnv::get_thread_count()
#include <db_cxx.h>

int
DbEnv::get_thread_count(u_int32_t *countp);

The DbEnv::get_thread_count() method returns the thread count as set by the
DbEnv::set_thread_count() method.

The DbEnv::get_thread_count() method may be called at any time during the life of the application.

The DbEnv::get_thread_count() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

countp

The DbEnv::get_thread_count() method returns the thread count in countp.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::set_thread_count()

Page 233DB C++ API8/14/2009

DbEnv::get_thread_count()

DbEnv::get_timeout()
#include <db_cxx.h>

int
DbEnv::get_timeout(db_timeout_t *timeoutp, u_int32_t flag);

The DbEnv::get_timeout() method returns a value, in microseconds, representing either lock or
transaction timeouts. These values are set using the DbEnv::set_timeout() method.

The DbEnv::get_timeout() method may be called at any time during the life of the application.

The DbEnv::get_timeout() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flag

The flags parameter must be set to one of the following values:

• DB_SET_LOCK_TIMEOUT

Return the timeout value for locks in this database environment.

• DB_SET_TXN_TIMEOUT

Return the timeout value for transactions in this database environment.

timeoutp

The timeoutp parameter references memory into which the timeout value of the specified flag parameter
is copied.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::set_timeout()

Page 234DB C++ API8/14/2009

DbEnv::get_timeout()

DbEnv::get_tmp_dir()
#include <db_cxx.h>

int
DbEnv::get_tmp_dir(const char **dirp);

The DbEnv::get_tmp_dir() method returns the database environment temporary file directory.

The DbEnv::get_tmp_dir() method may be called at any time during the life of the application.

The DbEnv::get_tmp_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The DbEnv::get_tmp_dir() method returns a reference to the database environment temporary file
directory in dirp.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::set_tmp_dir()

Page 235DB C++ API8/14/2009

DbEnv::get_tmp_dir()

DbEnv::get_verbose()
#include <db_cxx.h>

int
DbEnv::get_verbose(u_int32_t which, int *onoffp);

The DbEnv::get_verbose() method returns whether the specified which parameter is currently set or
not. These parameters are set using the DbEnv::set_verbose() method.

The DbEnv::get_verbose() method may be called at any time during the life of the application.

The DbEnv::get_verbose() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be set to
one of the following values:

• DB_VERB_DEADLOCK

Display additional information when doing deadlock detection.

• DB_VERB_FILEOPS

Display additional information when performing filesystem operations such as open, close or rename.
May not be available on all platforms.

• DB_VERB_FILEOPS_ALL

Display additional information when performing all filesystem operations, including read and write.
May not be available on all platforms.

• DB_VERB_RECOVERY

Display additional information when performing recovery.

• DB_VERB_REGISTER

Display additional information concerning support for the DB_REGISTER flag to the DbEnv::open()
method.

• DB_VERB_REPLICATION

Display all detailed information about replication. This includes the information displayed by all of
the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

• DB_VERB_REP_ELECT

Page 236DB C++ API8/14/2009

DbEnv::get_verbose()

Display detailed information about replication elections.

• DB_VERB_REP_LEASE

Display detailed information about replication master leases.

• DB_VERB_REP_MISC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

• DB_VERB_REP_MSGS

Display detailed information about replication message processing.

• DB_VERB_REP_SYNC

Display detailed information about replication client synchronization.

• DB_VERB_REPMGR_CONNFAIL

Display detailed information about Replication Manager connection failures.

• DB_VERB_REPMGR_MISC

Display detailed information about general Replication Manager processing.

• DB_VERB_WAITSFOR

Display the waits-for table when doing deadlock detection.

onoffp

The onoffp parameter references memory into which the configuration of the specified which parameter
is copied.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 237DB C++ API8/14/2009

DbEnv::get_verbose()

DbEnv::lsn_reset()
#include <db_cxx.h>

int
DbEnv::lsn_reset(const char *file, u_int32_t flags);

The DbEnv::lsn_reset() method allows database files to be moved from one transactional database
environment to another.

Database pages in transactional database environments contain references to the environment's log
files (that is, log sequence numbers, or LSNs). Copying or moving a database file from one database
environment to another, and then modifying it, can result in data corruption if the LSNs are not first
cleared.

Note that LSNs should be reset before moving or copying the database file into a new database
environment, rather than moving or copying the database file and then resetting the LSNs. Berkeley
DB has consistency checks that may be triggered if an application calls DbEnv::lsn_reset() on a database
in a new environment when the database LSNs still reflect the old environment.

The DbEnv::lsn_reset() method modifies the physical file, in-place. Applications should not reset LSNs
in files that are currently in use.

The DbEnv::lsn_reset() method may be called at any time during the life of the application.

The DbEnv::lsn_reset() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The name of the physical file in which the LSNs are to be cleared.

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT

The file contains encrypted databases.

Errors

The DbEnv::lsn_reset() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Page 238DB C++ API8/14/2009

DbEnv::lsn_reset()

Class

DbEnv

See Also

Database Environments and Related Methods

Page 239DB C++ API8/14/2009

DbEnv::lsn_reset()

DbEnv::open()
#include <db_cxx.h>

int
DbEnv::open(const char *db_home, u_int32_t flags, int mode);

The DbEnv::open() method opens a Berkeley DB environment. It provides a structure for creating a
consistent environment for processes using one or more of the features of Berkeley DB.

The DbEnv::open() method method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success. If DbEnv::open() fails, the
DbEnv::close() method must be called to discard the DbEnv handle.

Parameters

db_home

The db_home parameter is the database environment's home directory. For more information on
db_home, and filename resolution in general, see Berkeley DB File Naming. The environment variable
DB_HOME may be used as the path of the database home, as described in Berkeley DB File Naming.

When using a Unicode build on Windows (the default), the db_home argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter specifies the subsystems that are initialized and how the application's environment
affects Berkeley DB file naming, among other things. The flags parameter must be set to 0 or by bitwise
inclusively OR'ing together one or more of the values described in this section.

Because there are a large number of flags that can be specified, they have been grouped together by
functionality. The first group of flags indicates which of the Berkeley DB subsystems should be initialized.

The choice of subsystems initialized for a Berkeley DB database environment is specified by the thread
of control initially creating the environment. Any subsequent thread of control joining the environment
will automatically be configured to use the same subsystems as were created in the environment (unless
the thread of control requests a subsystem not available in the environment, which will fail). Applications
joining an environment, able to adapt to whatever subsystems have been configured in the environment,
should open the environment without specifying any subsystem flags. Applications joining an
environment, requiring specific subsystems from their environments, should open the environment
specifying those specific subsystem flags.

• DB_INIT_CDB

Initialize locking for the Berkeley DB Concurrent Data Store product. In this mode, Berkeley DB
provides multiple reader/single writer access. The only other subsystem that should be specified
with the DB_INIT_CDB flag is DB_INIT_MPOOL.

• DB_INIT_LOCK

Page 240DB C++ API8/14/2009

DbEnv::open()

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/cam.html#cam_intro

Initialize the locking subsystem. This subsystem should be used when multiple processes or threads
are going to be reading and writing a Berkeley DB database, so that they do not interfere with each
other. If all threads are accessing the database(s) read-only, locking is unnecessary. When the
DB_INIT_LOCK flag is specified, it is usually necessary to run a deadlock detector, as well. See
db_deadlock and DbEnv::lock_detect() for more information.

• DB_INIT_LOG

Initialize the logging subsystem. This subsystem should be used when recovery from application or
system failure is necessary. If the log region is being created and log files are already present, the
log files are reviewed; subsequent log writes are appended to the end of the log, rather than
overwriting current log entries.

• DB_INIT_MPOOL

Initialize the shared memory buffer pool subsystem. This subsystem should be used whenever an
application is using any Berkeley DB access method.

• DB_INIT_REP

Initialize the replication subsystem. This subsystem should be used whenever an application plans
on using replication. The DB_INIT_REP flag requires the DB_INIT_TXN and DB_INIT_LOCK flags also be
configured.

• DB_INIT_TXN

Initialize the transaction subsystem. This subsystem should be used when recovery and atomicity of
multiple operations are important. The DB_INIT_TXN flag implies the DB_INIT_LOG flag.

The second group of flags govern what recovery, if any, is performed when the environment is initialized:

• DB_RECOVER

Run normal recovery on this environment before opening it for normal use. If this flag is set, the
DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be removed and re-created,
and transactions are required for application recovery.

• DB_RECOVER_FATAL

Run catastrophic recovery on this environment before opening it for normal use. If this flag is set,
the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be removed and
re-created, and transactions are required for application recovery.

A standard part of the recovery process is to remove the existing Berkeley DB environment and create
a new one in which to perform recovery. If the thread of control performing recovery does not specify
the correct region initialization information (for example, the correct memory pool cache size), the
result can be an application running in an environment with incorrect cache and other subsystem sizes.
For this reason, the thread of control performing recovery should specify correct configuration
information before calling the DbEnv::open() method; or it should remove the environment after
recovery is completed, leaving creation of the correctly sized environment to a subsequent call to the
DbEnv::open() method.

Page 241DB C++ API8/14/2009

DbEnv::open()

All Berkeley DB recovery processing must be single-threaded; that is, only a single thread of control
may perform recovery or access a Berkeley DB environment while recovery is being performed. Because
it is not an error to specify DB_RECOVER for an environment for which no recovery is required, it is
reasonable programming practice for the thread of control responsible for performing recovery and
creating the environment to always specify the DB_CREATE and DB_RECOVER flags during startup.

The third group of flags govern file-naming extensions in the environment:

• DB_USE_ENVIRON

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, environment information will be used in file naming for all users only
if the DB_USE_ENVIRON flag is set.

• DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, if the DB_USE_ENVIRON_ROOT flag is set, environment information will
be used in file naming only for users with appropriate permissions (for example, users with a user-ID
of 0 on UNIX systems).

Finally, there are a few additional unrelated flags:

• DB_CREATE

Cause Berkeley DB subsystems to create any underlying files, as necessary.

• DB_LOCKDOWN

Lock shared Berkeley DB environment files and memory-mapped databases into memory.

• DB_FAILCHK

Internally call the DbEnv::failchk() method as part of opening the environment. When DB_FAILCHK is
specified, a check is made to ensure all DbEnv::failchk() prerequisites are meet.

If the DB_FAILCHK flag is used in conjunction with the DB_REGISTER flag, then a check will be made
to see if the environment needs recovery. If recovery is needed, a call will be made to the
DbEnv::failchk() method to release any database reads locks held by the thread of control that
exited and, if needed, to abort the unresolved transaction. If DbEnv::failchk() determines
environment recovery is still required, the recovery actions for DB_REGISTER will be followed.

If the DB_FAILCHK flag is not used in conjunction with the DB_REGISTER flag, then make an internal
call to DbEnv::failchk() as the last step of opening the environment. If DbEnv::failchk() determines
database environment recovery is required, DB_RUNRECOVERY will be returned.

• DB_PRIVATE

Page 242DB C++ API8/14/2009

DbEnv::open()

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Allocate region memory from the heap instead of from memory backed by the filesystem or system
shared memory.

This flag implies the environment will only be accessed by a single process (although that process
may be multithreaded). This flag has two effects on the Berkeley DB environment. First, all underlying
data structures are allocated from per-process memory instead of from shared memory that is
accessible to more than a single process. Second, mutexes are only configured to work between
threads.

This flag should not be specified if more than a single process is accessing the environment because
it is likely to cause database corruption and unpredictable behavior. For example, if both a server
application and Berkeley DB utilities (for example, db_archive, db_checkpoint or db_stat) are expected
to access the environment, the DB_PRIVATE flag should not be specified.

See Shared Memory Regions for more information.

• DB_REGISTER

Check to see if recovery needs to be performed before opening the database environment. (For this
check to be accurate, all processes using the environment must specify DB_REGISTER when opening
the environment.) If recovery needs to be performed for any reason (including the initial use of the
DB_REGISTER flag), and DB_RECOVER is also specified, recovery will be performed and the open will
proceed normally. If recovery needs to be performed and DB_RECOVER is not specified,
DB_RUNRECOVERY will be returned. If recovery does not need to be performed, the DB_RECOVER flag
will be ignored. See Architecting Transactional Data Store applications for more information.

• DB_SYSTEM_MEM

Allocate region memory from system shared memory instead of from heap memory or memory backed
by the filesystem.

See Shared Memory Regions for more information.

• DB_THREAD

Cause the DbEnv handle returned by DbEnv::open() to be free-threaded; that is, concurrently usable
by multiple threads in the address space. The DB_THREAD flag should be specified if the DbEnv handle
will be concurrently used by more than one thread in the process, or if any Db handles opened in
the scope of the DbEnv handle will be concurrently used by more than one thread in the process.

This flag is required when using the Replication Manager.

mode

On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by Berkeley DB are
created with mode mode (as described in chmod(2)) and modified by the process' umask value at the
time of creation (see umask(2)). Created files are owned by the process owner; the group ownership
of created files is based on the system and directory defaults, and is not further specified by Berkeley
DB. System shared memory segments created by Berkeley DB are created with mode mode, unmodified

Page 243DB C++ API8/14/2009

DbEnv::open()

../../programmer_reference/env_region.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/transapp_app.html
../../programmer_reference/env_region.html

by the process' umask value. If mode is 0, Berkeley DB will use a default mode of readable and writable
by both owner and group.

Errors

The DbEnv::open() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_RUNRECOVERY

Either the DB_REGISTER flag was specified, a failure occurred, and no recovery flag was specified, or
the DB_FAILCHK flag was specified and recovery was deemed necessary.

DB_VERSION_MISMATCH

The version of the Berkeley DB library doesn't match the version that created the database environment.

EAGAIN

The shared memory region was locked and (repeatedly) unavailable.

EINVAL

If the DB_THREAD flag was specified and fast mutexes are not available for this architecture; The DB_HOME
or TMPDIR environment variables were set, but empty; An incorrectly formatted NAME VALUE entry or
line was found; or if an invalid flag value or parameter was specified.

ENOSPC

HP-UX only: Due to the constraints of the PA-RISC memory architecture, HP-UX does not allow a process
to map a file into its address space multiple times. For this reason, each Berkeley DB environment may
be opened only once by a process on HP-UX; that is, calls to DbEnv::open() will fail if the specified
Berkeley DB environment has been opened and not subsequently closed.

ENOENT

The file or directory does not exist.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 244DB C++ API8/14/2009

DbEnv::open()

DbEnv::remove()
#include <db_cxx.h>

int
DbEnv::remove(const char *db_home, u_int32_t flags);

The DbEnv::remove() method destroys a Berkeley DB environment if it is not currently in use. The
environment regions, including any backing files, are removed. Any log or database files and the
environment directory are not removed.

If there are processes that have called DbEnv::open() without calling DbEnv::close() (that is, there are
processes currently using the environment), DbEnv::remove() will fail without further action unless
the DB_FORCE flag is set, in which case DbEnv::remove() will attempt to remove the environment,
regardless of any processes still using it.

The result of attempting to forcibly destroy the environment when it is in use is unspecified. Processes
using an environment often maintain open file descriptors for shared regions within it. On UNIX systems,
the environment removal will usually succeed, and processes that have already joined the region will
continue to run in that region without change. However, processes attempting to join the environment
will either fail or create new regions. On other systems in which the unlink(2) system call will fail if
any process has an open file descriptor for the file (for example Windows/NT), the region removal will
fail.

Calling DbEnv::remove() should not be necessary for most applications because the Berkeley DB
environment is cleaned up as part of normal database recovery procedures. However, applications may
want to call DbEnv::remove() as part of application shut down to free up system resources. For example,
if the DB_SYSTEM_MEM flag was specified to DbEnv::open(), it may be useful to call DbEnv::remove()
in order to release system shared memory segments that have been allocated. Or, on architectures in
which mutexes require allocation of underlying system resources, it may be useful to call
DbEnv::remove() in order to release those resources. Alternatively, if recovery is not required because
no database state is maintained across failures, and no system resources need to be released, it is
possible to clean up an environment by simply removing all the Berkeley DB files in the database
environment's directories.

In multithreaded applications, only a single thread may call the DbEnv::remove() method.

A DbEnv handle that has already been used to open an environment should not be used to call the
DbEnv::remove() method; a new DbEnv handle should be created for that purpose.

After DbEnv::remove() has been called, regardless of its return, the Berkeley DB environment handle
may not be accessed again.

The DbEnv::remove() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Page 245DB C++ API8/14/2009

DbEnv::remove()

Parameters

db_home

The db_home parameter names the database environment to be removed.

When using a Unicode build on Windows (the default), the db_home argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_FORCE

If set, the environment is removed, regardless of any processes that may still using it, and no locks
are acquired during this process. (Generally, this flag is specified only when applications were unable
to shut down cleanly, and there is a risk that an application may have died holding a Berkeley DB
lock.)

• DB_USE_ENVIRON

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, environment information will be used in file naming for all users only
if the DB_USE_ENVIRON flag is set.

• DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, if the DB_USE_ENVIRON_ROOT flag is set, environment information will
be used in file naming only for users with appropriate permissions (for example, users with a user-ID
of 0 on UNIX systems).

Errors

The DbEnv::remove() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EBUSY

The shared memory region was in use and the force flag was not set.

Class

DbEnv

Page 246DB C++ API8/14/2009

DbEnv::remove()

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

See Also

Database Environments and Related Methods

Page 247DB C++ API8/14/2009

DbEnv::remove()

DbEnv::set_alloc()
#include <db_cxx.h>

extern "C" {
 typedef void *(*db_malloc_fcn_type)(size_t);
 typedef void *(*db_realloc_fcn_type)(void *, size_t);
 typedef void *(*db_free_fcn_type)(void *);
};

int
DbEnv::set_alloc(db_malloc_fcn_type app_malloc,
 db_realloc_fcn_type app_realloc,
 db_free_fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory owned by
the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and then
given to the application. For example, the DB_DBT_MALLOC flag, when specified in the Dbt object,
will cause the Db methods to allocate and reallocate memory which then becomes the responsibility
of the calling application. Other examples are the Berkeley DB interfaces which return statistical
information to the application: Db::stat(), DbEnv::lock_stat(), DbEnv::log_archive(), DbEnv::log_stat(),
DbEnv::memp_stat(), and DbEnv::txn_stat(). There is one method in Berkeley DB where memory is
allocated by the application and then given to the library: the callback specified to Db::associate().

On systems in which there may be multiple library versions of the standard allocation routines (notably
Windows NT), transferring memory between the library and the application will fail because the Berkeley
DB library allocates memory from a different heap than the application uses to free it. To avoid this
problem, the DbEnv::set_alloc() and Db::set_alloc() methods can be used to pass Berkeley DB
references to the application's allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to these
interfaces; however, in that case the specified interfaces must be compatible with the standard library
interfaces, as they will be used together. The functions specified must match the calling conventions
of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

The DbEnv::set_alloc() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_alloc() method may not be called after the DbEnv::open() method is called.

The DbEnv::set_alloc() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

app_malloc

The app_malloc parameter is the application-specified malloc function.

Page 248DB C++ API8/14/2009

DbEnv::set_alloc()

app_realloc

The app_realloc parameter is the application-specified realloc function.

app_free

The app_free parameter is the application-specified free function.

Errors

The DbEnv::set_alloc() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 249DB C++ API8/14/2009

DbEnv::set_alloc()

DbEnv::set_app_dispatch()
#include <db_cxx.h>

int
DbEnv::set_app_dispatch(int (*tx_recover)(DbEnv *dbenv,
 Dbt *log_rec, DbLsn *lsn, db_recops op));

Declare a function to be called during transaction abort and recovery to process application-specific
log records.

The DbEnv::set_app_dispatch() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_app_dispatch() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_app_dispatch() must be consistent with the existing environment or corruption can occur.

The DbEnv::set_app_dispatch() method returns a non-zero error value on failure and 0 on success.

Parameters

tx_recover

The tx_recover parameter is the application's abort and recovery function. The function takes four
parameters:

• dbenv

The dbenv parameter is the enclosing database environment handle.

• log_rec

The log_rec parameter is a log record.

• lsn

The lsn parameter is a log sequence number.

• op

The op parameter is one of the following values:

• DB_TXN_BACKWARD_ROLL

The log is being read backward to determine which transactions have been committed and to abort
those operations that were not; undo the operation described by the log record.

• DB_TXN_FORWARD_ROLL

The log is being played forward; redo the operation described by the log record.

Page 250DB C++ API8/14/2009

DbEnv::set_app_dispatch()

• DB_TXN_ABORT

The log is being read backward during a transaction abort; undo the operation described by the
log record.

• DB_TXN_APPLY

The log is being applied on a replica site; redo the operation described by the log record.

• DB_TXN_PRINT

The log is being printed for debugging purposes; print the contents of this log record in the desired
format.

The DB_TXN_FORWARD_ROLL and DB_TXN_APPLY operations frequently imply the same actions,
redoing changes that appear in the log record, although if a recovery function is to be used on a
replication client where reads may be taking place concurrently with the processing of incoming
messages, DB_TXN_APPLY operations should also perform appropriate locking. The macro DB_REDO(op)
checks that the operation is one of DB_TXN_FORWARD_ROLL or DB_TXN_APPLY, and should be used
in the recovery code to refer to the conditions under which operations should be redone. Similarly,
the macro DB_UNDO(op) checks if the operation is one of DB_TXN_BACKWARD_ROLL or DB_TXN_ABORT.

The function must return 0 on success and either errno or a value outside of the Berkeley DB error
name space on failure.

Errors

The DbEnv::set_app_dispatch() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 251DB C++ API8/14/2009

DbEnv::set_app_dispatch()

DbEnv::set_data_dir()
#include <db_cxx.h>

int
DbEnv::set_data_dir(const char *dir);

This interface has been deprecated. You should use DbEnv::add_data_dir() and
DbEnv::set_create_dir() instead.☞

Set the path of a directory to be used as the location of the access method database files. Paths
specified to the Db::open() function will be searched relative to this path. Paths set using this method
are additive, and specifying more than one will result in each specified directory being searched for
database files. If any directories are specified, database files will always be created in the first path
specified.

If no database directories are specified, database files must be named either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's data directories may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_data_dir", one or more
whitespace characters, and the directory name.

The DbEnv::set_data_dir() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_data_dir() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_data_dir() must be consistent with the existing environment or corruption can occur.

The DbEnv::set_data_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_data_dir() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Page 252DB C++ API8/14/2009

DbEnv::set_data_dir()

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Class

DbEnv

See Also

Database Environments and Related Methods

Page 253DB C++ API8/14/2009

DbEnv::set_data_dir()

DbEnv::set_create_dir()
#include <db_cxx.h>

int
DbEnv::set_create_dir(const char *dir);

Sets the path of a directory to be used as the location to create the access method database files.
When the Db::open() function is used to create a file it will be created relative to this path.

If no database directories are specified, database files will be created either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's create directory may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_create_dir", one or more
whitespace characters, and the directory name.

The DbEnv::set_create_dir() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_create_dir() method may be called at any time.

The DbEnv::set_create_dir() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used to create database files. This directory must be one of the
directories specified via a call to DbEnv::add_data_dir()

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_create_dir() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

Page 254DB C++ API8/14/2009

DbEnv::set_create_dir()

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Database Environments and Related Methods

Page 255DB C++ API8/14/2009

DbEnv::set_create_dir()

DbEnv::set_encrypt()
#include <db_cxx.h>

int
DbEnv::set_encrypt(const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

The DbEnv::set_encrypt() method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_encrypt() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_encrypt() must be consistent with the existing environment or an error will be returned.

The DbEnv::set_encrypt() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal Information
Processing Standard (FIPS) 197) algorithm for encryption or decryption.

passwd

The passwd parameter is the password used to perform encryption and decryption.

Errors

The DbEnv::set_encrypt() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.

Class

DbEnv

Page 256DB C++ API8/14/2009

DbEnv::set_encrypt()

See Also

Database Environments and Related Methods

Page 257DB C++ API8/14/2009

DbEnv::set_encrypt()

DbEnv::set_event_notify()
#include <db_cxx.h>

int
DbEnv::set_event_notify(
 void (*db_event_fcn)(DB_ENV *dbenv, u_int32_t event,
 void *event_info));

The DbEnv::set_event_notify() method configures a callback function which is called to notify the
process of specific Berkeley DB events.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

The DbEnv::set_event_notify() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_event_notify() method may be called at any time during the life of the application.

The DbEnv::set_event_notify() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

db_event_fcn

The db_event_fcn parameter is the application's event notification function. The function takes three
parameters:

• dbenv

The dbenv parameter is the enclosing database environment handle.

• event

The event parameter is one of the following values:

• DB_EVENT_PANIC

Errors can occur in the Berkeley DB library where the only solution is to shut down the application
and run recovery (for example, if Berkeley DB is unable to allocate heap memory). In such cases,
the Berkeley DB methods will return DB_RUNRECOVERY. It is often easier to simply exit the
application when such errors occur rather than gracefully return up the stack.

When event is set to DB_EVENT_PANIC, the database environment has failed. All threads of control
in the database environment should exit the environment, and recovery should be run.

• DB_EVENT_REG_ALIVE

Page 258DB C++ API8/14/2009

DbEnv::set_event_notify()

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DbEnv::open() method and there is a process attached to the environment. The callback function
is triggered once for each process attached.

The event_info parameter points to a pid_t value containing the process identifier (pid) of the
process the Berkeley DB library detects is attached to the environment.

• DB_EVENT_REG_PANIC

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DbEnv::open() method. All threads of control in the database environment should exit the
environment.

This event is different than the DB_EVENT_PANIC event because it can only be triggered when
DB_REGISTER was specified. It can be used to distinguish between the case when a process dies in
the environment and recovery is initiated versus the case when an error happened (for example,
if Berkeley DB is unable to allocate heap memory)

• DB_EVENT_REP_CLIENT

The local site is now a replication client.

• DB_EVENT_REP_ELECTED

The local replication site has just won an election. An application using the Base replication API
should arrange for a call to the DbEnv::rep_start() method after receiving this event, to reconfigure
the local environment as a replication master.

Replication Manager applications may safely ignore this event. The Replication Manager calls
DbEnv::rep_start() automatically on behalf of the application when appropriate (resulting in firing
of the DB_EVENT_REP_MASTER event).

• DB_EVENT_REP_MASTER

The local site is now the master site of its replication group. It is the application's responsibility
to begin acting as the master environment.

• DB_EVENT_REP_NEWMASTER

The replication group of which this site is a member has just established a new master; the local
site is not the new master. The event_info parameter points to an integer containing the
environment ID of the new master.

• DB_EVENT_REP_PERM_FAILED

The replication manager did not receive enough acknowledgements (based on the acknowledgement
policy configured with DbEnv::repmgr_set_ack_policy()) to ensure a transaction's durability within
the replication group. The transaction will be flushed to the master's local disk storage for durability.

The DB_EVENT_REP_PERM_FAILED event is provided only to applications configured for the
replication manager.

Page 259DB C++ API8/14/2009

DbEnv::set_event_notify()

• DB_EVENT_REP_STARTUPDONE

The client has completed startup synchronization and is now processing live log records received
from the master.

• DB_EVENT_WRITE_FAILED

A Berkeley DB write to stable storage failed.

• event_info

The event_info parameter may reference memory which contains additional information describing
an event. By default, event_info is NULL; specific events may pass non-NULL values, in which case
the event will also describe the memory's structure.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 260DB C++ API8/14/2009

DbEnv::set_event_notify()

DbEnv::set_errcall()
#include <db_cxx.h>

void DbEnv::set_errcall(void (*db_errcall_fcn)
 (const Dbenv *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return value is
returned by the interface. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error, especially during initial application debugging.

The DbEnv::set_errcall() and DbEnv::set_errcall() methods are used to enhance the mechanism for
reporting error messages to the application. In some cases, when an error occurs, Berkeley DB will call
db_errcall_fcn with additional error information. It is up to the db_errcall_fcn function to display
the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the additional information via an output stream, or the Db::set_errfile() or Db::set_errfile() methods
to display the additional information via a C library FILE *. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

The DbEnv::set_errcall() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_errcall() method may be called at any time during the life of the application.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The function takes
three parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

• errpfx

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() or DbEnv::set_errpfx()).

• msg

The msg parameter is the error message string.

Page 261DB C++ API8/14/2009

DbEnv::set_errcall()

Class

DbEnv

See Also

Database Environments and Related Methods

Page 262DB C++ API8/14/2009

DbEnv::set_errcall()

DbEnv::set_errfile()
#include <db_cxx.h>

void
DbEnv::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return value is
returned by the interface. In some cases, however, the return value may be insufficient to completely
describe the cause of the error especially during initial application debugging.

The DbEnv::set_errfile() and Db::set_errfile() methods are used to enhance the mechanism for
reporting error messages to the application by setting a C library FILE * to be used for displaying
additional Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output
an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the additional messages via an output stream, or the DbEnv::set_errcall() or Db::set_errcall() methods
to capture the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using Db::set_errpfx() or DbEnv::set_errpfx()), an error string, and a trailing <newline>
character.

The default configuration when applications first create Db or DbEnv handles is as if the Db::set_errfile()
or DbEnv::set_errfile() methods were called with the standard error output (stderr) specified as the
FILE * argument. Applications wanting no output at all can turn off this default configuration by calling
the Db::set_errfile() or DbEnv::set_errfile() methods with NULL as the FILE * argument. Additionally,
explicitly configuring the error output channel using any of the following methods will also turn off
this default output for the application:

• DbEnv::set_errfile()

• Db::set_errfile()

• DbEnv::set_errcall()

• Db::set_errcall()

• DbEnv::set_error_stream()

• Db::set_error_stream()

This error logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

The DbEnv::set_errfile() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_errfile() method may be called at any time during the life of the application.

Page 263DB C++ API8/14/2009

DbEnv::set_errfile()

Parameters

errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB error
information.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 264DB C++ API8/14/2009

DbEnv::set_errfile()

DbEnv::set_error_stream()
#include <db_cxx.h>

void DbEnv::set_error_stream(class ostream*);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is returned
by the interface. In some cases, however, the errno value may be insufficient to completely describe
the cause of the error, especially during initial application debugging.

The DbEnv::set_error_stream()and Db::set_error_stream() methods are used to enhance the mechanism
for reporting error messages to the application by setting the C++ ostream used for displaying additional
Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output an additional
error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using Db::set_errpfx(), an error string, and a trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() or Db::set_errfile() methods to display the additional
information via a C Library FILE *, or the DbEnv::set_errcall() and Db::set_errcall() methods to capture
the additional error information in a way that does not use either output streams or C Library FILE
*'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

The DbEnv::set_error_stream() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_error_stream() method may be called at any time during the life of the application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional error
information.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 265DB C++ API8/14/2009

DbEnv::set_error_stream()

DbEnv::set_errpfx()
#include <db_cxx.h>

void
DbEnv::set_errpfx(const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The Db::set_errpfx() and DbEnv::set_errpfx() methods do not copy the memory to which the errpfx
parameter refers; rather, they maintain a reference to it. Although this allows applications to modify
the error message prefix at any time (without repeatedly calling the interfaces), it means the memory
must be maintained until the handle is closed.

The DbEnv::set_errpfx() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_errpfx() method may be called at any time during the life of the application.

Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 266DB C++ API8/14/2009

DbEnv::set_errpfx()

DbEnv::set_feedback()
#include <db_cxx.h>

int
DbEnv::set_feedback(void (*db_feedback_fcn)(DbEnv *dbenv, int opcode,
 int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time. The
DbEnv::set_feedback()method can be used by applications to monitor progress within these operations.
When an operation is likely to take a long time, Berkeley DB will call the specified callback function
with progress information.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

It is up to the callback function to display this information in an appropriate manner.

The DbEnv::set_feedback() method configures operations performed using the specified DbEnv handle.

The DbEnv::set_feedback() method may be called at any time during the life of the application.

The DbEnv::set_feedback() method returns a non-zero error value on failure and 0 on success.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to report Berkeley
DB operation progress. The callback function must take three parameters:

• dbenv

The dbenv parameter is a reference to the enclosing database environment.

• opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the following
values:

• DB_RECOVER

The environment is being recovered.

• percent

The percent parameter is the percent of the operation that has been completed, specified as an
integer value between 0 and 100.

Page 267DB C++ API8/14/2009

DbEnv::set_feedback()

Class

DbEnv

See Also

Database Environments and Related Methods

Page 268DB C++ API8/14/2009

DbEnv::set_feedback()

DbEnv::set_flags()
#include <db_cxx.h>

int
DbEnv::set_flags(u_int32_t flags, int onoff);

Configure a database environment.

The database environment's flag values may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_flags", one or more whitespace
characters, and the method flag parameter as a string; for example, "set_flags DB_TXN_NOSYNC".
Because the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

• DB_AUTO_COMMIT

If set, Db handle operations for which no explicit transaction handle was specified, and which modify
databases in the database environment, will be automatically enclosed within a transaction.

Calling DbEnv::set_flags() with this flag only affects the specified DbEnv handle (and any other
Berkeley DB handles opened within the scope of that handle). For consistent behavior across the
environment, all DbEnv handles opened in the environment must either set this flag or the flag should
be specified in the DB_CONFIG configuration file.

This flag may be used to configure Berkeley DB at any time during the life of the application.

• DB_CDB_ALLDB

If set, Berkeley DB Concurrent Data Store applications will perform locking on an environment-wide
basis rather than on a per-database basis.

Calling DbEnv::set_flags() with the DB_CDB_ALLDB flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_CDB_ALLDB flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_CDB_ALLDB flag may be used to configure Berkeley DB only before the DbEnv::open() method
is called.

• DB_DIRECT_DB

Page 269DB C++ API8/14/2009

DbEnv::set_flags()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Turn off system buffering of Berkeley DB database files to avoid double caching.

Calling DbEnv::set_flags() with the DB_DIRECT_DB flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_DIRECT_DB flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_DIRECT_DB flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_DSYNC_DB

Configure Berkeley DB to flush database writes to the backing disk before returning from the write
system call, rather than flushing database writes explicitly in a separate system call, as necessary.
This is only available on some systems (for example, systems supporting the IEEE/ANSI Std 1003.1
(POSIX) standard O_DSYNC flag, or systems supporting the Windows FILE_FLAG_WRITE_THROUGH
flag). This flag may result in inaccurate file modification times and other file-level information for
Berkeley DB database files. This flag will almost certainly result in a performance decrease on most
systems. This flag is only applicable to certain filesysystems (for example, the Veritas VxFS filesystem),
where the filesystem's support for trickling writes back to stable storage behaves badly (or more
likely, has been misconfigured).

Calling DbEnv::set_flags() with the DB_DSYNC_DB flag only affects the specified DbEnv handle (and
any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_DSYNC_DB flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_DSYNC_DB flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_MULTIVERSION

If set, all databases in the environment will be opened as if DB_MULTIVERSION is passed to the
Db::open() method. This flag will be ignored for queue databases for which DB_MULTIVERSION is not
supported.

Calling DbEnv::set_flags() with the DB_MULTIVERSION flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_MULTIVERSION flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_MULTIVERSION flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_NOLOCKING

If set, Berkeley DB will grant all requested mutual exclusion mutexes and database locks without
regard for their actual availability. This functionality should never be used for purposes other than
debugging.

Page 270DB C++ API8/14/2009

DbEnv::set_flags()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Calling DbEnv::set_flags() with the DB_NOLOCKING flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle).

The DB_NOLOCKING flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_NOMMAP

If set, Berkeley DB will copy read-only database files into the local cache instead of potentially
mapping them into process memory (see the description of the DbEnv::set_mp_mmapsize() method
for further information).

Calling DbEnv::set_flags() with the DB_NOMMAP flag only affects the specified DbEnv handle (and
any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the DB_NOMMAP
flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_NOMMAP flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_NOPANIC

If set, Berkeley DB will ignore any panic state in the database environment. (Database environments
in a panic state normally refuse all attempts to call Berkeley DB functions, returning
DB_RUNRECOVERY.) This functionality should never be used for purposes other than debugging.

Calling DbEnv::set_flags() with the DB_NOPANIC flag only affects the specified DbEnv handle (and
any other Berkeley DB handles opened within the scope of that handle).

The DB_NOPANIC flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_OVERWRITE

Overwrite files stored in encrypted formats before deleting them. Berkeley DB overwrites files using
alternating 0xff, 0x00 and 0xff byte patterns. For file overwriting to be effective, the underlying file
must be stored on a fixed-block filesystem. Systems with journaling or logging filesystems will require
operating system support and probably modification of the Berkeley DB sources.

Calling DbEnv::set_flags() with the DB_OVERWRITE flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle).

The DB_OVERWRITE flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_PANIC_ENVIRONMENT

If set, Berkeley DB will set the panic state for the database environment. (Database environments
in a panic state normally refuse all attempts to call Berkeley DB functions, returning
DB_RUNRECOVERY.) This flag may not be specified using the environment's DB_CONFIG file.

Page 271DB C++ API8/14/2009

DbEnv::set_flags()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Calling DbEnv::set_flags() with the DB_PANIC_ENVIRONMENT flag affects the database environment,
including all threads of control accessing the database environment.

The DB_PANIC_ENVIRONMENT flag may be used to configure Berkeley DB only after the DbEnv::open()
method is called.

• DB_REGION_INIT

In some applications, the expense of page-faulting the underlying shared memory regions can affect
performance. (For example, if the page-fault occurs while holding a lock, other lock requests can
convoy, and overall throughput may decrease.) If set, Berkeley DB will page-fault shared regions
into memory when initially creating or joining a Berkeley DB environment. In addition, Berkeley DB
will write the shared regions when creating an environment, forcing the underlying virtual memory
and filesystems to instantiate both the necessary memory and the necessary disk space. This can
also avoid out-of-disk space failures later on.

Calling DbEnv::set_flags() with the DB_REGION_INIT flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_REGION_INIT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_REGION_INIT flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_TIME_NOTGRANTED

If set, database calls timing out based on lock or transaction timeout values will return
DB_LOCK_NOTGRANTED instead of DB_LOCK_DEADLOCK. This allows applications to distinguish
between operations which have deadlocked and operations which have exceeded their time limits.

Calling DbEnv::set_flags() with the DB_TIME_NOTGRANTED flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DbEnv handles opened in the environment must either set the
DB_TIME_NOTGRANTED flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TIME_NOTGRANTED flag may be used to configure Berkeley DB at any time during the life of
the application.

Note that the DbEnv::lock_get() and DbEnv::lock_vec() methods are unaffected by this flag.

• DB_TXN_NOSYNC

If set, Berkeley DB will not write or synchronously flush the log on transaction commit. This means
that transactions exhibit the ACI (atomicity, consistency, and isolation) properties, but not D
(durability); that is, database integrity will be maintained, but if the application or system fails, it
is possible some number of the most recently committed transactions may be undone during recovery.
The number of transactions at risk is governed by how many log updates can fit into the log buffer,
how often the operating system flushes dirty buffers to disk, and how often the log is checkpointed.

Calling DbEnv::set_flags() with the DB_TXN_NOSYNC flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior

Page 272DB C++ API8/14/2009

DbEnv::set_flags()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

across the environment, all DbEnv handles opened in the environment must either set the
DB_TXN_NOSYNC flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_NOSYNC flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_TXN_NOWAIT

If set and a lock is unavailable for any Berkeley DB operation performed in the context of a transaction,
cause the operation to return DB_LOCK_DEADLOCK (or DB_LOCK_NOTGRANTED if configured using
the DB_TIME_NOTGRANTED flag).

Calling DbEnv::set_flags() with the DB_TXN_NOWAIT flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_TXN_NOWAIT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_NOWAIT flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_TXN_SNAPSHOT

If set, all transactions in the environment will be started as if DB_TXN_SNAPSHOT were passed to
the DbEnv::txn_begin() method, and all non-transactional cursors will be opened as if
DB_TXN_SNAPSHOT were passed to the Db::cursor() method.

Calling DbEnv::set_flags() with the DB_TXN_SNAPSHOT flag only affects the specified DbEnv handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the
DB_TXN_SNAPSHOT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_SNAPSHOT flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_TXN_WRITE_NOSYNC

If set, Berkeley DB will write, but will not synchronously flush, the log on transaction commit. This
means that transactions exhibit the ACI (atomicity, consistency, and isolation) properties, but not
D (durability); that is, database integrity will be maintained, but if the system fails, it is possible
some number of the most recently committed transactions may be undone during recovery. The
number of transactions at risk is governed by how often the system flushes dirty buffers to disk and
how often the log is checkpointed.

Calling DbEnv::set_flags() with the DB_TXN_WRITE_NOSYNC flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DbEnv handles opened in the environment must either set the
DB_TXN_WRITE_NOSYNC flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_WRITE_NOSYNC flag may be used to configure Berkeley DB at any time during the life
of the application.

Page 273DB C++ API8/14/2009

DbEnv::set_flags()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

• DB_YIELDCPU

If set, Berkeley DB will yield the processor immediately after each page or mutex acquisition. This
functionality should never be used for purposes other than stress testing.

Calling DbEnv::set_flags() with the DB_YIELDCPU flag only affects the specified DbEnv handle (and
any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set the DB_YIELDCPU
flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_YIELDCPU flag may be used to configure Berkeley DB at any time during the life of the
application.

onoff

If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.

Errors

The DbEnv::set_flags() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 274DB C++ API8/14/2009

DbEnv::set_flags()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_intermediate_dir_mode()
#include <db_cxx.h>

int
DbEnv::set_intermediate_dir_mode(u_int32_t mode);

By default, Berkeley DB does not create intermediate directories needed for recovery, that is, if the
file /a/b/c/mydatabase is being recovered, and the directory path b/c does not exist, recovery will
fail. This default behavior is because Berkeley DB does not know what permissions are appropriate for
intermediate directory creation, and creating the directory might result in a security problem.

The DbEnv::set_intermediate_dir_mode() method causes Berkeley DB to create any intermediate
directories needed during recovery, using the specified permissions.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, created directories are owned by
the process owner; the group ownership of created directories is based on the system and directory
defaults, and is not further specified by Berkeley DB.

The database environment's intermediate directory permissions may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_intermediate_dir_mode", one or more whitespace characters, and the directory permissions.
Because the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_intermediate_dir_mode() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_intermediate_dir_mode() method may not be called after the DbEnv::open() method
is called.

The DbEnv::set_intermediate_dir_mode() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mode

The mode parameter specifies the directory permissions.

Directory permissions are interpreted as a string of nine characters, using the character set r (read),
w (write), x (execute or search), and - (none). The first character is the read permissions for the
directory owner (set to either r or -). The second character is the write permissions for the directory
owner (set to either w or -). The third character is the execute permissions for the directory owner
(set to either x or -).

Similarly, the second set of three characters are the read, write and execute/search permissions for
the directory group, and the third set of three characters are the read, write and execute/search
permissions for all others. For example, the string rwx------ would configure read, write and
execute/search access for the owner only. The string rwxrwx--- would configure read, write and

Page 275DB C++ API8/14/2009

DbEnv::set_intermediate_dir_mode()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

execute/search access for both the owner and the group. The string rwxr----- would configure read,
write and execute/search access for the directory owner and read-only access for the directory group.

Errors

The DbEnv::set_intermediate_dir_mode() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 276DB C++ API8/14/2009

DbEnv::set_intermediate_dir_mode()

DbEnv::set_isalive()
#include <db_cxx.h>

int
DbEnv::set_isalive(int (*is_alive)(DbEnv *dbenv, pid_t pid,
 db_threadid_t tid, u_int32_t flags));

Declare a function that returns if a thread of control (either a true thread or a process) is still running.
The DbEnv::set_isalive() method supports the DbEnv::failchk() method. For more information, see
Architecting Data Store and Concurrent Data Store applications, and Architecting Transactional Data
Store applications, both in the Berkeley DB Programmer's Reference Guide.

The DbEnv::set_isalive() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_isalive() method may be called at any time during the life of the application.

The DbEnv::set_isalive() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

is_alive

The is_alive parameter is a function which returns non-zero if the thread of control, identified by the
pid and tid arguments, is still running. The function takes four arguments:

• dbenv

The dbenv parameter is the enclosing database environment handle, allowing application access to
the application-private fields of that object.

• pid

The pid parameter is a process ID returned by the function specified to the DbEnv::set_thread_id()
method.

• tid

The tid parameter is a thread ID returned by the function specified to the DbEnv::set_thread_id()
method.

• flags

The flags parameter must be set to 0 or the following value:

• DB_MUTEX_PROCESS_ONLY

Return only if the process is alive, the thread ID should be ignored.

Page 277DB C++ API8/14/2009

DbEnv::set_isalive()

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html

Errors

The DbEnv::set_isalive() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 278DB C++ API8/14/2009

DbEnv::set_isalive()

DbEnv::set_message_stream()
#include <db_cxx.h>

void DbEnv::set_message_stream(class ostream*);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations. For example, the DbEnv::set_verbose() and DbEnv::stat_print() methods.

The DbEnv::set_message_stream() and Db::set_message_stream() methods are used to display these
messages for the application. In this case, the message will include a trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_msgfile() or Db::set_msgfile() methods to display the additional
information via a C Library FILE *, or the DbEnv::set_msgcall() and Db::set_msgcall() methods to
capture the additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

The DbEnv::set_message_stream() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_message_stream() method may be called at any time during the life of the application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional message
information.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 279DB C++ API8/14/2009

DbEnv::set_message_stream()

DbEnv::set_msgcall()
#include <db_cxx.h>

void DbEnv::set_msgcall(void (*db_msgcall_fcn)(const DbEnv *dbenv,
 const char *msg));

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DbEnv::set_verbose() and DbEnv::stat_print().

The DbEnv::set_msgcall() and Db::set_msgcall() methods are used to pass these messages to the
application, and Berkeley DB will call db_msgcall_fcn with each message. It is up to the db_msgcall_fcn
function to display the message in an appropriate manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the messages via an output stream, or the Db::set_msgfile() or Db::set_msgfile() methods to display
the messages via a C library FILE *. You should not mix these approaches.

The DbEnv::set_msgcall() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_msgcall() method may be called at any time during the life of the application.

Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

☞

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The function
takes two parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

• msg

The msg parameter is the message string.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 280DB C++ API8/14/2009

DbEnv::set_msgcall()

DbEnv::set_msgfile()
#include <db_cxx.h>

void
DbEnv::set_msgfile(FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DbEnv::set_verbose() and DbEnv::stat_print().

The DbEnv::set_msgfile() and Db::set_msgfile() methods are used to display these messages for the
application. In this case the message will include a trailing <newline> character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_message_stream() and Db::set_message_stream() methods
to display the messages via an output stream, or the DbEnv::set_msgcall() or Db::set_msgcall() methods
to capture the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

The DbEnv::set_msgfile() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_msgfile() method may be called at any time during the life of the application.

Parameters

msgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 281DB C++ API8/14/2009

DbEnv::set_msgfile()

DbEnv::set_shm_key()
#include <db_cxx.h>

int
DbEnv::set_shm_key(long shm_key);

Specify a base segment ID for Berkeley DB environment shared memory regions created in system
memory on VxWorks or systems supporting X/Open-style shared memory interfaces; for example, UNIX
systems supporting shmget(2) and related System V IPC interfaces.

This base segment ID will be used when Berkeley DB shared memory regions are first created. It will
be incremented a small integer value each time a new shared memory region is created; that is, if the
base ID is 35, the first shared memory region created will have a segment ID of 35, and the next one
will have a segment ID between 36 and 40 or so. A Berkeley DB environment always creates a master
shared memory region; an additional shared memory region for each of the subsystems supported by
the environment (Locking, Logging, Memory Pool and Transaction); plus an additional shared memory
region for each additional memory pool cache that is supported. Already existing regions with the same
segment IDs will be removed. See Shared Memory Regions for more information.

The intent behind this method is two-fold: without it, applications have no way to ensure that two
Berkeley DB applications don't attempt to use the same segment IDs when creating different Berkeley
DB environments. In addition, by using the same segment IDs each time the environment is created,
previously created segments will be removed, and the set of segments on the system will not grow
without bound.

The database environment's base segment ID may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_shm_key", one or more
whitespace characters, and the ID. Because the DB_CONFIG file is read when the database environment
is opened, it will silently overrule configuration done before that time.

The DbEnv::set_shm_key() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_shm_key() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_shm_key() must be consistent with the existing environment or corruption can occur.

The DbEnv::set_shm_key() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

shm_key

The shm_key parameter is the base segment ID for the database environment.

Page 282DB C++ API8/14/2009

DbEnv::set_shm_key()

../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Errors

The DbEnv::set_shm_key() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 283DB C++ API8/14/2009

DbEnv::set_shm_key()

DbEnv::set_thread_count()
#include <db_cxx.h>

int
DbEnv::set_thread_count(u_int32_t count);

Declare an approximate number of threads in the database environment. The DbEnv::set_thread_count()
method must be called prior to opening the database environment if the DbEnv::failchk() method will
be used. The DbEnv::set_thread_count() method does not set the maximum number of threads but is
used to determine memory sizing and the thread control block reclamation policy.

If a process has not configured an is_alive function from the DbEnv::set_isalive() method, and then
attempts to join a database environment configured for failure checking with the DbEnv::failchk(),
DbEnv::set_thread_id(), DbEnv::set_isalive() and DbEnv::set_thread_count() methods, the program
may be unable to allocate a thread control block and fail to join the environment. This is true of the
standalone Berkeley DB utility programs. To avoid problems when using the standalone Berkeley DB
utility programs with environments configured for failure checking, incorporate the utility's functionality
directly in the application, or call the DbEnv::failchk() method before running the utility.

The database environment's thread count may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_thread_count", one or more
whitespace characters, and the thread count. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_thread_count() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_thread_count() method may not be called after the DbEnv::open() method is called.

The DbEnv::set_thread_count() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

count

The count parameter is an approximate thread count for the database environment.

Errors

The DbEnv::set_thread_count() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Page 284DB C++ API8/14/2009

DbEnv::set_thread_count()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Class

DbEnv

See Also

Database Environments and Related Methods

Page 285DB C++ API8/14/2009

DbEnv::set_thread_count()

DbEnv::set_thread_id()
#include <db_cxx.h>

int
DbEnv::set_thread_id(char *(*thread_id_string)(DbEnv *dbenv,
 pid_t pid, db_threadid_t tid, char *buf));

Declare a function that returns a unique identifier pair for the current thread of control. The
DbEnv::set_thread_id() method supports the DbEnv::failchk() method. For more information, see
Architecting Data Store and Concurrent Data Store applications, and Architecting Transactional Data
Store applications, both in the Berkeley DB Programmer's Reference Guide.

The DbEnv::set_thread_id()method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_thread_id() method may be called at any time during the life of the application.

The DbEnv::set_thread_id() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

thread_id

The thread_id parameter is a function which returns a unique identifier pair for a thread of control
in a Berkeley DB application. The function takes three arguments:

• dbenv

The dbenv parameter is the enclosing database environment handle, allowing application access to
the application-private fields of that object.

• pid

The pid points to a memory location of type pid_t, or NULL. The process ID of the current thread
of control may be returned in this memory location, if it is not NULL.

• tid

The tid points to a memory location of type db_threadid_t, or NULL. The thread ID of the current
thread of control may be returned in this memory location, if it is not NULL.

Errors

The DbEnv::set_thread_id() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Page 286DB C++ API8/14/2009

DbEnv::set_thread_id()

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html

Assigning Thread IDs

The standard system library calls to return process and thread IDs are often sufficient for this purpose
(for example, getpid() and pthread_self() on POSIX systems or GetCurrentThreadID on Windows
systems). However, if the Berkeley DB application dynamically creates processes or threads, some care
may be necessary in assigning unique IDs. In most threading systems, process and thread IDs are available
for re-use as soon as the process or thread exits. If a new process or thread is created between the
time of process or thread exit, and the DbEnv::failchk() method is run, it may be possible for
DbEnv::failchk() to not detect that a thread of control exited without properly releasing all Berkeley
DB resources.

It may be possible to handle this problem by inhibiting process or thread creation between thread of
control exit and calling the DbEnv::failchk() method. Alternatively, the thread_id function must be
constructed to not re-use pid/tid pairs. For example, in a single process application, the returned
process ID might be used as an incremental counter, with the returned thread ID set to the actual
thread ID. Obviously, the is_alive function specified to the DbEnv::set_isalive() method must be
compatible with any thread_id function specified to DbEnv::set_thread_id().

The db_threadid_t type is configured to be the same type as a standard thread identifier, in Berkeley
DB configurations where this type is known (for example, systems supporting pthread_t or thread_t,
or DWORD on Windows). If the Berkeley DB configuration process is unable to determine the type of a
standard thread identifier, the db_thread_t type is set to uintmax_t (or the largest available unsigned
integral type, on systems lacking the uintmax_t type). Applications running on systems lacking a
detectable standard thread type, and which are also using thread APIs where a thread identifier is not
an integral value and so will not fit into the configured db_threadid_t type, must either translate
between the db_threadid_t type and the thread identifier (mapping the thread identifier to a unique
identifier of the appropriate size), or modify the Berkeley DB sources to use an appropriate db_threadid_t
type. Note: we do not currently know of any systems where this is necessary. If your application has
to solve this problem, please contact our support group and let us know.

If no thread_id function is specified by the application, the Berkeley DB library will identify threads
of control by using the taskIdSelf() call on VxWorks, the getpid() and GetCurrentThreadID() calls
on Windows, the getpid() and pthread_self() calls when the Berkeley DB library has been configured
for POSIX pthreads or Solaris LWP threads, the getpid() and thr_self() calls when the Berkeley DB
library has been configured for UI threads, and otherwise getpid().

Class

DbEnv

See Also

Database Environments and Related Methods

Page 287DB C++ API8/14/2009

DbEnv::set_thread_id()

DbEnv::set_thread_id_string()
#include <db_cxx>

int
DbEnv::set_thread_id(void (*thread_id)
 (DbEnv *dbenv, pid_t *pid, db_threadid_t *tid));

Declare a function that formats a process ID and thread ID identifier pair for display into a caller-supplied
buffer. The function must return a reference to the caller-specified buffer. The
DbEnv::set_thread_id_string() method supports the DbEnv::set_thread_id() method.

The DbEnv::set_thread_id_string()method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_thread_id_string()method may be called at any time during the life of the application.

The DbEnv::set_thread_id_string()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

thread_id_string

The thread_id_string parameter is a function which returns a buffer in which is an identifier pair
formatted for display. The function takes four arguments:

• dbenv

The dbenv parameter is the enclosing database environment handle, allowing application access to
the application-private fields of that object.

• pid

The pid argument is a process ID.

• tid

The tid argument is a thread ID.

• buf

The buf argument is character array of at least DB_THREADID_STRLEN bytes in length, into which
the identifier pair should be formatted.

If no thread_id_string function is specified, the default routine displays the identifier pair as "pid/tid",
that is, the process ID represented as an unsigned integer value, a slash ('/') character, then the thread
ID represented as an unsigned integer value.

Page 288DB C++ API8/14/2009

DbEnv::set_thread_id_string()

Errors

The DbEnv::set_thread_id_string()method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 289DB C++ API8/14/2009

DbEnv::set_thread_id_string()

DbEnv::set_timeout()
#include <db_cxx.h>

int
DbEnv::set_timeout(db_timeout_t timeout, u_int32_t flags);

The DbEnv::set_timeout() method sets timeout values for locks or transactions in the database
environment, and the wait time for a process to exit the environment when DB_REGISTER recovery is
needed.

DB_SET_LOCK_TIMEOUT and DB_SET_TXN_TIMEOUT timeouts are checked whenever a thread of control
blocks on a lock or when deadlock detection is performed. In the case of DB_SET_LOCK_TIMEOUT, the
lock is one requested explicitly through the Lock subsystem interfaces. In the case of
DB_SET_TXN_TIMEOUT, the lock is one requested on behalf of a transaction. In either case, it may be
a lock requested by the database access methods underlying the application. These timeouts are only
checked when the lock request first blocks or when deadlock detection is performed, the accuracy of
the timeout depends on how often deadlock detection is performed.

Lock and transaction timeout values specified for the database environment may be overridden on a
per-lock or per-transaction basis. See DbEnv::lock_vec() and DbTxn::set_timeout() for more information.

The DbEnv::set_timeout() method may be called at any time during the life of the application.

The DbEnv::set_timeout() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to one of the following values:

• DB_SET_LOCK_TIMEOUT

Set the timeout value for locks in this database environment.

The database environment's lock timeout value may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lock_timeout",
one or more whitespace characters, and the lock timeout value. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that
time.

This flag configures a database environment, not only operations performed using the specified DbEnv
handle.

• DB_SET_REG_TIMEOUT

Set the timeout value on how long to wait for processes to exit the environment before recovery is
started when the DbEnv::open() method was called with the DB_REGISTER flag and recovery must
be performed.

Page 290DB C++ API8/14/2009

DbEnv::set_timeout()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

This wait timeout value may also be configured using the environment's DB_CONFIG file. The syntax
of the entry in that file is a single line with the string "set_reg_timeout", one or more whitespace
characters, and the wait timeout value. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

This flag configures operations performed using the specified DbEnv handle.

• DB_SET_TXN_TIMEOUT

Set the timeout value for transactions in this database environment.

The database environment's transaction timeout value may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_txn_timeout",
one or more whitespace characters, and the transaction timeout value. Because the DB_CONFIG file
is read when the database environment is opened, it will silently overrule configuration done before
that time.

This flag configures a database environment, not only operations performed using the specified DbEnv
handle.

timeout

The timeout parameter is the timeout value. It must be specified as an unsigned 32-bit number of
microseconds, limiting the maximum timeout to roughly 71 minutes.

Errors

The DbEnv::set_timeout() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 291DB C++ API8/14/2009

DbEnv::set_timeout()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_tmp_dir()
#include <db_cxx.h>

int
DbEnv::set_tmp_dir(const char *dir);

Specify the path of a directory to be used as the location of temporary files. The files created to back
in-memory access method databases will be created relative to this path. These temporary files can
be quite large, depending on the size of the database.

If no directories are specified, the following alternatives are checked in the specified order. The first
existing directory path is used for all temporary files.

1. The value of the environment variable TMPDIR.

2. The value of the environment variable TEMP.

3. The value of the environment variable TMP.

4. The value of the environment variable TempFolder.

5. The value returned by the GetTempPath interface.

6. The directory /var/tmp.

7. The directory /usr/tmp.

8. The directory /temp.

9. The directory /tmp.

10. The directory C:/temp.

11. The directory C:/tmp.

Environment variables are only checked if one of the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT
flags were specified.☞
The GetTempPath interface is only checked on Win/32 platforms.☞

The database environment's temporary file directory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_tmp_dir", one
or more whitespace characters, and the directory name. Because the DB_CONFIG file is read when the
database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_tmp_dir() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_tmp_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Page 292DB C++ API8/14/2009

DbEnv::set_tmp_dir()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Parameters

dir

The dir parameter is the directory to be used to store temporary files.

When using a Unicode build on Windows (the default), the this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_tmp_dir() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 293DB C++ API8/14/2009

DbEnv::set_tmp_dir()

DbEnv::set_verbose()
#include <db_cxx.h>

int
DbEnv::set_verbose(u_int32_t which, int onoff);

The DbEnv::set_verbose() method turns specific additional informational and debugging messages in
the Berkeley DB message output on and off. To see the additional messages, verbose messages must
also be configured for the application. For more information on verbose messages, see the
DbEnv::set_msgfile() method.

The database environment's messages may also be configured using the environment's DB_CONFIG file.
The syntax of the entry in that file is a single line with the string "set_verbose", one or more whitespace
characters, and the method which parameter as a string; for example, "set_verbose
DB_VERB_RECOVERY". Because the DB_CONFIG file is read when the database environment is opened,
it will silently overrule configuration done before that time.

The DbEnv::set_verbose() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_verbose() method may be called at any time during the life of the application.

The DbEnv::set_verbose() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

onoff

If the onoff parameter is set to non-zero, the additional messages are output.

which

The which parameter must be set to one of the following values:

• DB_VERB_DEADLOCK

Display additional information when doing deadlock detection.

• DB_VERB_FILEOPS

Display additional information when performing filesystem operations such as open, close or rename.
May not be available on all platforms.

• DB_VERB_FILEOPS_ALL

Display additional information when performing all filesystem operations, including read and write.
May not be available on all platforms.

• DB_VERB_RECOVERY

Page 294DB C++ API8/14/2009

DbEnv::set_verbose()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Display additional information when performing recovery.

• DB_VERB_REGISTER

Display additional information concerning support for the DB_REGISTER flag to the DbEnv::open()
method.

• DB_VERB_REPLICATION

Display all detailed information about replication. This includes the information displayed by all of
the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

• DB_VERB_REP_ELECT

Display detailed information about replication elections.

• DB_VERB_REP_LEASE

Display detailed information about replication master leases.

• DB_VERB_REP_MISC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

• DB_VERB_REP_MSGS

Display detailed information about replication message processing.

• DB_VERB_REP_SYNC

Display detailed information about replication client synchronization.

• DB_VERB_REPMGR_CONNFAIL

Display detailed information about Replication Manager connection failures.

• DB_VERB_REPMGR_MISC

Display detailed information about general Replication Manager processing.

• DB_VERB_WAITSFOR

Display the waits-for table when doing deadlock detection.

Errors

The DbEnv::set_verbose() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

Page 295DB C++ API8/14/2009

DbEnv::set_verbose()

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 296DB C++ API8/14/2009

DbEnv::set_verbose()

DbEnv::stat_print()
#include <db_cxx.h>

int
DbEnv::stat_print(u_int32_t flags);

The DbEnv::stat_print() method displays the default statistical information. The information is printed
to a specified output channel (see the DbEnv::set_msgfile() method for more information), or passed
to an application callback function (see the DbEnv::set_msgcall() method for more information).

The DbEnv::stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::stat_print() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

• DB_STAT_SUBSYSTEM

Display information for all configured subsystems.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 297DB C++ API8/14/2009

DbEnv::stat_print()

DbEnv::strerror()
#include <db_cxx.h>

static char *
DbEnv::strerror(int error);

The DbEnv::strerror() method returns an error message string corresponding to the error number
error parameter.

This function is a superset of the ANSI C X3.159-1989 (ANSI C) strerror(3) function. If the error number
error is greater than or equal to 0, then the string returned by the system function strerror(3) is
returned. If the error number is less than 0, an error string appropriate to the corresponding Berkeley
DB library error is returned. See Error returns to applications for more information.

Parameters

error

The error parameter is the error number for which an error message string is wanted.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 298DB C++ API8/14/2009

DbEnv::strerror()

../../programmer_reference/program_errorret.html

DbEnv::version()
#include <db_cxx.h>

static char *
DbEnv::version(int *major, int *minor, int *patch);

The DbEnv::version() method returns a pointer to a string, suitable for display, containing Berkeley
DB version information.

Parameters

major

If major is non-NULL, the major version of the Berkeley DB release is copied to the memory to which
it refers.

minor

If minor is non-NULL, the minor version of the Berkeley DB release is copied to the memory to which
it refers.

patch

If patch is non-NULL, the patch version of the Berkeley DB release is copied to the memory to which
it refers.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 299DB C++ API8/14/2009

DbEnv::version()

Chapter 6. The DbException Class
#include <db_cxx.h>
class DbException {
public:
 int get_errno() const;
 virtual const char *what() const;
 DbEnv *get_env() const;
};

This information describes the DbException class and how it is used by the various Berkeley DB classes.

Most methods in the Berkeley DB classes return an int, but also throw an exception. This allows for
two different error behaviors. By default, the Berkeley DB C++ API is configured to throw an exception
whenever a serious error occurs. This generally allows for cleaner logic for transaction processing
because a try block can surround a single transaction. Alternatively, Berkeley DB can be configured to
not throw exceptions, and instead have the individual function return an error code, by setting the
DB_CXX_NO_EXCEPTIONS for the Db and DbEnv constructors.

A DbException object contains an informational string, an errno, and a reference to the environment
from which the exception was thrown. The errno can be obtained by using the DbException::get_errno()
method, and can be used, in standard cases, to determine the type of the exception. The informational
string can be obtained by using the DbException::what(). And, the environment can be obtained using
the DbException::get_env() method.

We expect in the future that this class will inherit from the standard class exception, but certain
language implementation bugs currently prevent this on some platforms.

Some methods may return non-zero values without issuing an exception. This occurs in situations that
are not normally considered an error, but when some informational status is returned. For example,
the Db::get() method returns DB_NOTFOUND when a requested key does not appear in the database.

Page 300DB C++ API8/14/2009

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DB C++ Exceptions

DescriptionDB C++ Exceptions

Exception class for deadlocksDbDeadlockException

Exception class for lock request failuresDbLockNotGrantedException

Exception class for insufficient memoryDbMemoryException

Exception class for database and cursor handles
that are invalidated in a replicated application.

DbRepHandleDeadException

Exception class for failures requiring recoveryDbRunRecoveryException

Page 301DB C++ API8/14/2009

DB C++ Exceptions

DbDeadlockException
#include <db_cxx.h>

class DbDeadlockException : public DbException { ... };

This information describes the DbDeadlockException class and how it is used by the various Berkeley
DB classes.

A DbDeadlockException is thrown when multiple threads competing for a lock are deadlocked, when a
lock request has timed out (and DB_TIME_NOTGRANTED has not been set in the environment), or when
a lock request would need to block and the transaction has been configured to not wait for locks. One
of the threads' transactions is selected for termination, and a DbDeadlockException is thrown to that
thread.

The DbException errno value is set to DB_LOCK_DEADLOCK.

Page 302DB C++ API8/14/2009

DbDeadlockException

DbLockNotGrantedException
#include <db_cxx.h>

class DbLockNotGrantedException : public DbException {
public:
 db_lockop_t get_op() const;
 db_lockmode_t get_mode() const;
 const Dbt* get_obj() const;
 DbLock *get_lock() const;
 int get_index() const;
};

This information describes the DbLockNotGrantedException class and how it is used by the various
Berkeley DB classes.

A DbLockNotGrantedException is thrown when lock or transaction timeouts have been configured, a
database operation has timed out, and the DB_TIME_NOTGRANTED configuration flag has been specified.

Additionally DbLockNotGrantedException is thrown when a Berkeley DB Concurrent Data Store database
environment configured for lock timeouts was unable to grant a lock in the allowed time.

Finally, DbLockNotGrantedException is thrown when a lock requested using the DbEnv::lock_get() or
DbEnv::lock_vec() methods, where the DB_LOCK_NOWAIT flag or lock timers were configured, could
not be granted before the wait-time expired.

The DbException errno value is set to DB_LOCK_NOTGRANTED.

The following getter methods are available on this class:

• get_op()

Returns DB_LOCK_GET when DbEnv::lock_get() was called, and returns the op for the failed DB_LOCKREQ
when DbEnv::lock_vec() was called. If this exception is raised due to a database operation, DB_LOCK_GET
is returned.

• get_mode()

Returns the mode parameter when DbEnv::lock_get() was called, and returns the mode for the failed
DB_LOCKREQ when DbEnv::lock_vec() was called. If this exception is raised due to a database operation,
DB_LOCK_NG is returned.

• get_obj()

Returns the object parameter when DbEnv::lock_get() was called, and returns the object for the
failed DB_LOCKREQ when DbEnv::lock_vec() was called. The Dbt pointer may or may not refer valid
memory, depending on whether the Dbt used in the call to the failed DbEnv::lock_get() or
DbEnv::lock_vec() method is still in scope and has not been deleted.

• get_lock()

Page 303DB C++ API8/14/2009

DbLockNotGrantedException

Returns NULL when DbEnv::lock_get() was called, and returns the lock in the failed DB_LOCKREQ when
DbEnv::lock_vec() was called. If this exception is raised due to a database operation, NULL is returned.

• get_index()

Returns -1 when DbEnv::lock_get() was called, and returns the index of the failed DB_LOCKREQ when
DbEnv::lock_vec() was called. If this exception is raised due to a database operation, 0 is returned.

Page 304DB C++ API8/14/2009

DbLockNotGrantedException

DbMemoryException
#include <db_cxx.h>

class DbMemoryException : public DbException {
public:
 Dbt *get_dbt() const;
};

This information describes the DbMemoryException class and how it is used by the various Berkeley DB
classes.

A DbMemoryException is thrown when there is insufficient memory to complete an operation, and there
is the possibility of recovering. An example is during a Db::get() or Dbc::get() operation with the Dbt
flags set to DB_DBT_USERMEM.

The DbException errno value is set to DB_BUFFER_SMALL or ENOMEM.

The get_dbt() method returns the Dbt with insufficient memory to complete the operation, causing
the DbMemoryException to be thrown. The Dbt pointer may or may not refer to valid memory, depending
on whether the Dbt used in the call to the failed Berkeley DB method is still in scope and has not been
deleted.

Page 305DB C++ API8/14/2009

DbMemoryException

DbRepHandleDeadException
#include <db_cxx.h>

class DbRepHandleDeadException : public DbException {
};

This information describes the DbRepHandleDead class and how it is used by the various Berkeley DB
classes.

A DbRepHandleDeadException is seen only for replicated applications. When a client synchronizes with
the master, it is possible for committed transactions to be rolled back. This invalidates all the database
and cursor handles opened in the replication environment.

This exception is therefore thrown when the application attempts to access a database or cursor handle
that has been invalidated due to a transaction roll back.

When this exception is seen, the application must abandon the attempted operation, discard the handle,
and then open a new one before proceeding with the abandoned operation.

Page 306DB C++ API8/14/2009

DbRepHandleDeadException

DbRunRecoveryException
#include <db_cxx.h>

class DbRunRecoveryException : public DbException { ... };

This information describes the DbRunRecoveryException class and how it is used by the various Berkeley
DB classes.

Errors can occur in the Berkeley DB library where the only solution is to shut down the application and
run recovery (for example, if Berkeley DB is unable to allocate heap memory). When a fatal error occurs
in Berkeley DB, methods will throw a DbRunRecoveryException, at which point all subsequent Berkeley
DB calls will also fail in the same way. When this occurs, recovery should be performed.

The DbException errno value is set to DB_RUNRECOVERY.

Page 307DB C++ API8/14/2009

DbRunRecoveryException

Chapter 7. The DbLock Handle

#include <db_cxx.h>

class DbLock {
public:
 DbLock();
 DbLock(const DbLock &);
 DbLock &operator = (const DbLock &);
 ~DbLock();
};

The locking interfaces for the Berkeley DB database environment are methods of the DbEnv handle.
The DbLock object is the handle for a single lock, and has no methods of its own.

Page 308DB C++ API8/14/2009

Locking Subsystem and Related Methods

DescriptionLocking Subsystem and Related
Methods

Exception class for deadlocksDbDeadlockException

Exception class for lock request failuresDbLockNotGrantedException

Perform deadlock detectionDbEnv::lock_detect()

Acquire a lockDbEnv::lock_get()

Acquire a locker IDDbEnv::lock_id()

Release a locker IDDbEnv::lock_id_free()

Release a lockDbEnv::lock_put()

Return lock subsystem statisticsDbEnv::lock_stat()

Print lock subsystem statisticsDbEnv::lock_stat_print()

Acquire/release locksDbEnv::lock_vec()

Get a locker ID in Berkeley DB Concurrent Data
Store

DbEnv::cdsgroup_begin()

Locking Subsystem Configuration

Set/get lock and transaction timeoutDbEnv::set_timeout(), DbEnv::get_timeout()

Set/get lock conflicts matrixDbEnv::set_lk_conflicts(), DbEnv::get_lk_conflicts()

Set/get automatic deadlock detectionDbEnv::set_lk_detect(), DbEnv::get_lk_detect()

Set/get maximum number of lockersDbEnv::set_lk_max_lockers(),
DbEnv::get_lk_max_lockers()

Set/get maximum number of locksDbEnv::set_lk_max_locks(),
DbEnv::get_lk_max_locks()

Set/get maximum number of lock objectsDbEnv::set_lk_max_objects(),
DbEnv::get_lk_max_objects()

Set/get number of lock partitionsDbEnv::set_lk_partitions(),
DbEnv::get_lk_partitions()

Page 309DB C++ API8/14/2009

Locking Subsystem and Related
Methods

DbEnv::get_lk_conflicts()
#include <db_cxx.h>

int
DbEnv::get_lk_conflicts(const u_int8_t **lk_conflictsp, int *lk_modesp);

The DbEnv::get_lk_conflicts() method returns the current conflicts array. You can specify a conflicts
array using DbEnv::set_lk_conflicts()

The DbEnv::get_lk_conflicts() method may be called at any time during the life of the application.

The DbEnv::get_lk_conflicts() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_conflictsp

The lk_conflictsp parameter references memory into which a pointer to the current conflicts array is
copied.

lk_modesp

The lk_modesp parameter references memory into which the size of the current conflicts array is
copied.

Errors

The DbEnv::get_lk_conflicts() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods, DbEnv::set_lk_conflicts()

Page 310DB C++ API8/14/2009

DbEnv::get_lk_conflicts()

DbEnv::get_lk_detect()
#include <db_cxx.h>

int
DbEnv::get_lk_detect(u_int32_t *lk_detectp);

The DbEnv::get_lk_detect() method returns the deadlock detector configuration. You can manage
this using the DbEnv::set_lk_detect() method.

The DbEnv::get_lk_detect() method may be called at any time during the life of the application.

The DbEnv::get_lk_detect() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_detectp

The DbEnv::get_lk_detect() method returns the deadlock detector configuration in lk_detectp.

Errors

The DbEnv::get_lk_detect() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods, DbEnv::set_lk_detect()

Page 311DB C++ API8/14/2009

DbEnv::get_lk_detect()

DbEnv::get_lk_max_lockers()
#include <db_cxx.h>

int
DbEnv::get_lk_max_lockers(u_int32_t *, lk_maxp);

The DbEnv::get_lk_max_lockers() method returns the maximum number of potential lockers. You can
configure this using the DbEnv::set_lk_max_lockers() method.

The DbEnv::get_lk_max_lockers() method may be called at any time during the life of the application.

The DbEnv::get_lk_max_lockers() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_maxp

The DbEnv::get_lk_max_lockers() method returns the maximum number of lockers in lk_maxp.

Errors

The DbEnv::get_lk_max_lockers() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods, DbEnv::set_lk_max_lockers()

Page 312DB C++ API8/14/2009

DbEnv::get_lk_max_lockers()

DbEnv::get_lk_max_locks()
#include <db_cxx.h>

int
DbEnv::get_lk_max_locks(u_int32_t *lk_maxp);

The DbEnv::get_lk_max_locks() method returns the maximum number of potential locks. You can
configure this using the DbEnv::set_lk_max_locks() method.

The DbEnv::get_lk_max_locks() method may be called at any time during the life of the application.

The DbEnv::get_lk_max_locks() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_maxp

The DbEnv::get_lk_max_locks() method returns the maximum number of locks in lk_maxp.

Errors

The DbEnv::get_lk_max_locks() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods, DbEnv::set_lk_max_locks()

Page 313DB C++ API8/14/2009

DbEnv::get_lk_max_locks()

DbEnv::get_lk_max_objects()
#include <db_cxx.h>

int
DbEnv::get_lk_max_objects(u_int32_t *lk_maxp);

The DbEnv::get_lk_max_objects() method returns the maximum number of locked objects. You can
configure this using the DbEnv::set_lk_max_objects() method.

The DbEnv::get_lk_max_objects() method may be called at any time during the life of the application.

The DbEnv::get_lk_max_objects() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_maxp

The DbEnv::get_lk_max_objects() method returns the maximum number of potentially locked objects
in lk_maxp.

Errors

The DbEnv::get_lk_max_objects() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods, DbEnv::set_lk_max_objects()

Page 314DB C++ API8/14/2009

DbEnv::get_lk_max_objects()

DbEnv::get_lk_partitions()
#include <db_cxx.h>

int
DbEnv::get_lk_partitions(u_int32_t *lk_partitions);

The DbEnv::get_lk_partitions() method returns the number of lock table partitions used in the
Berkeley DB environment. You can configure this using the DbEnv::set_lk_partitions() method.

The DbEnv::get_lk_partitions() method may be called at any time during the life of the application.

The DbEnv::get_lk_partitions() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_partitions

The DbEnv::get_lk_partitions() method returns the number of partitions in lk_partitions.

Errors

The DbEnv::get_lk_partitions() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods, DbEnv::set_lk_partitions()

Page 315DB C++ API8/14/2009

DbEnv::get_lk_partitions()

DbEnv::set_lk_conflicts()
#include <db_cxx.h>

int
DbEnv::set_lk_conflicts(u_int8_t *conflicts, int nmodes);

Set the locking conflicts matrix.

If DbEnv::set_lk_conflicts() is never called, a standard conflicts array is used; see Standard Lock
Modes for more information.

The DbEnv::set_lk_conflicts() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lk_conflicts() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lk_conflicts() will be ignored.

The DbEnv::set_lk_conflicts() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

conflicts

The conflicts parameter is the new locking conflicts matrix. The conflicts parameter is an nmodes by
nmodes array. A non-0 value for the array element indicates that requested_mode and held_mode
conflict:

 conflicts[requested_mode][held_mode]

The not-granted mode must be represented by 0.

nmodes

The nmodes parameter is the size of the lock conflicts matrix.

Errors

The DbEnv::set_lk_conflicts() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

ENOMEM

The conflicts array could not be copied.

Page 316DB C++ API8/14/2009

DbEnv::set_lk_conflicts()

../../programmer_reference/lock_stdmode.html
../../programmer_reference/lock_stdmode.html

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 317DB C++ API8/14/2009

DbEnv::set_lk_conflicts()

DbEnv::set_lk_detect()
#include <db_cxx.h>

int
DbEnv::set_lk_detect(u_int32_t detect);

Set if the deadlock detector is to be run whenever a lock conflict occurs, and specify what lock request(s)
should be rejected. As transactions acquire locks on behalf of a single locker ID, rejecting a lock request
associated with a transaction normally requires the transaction be aborted.

The database environment's deadlock detector configuration may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_lk_detect", one or more whitespace characters, and the method detect parameter as a string; for
example, "set_lk_detect DB_LOCK_OLDEST". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lk_detect()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_lk_detect() method may be called at any time during the life of the application.

The DbEnv::set_lk_detect() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

detect

The detect parameter configures the deadlock detector. The specified value must be one of the
following list:

• DB_LOCK_DEFAULT

Use whatever lock policy was specified when the database environment was created. If no lock policy
has yet been specified, set the lock policy to DB_LOCK_RANDOM.

• DB_LOCK_EXPIRE

Reject lock requests which have timed out. No other deadlock detection is performed.

• DB_LOCK_MAXLOCKS

Reject the lock request for the locker ID with the most locks.

• DB_LOCK_MAXWRITE

Reject the lock request for the locker ID with the most write locks.

• DB_LOCK_MINLOCKS

Page 318DB C++ API8/14/2009

DbEnv::set_lk_detect()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Reject the lock request for the locker ID with the fewest locks.

• DB_LOCK_MINWRITE

Reject the lock request for the locker ID with the fewest write locks.

• DB_LOCK_OLDEST

Reject the lock request for the locker ID with the oldest lock.

• DB_LOCK_RANDOM

Reject the lock request for a random locker ID.

• DB_LOCK_YOUNGEST

Reject the lock request for the locker ID with the youngest lock.

Errors

The DbEnv::set_lk_detect() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 319DB C++ API8/14/2009

DbEnv::set_lk_detect()

DbEnv::set_lk_max_lockers()
#include <db_cxx.h>

int
DbEnv::set_lk_max_lockers(u_int32_t max);

Set the maximum number of locking entities supported by the Berkeley DB environment. This value is
used by DbEnv::open() to estimate how much space to allocate for various lock-table data structures.
The default value is 1000 lockers. For specific information on configuring the size of the lock subsystem,
see Configuring locking: sizing the system.

The database environment's maximum number of lockers may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_max_lockers",
one or more whitespace characters, and the number of lockers. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lk_max_lockers() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lk_max_lockers() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lk_max_lockers() will be ignored.

The DbEnv::set_lk_max_lockers() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the maximum number simultaneous locking entities supported by the Berkeley
DB environment.

Errors

The DbEnv::set_lk_max_lockers() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 320DB C++ API8/14/2009

DbEnv::set_lk_max_lockers()

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_lk_max_locks()
#include <db_cxx.h>

int
DbEnv::set_lk_max_locks(u_int32_t max);

Set the maximum number of locks supported by the Berkeley DB environment. This value is used by
DbEnv::open() to estimate how much space to allocate for various lock-table data structures. The
default value is 1000 locks. For specific information on configuring the size of the lock subsystem, see
Configuring locking: sizing the system.

The database environment's maximum number of locks may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_max_locks",
one or more whitespace characters, and the number of locks. Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lk_max_locks() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lk_max_locks() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lk_max_locks() will be ignored.

The DbEnv::set_lk_max_locks() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the maximum number of locks supported by the Berkeley DB environment.

Errors

The DbEnv::set_lk_max_locks() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 321DB C++ API8/14/2009

DbEnv::set_lk_max_locks()

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_lk_max_objects()
#include <db_cxx.h>

int
DbEnv::set_lk_max_objects(u_int32_t max);

Set the maximum number of locked objects supported by the Berkeley DB environment. This value is
used by DbEnv::open() to estimate how much space to allocate for various lock-table data structures.
The default value is 1000 objects. For specific information on configuring the size of the lock subsystem,
see Configuring locking: sizing the system.

The database environment's maximum number of objects may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_max_objects",
one or more whitespace characters, and the number of objects. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lk_max_objects() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lk_max_objects() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lk_max_objects() will be ignored.

The DbEnv::set_lk_max_objects() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the maximum number of locked objects supported by the Berkeley DB
environment.

Errors

The DbEnv::set_lk_max_objects() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 322DB C++ API8/14/2009

DbEnv::set_lk_max_objects()

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_lk_partitions()
#include <db_cxx.h>

int
DbEnv::set_lk_partitions(u_int32_t partitions);

Set the number of lock table partitions in the Berkeley DB environment. The default value is 10 times
the number of CPUs on the system if there is more than one CPU. Increasing the number of partitions
can provide for greater throughput on a system with multiple CPUs and more than one thread contending
for the lock manager. On single processor systems more than one partition may increase the overhead
of the lock manager. Systems often report threading contexts as CPUs. If your system does this, set
the number of partitions to 1 to get optimal performance.

The database environment's number of partitions may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_partitions",
one or more whitespace characters, and the number of partitions. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lk_partitions() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lk_partitions() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lk_partitions() will be ignored.

The DbEnv::set_lk_partitions() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partitions

The partitions parameter is the number of partitions to be configured in the Berkeley DB environment.

Errors

The DbEnv::set_lk_partitions() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbLock

Page 323DB C++ API8/14/2009

DbEnv::set_lk_partitions()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Locking Subsystem and Related Methods

Page 324DB C++ API8/14/2009

DbEnv::set_lk_partitions()

DbEnv::lock_detect()
#include <db_cxx.h>

int
DbEnv::lock_detect(u_int32_t flags, u_int32_t atype, int *rejected);

The DbEnv::lock_detect() method runs one iteration of the deadlock detector. The deadlock detector
traverses the lock table and marks one of the participating lock requesters for rejection in each deadlock
it finds.

The DbEnv::lock_detect() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

rejected

If the rejected parameter is non-NULL, the memory location to which it refers will be set to the number
of lock requests that were rejected.

atype

The atype parameter specifies which lock request(s) to reject. It must be set to one of the following
list:

• DB_LOCK_DEFAULT

Use whatever lock policy was specified when the database environment was created. If no lock policy
has yet been specified, set the lock policy to DB_LOCK_RANDOM.

• DB_LOCK_EXPIRE

Reject lock requests which have timed out. No other deadlock detection is performed.

• DB_LOCK_MAXLOCKS

Reject the lock request for the locker ID with the most locks.

• DB_LOCK_MAXWRITE

Reject the lock request for the locker ID with the most write locks.

• DB_LOCK_MINLOCKS

Reject the lock request for the locker ID with the fewest locks.

• DB_LOCK_MINWRITE

Reject the lock request for the locker ID with the fewest write locks.

• DB_LOCK_OLDEST

Page 325DB C++ API8/14/2009

DbEnv::lock_detect()

Reject the lock request for the locker ID with the oldest lock.

• DB_LOCK_RANDOM

Reject the lock request for a random locker ID.

• DB_LOCK_YOUNGEST

Reject the lock request for the locker ID with the youngest lock.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::lock_detect() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 326DB C++ API8/14/2009

DbEnv::lock_detect()

DbEnv::lock_get()
#include <db_cxx.h>

int
DbEnv::lock_get(u_int32_t locker, u_int32_t flags,
 const Dbt *object, const db_lockmode_t lock_mode, DbLock *lock);

The DbEnv::lock_get() method acquires a lock from the lock table, returning information about it in
the lock parameter.

The DbEnv::lock_get() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

locker

The locker parameter is an unsigned 32-bit integer quantity. It represents the entity requesting the
lock.

flags

The flags parameter must be set to 0 or the following value:

• DB_LOCK_NOWAIT

If a lock cannot be granted because the requested lock conflicts with an existing lock, return
DB_LOCK_NOTGRANTED immediately instead of waiting for the lock to become available.

object

The object parameter is an untyped byte string that specifies the object to be locked. Applications
using the locking subsystem directly while also doing locking via the Berkeley DB access methods must
take care not to inadvertently lock objects that happen to be equal to the unique file IDs used to lock
files. See Access method locking conventions in the Berkeley DB Programmer's Reference Guide for
more information.

lock_mode

The lock_mode parameter is used as an index into the environment's lock conflict matrix. When using
the default lock conflict matrix, lock_mode must be set to one of the following values:

• DB_LOCK_READ

read (shared)

• DB_LOCK_WRITE

write (exclusive)

Page 327DB C++ API8/14/2009

DbEnv::lock_get()

../../programmer_reference/lock_am_conv.html

• DB_LOCK_IWRITE

intention to write (shared)

• DB_LOCK_IREAD

intention to read (shared)

• DB_LOCK_IWR

intention to read and write (shared)

See DbEnv::set_lk_conflicts() and Standard Lock Modes for more information on the lock conflict matrix.

lock

The DbEnv::lock_get() method returns the lock information in lock.

Errors

The DbEnv::lock_get() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_LOCK_NOWAIT flag or lock timers were configured and the lock could not be granted before
the wait-time expired.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

An invalid flag value or parameter was specified.

Page 328DB C++ API8/14/2009

DbEnv::lock_get()

../../programmer_reference/lock_stdmode.html

EINVAL

The method was called on an environment which had been opened without being configured for locking.

ENOMEM

The maximum number of locks has been reached.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 329DB C++ API8/14/2009

DbEnv::lock_get()

DbEnv::lock_id()
#include <db_cxx.h>

int
DbEnv::lock_id(u_int32_t *idp);

The DbEnv::lock_id() method copies a locker ID, which is guaranteed to be unique in the environment's
lock table, into the memory location to which idp refers.

The DbEnv::lock_id_free() method should be called to return the locker ID to the Berkeley DB library
when it is no longer needed.

The DbEnv::lock_id() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

idp

The idp parameter references memory into which the allocated locker ID is copied.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 330DB C++ API8/14/2009

DbEnv::lock_id()

DbEnv::lock_id_free()
#include <db_cxx.h>

int
DbEnv::lock_id_free(u_int32_t id);

The DbEnv::lock_id_free() method frees a locker ID allocated by the DbEnv::lock_id() method.

The DbEnv::lock_id_free() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

id

The id parameter is the locker id to be freed.

Errors

The DbEnv::lock_id_free() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the locker ID is invalid or locks are still held by this locker ID; or if an invalid flag value or parameter
was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 331DB C++ API8/14/2009

DbEnv::lock_id_free()

DbEnv::lock_put()
#include <db_cxx.h>

int
DbEnv::lock_put(DbLock *lock);

The DbEnv::lock_put() method releases lock.

The DbEnv::lock_put() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lock

The lock parameter is the lock to be released.

Errors

The DbEnv::lock_put() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 332DB C++ API8/14/2009

DbEnv::lock_put()

DbEnv::lock_stat()
#include <db_cxx.h>

int
DbEnv::lock_stat(DB_LOCK_STAT **statp, u_int32_t flags);

The DbEnv::lock_stat() method returns the locking subsystem statistics.

The DbEnv::lock_stat() method creates a statistical structure of type DB_LOCK_STAT and copies a
pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_LOCK_STAT fields will be filled in:

• u_int32_t st_id;

The last allocated locker ID.

• u_int32_t st_cur_maxid;

The current maximum unused locker ID.

• int st_nmodes;

The number of lock modes.

• u_int32_t st_maxlocks;

The maximum number of locks possible.

• u_int32_t st_maxlockers;

The maximum number of lockers possible.

• u_int32_t st_maxobjects;

The maximum number of lock objects possible.

• u_int32_t st_partitions;

The number of lock table partitions.

• u_int32_t st_nlocks;

The number of current locks.

Page 333DB C++ API8/14/2009

DbEnv::lock_stat()

• u_int32_t st_maxnlocks;

The maximum number of locks at any one time. Note that if there is more than one partition, this
is the sum of the maximum across all partitions.

• u_int32_t st_maxhlocks;

The maximum number of locks in any hash bucket at any one time.

• uintmax_t st_locksteals;

The maximum number of locks stolen by an empty partition.

• uintmax_t st_maxlsteals;

The maximum number of lock steals for any one partition.

• u_int32_t st_nlockers;

The number of current lockers.

• u_int32_t st_maxnlockers;

The maximum number of lockers at any one time.

• u_int32_t st_nobjects;

The number of current lock objects.

• u_int32_t st_maxnobjects;

The maximum number of lock objects at any one time. Note that if there is more than one partition
this is the sum of the maximum across all partitions.

• u_int32_t st_maxhobjects;

The maximum number of objects in any hash bucket at any one time.

• uintmax_t st_objectsteals;

The maximum number of objects stolen by an empty partition.

• uintmax_t st_maxosteals;

The maximum number of object steals for any one partition.

• uintmax_t st_nrequests;

The total number of locks requested.

• uintmax_t st_nreleases;

The total number of locks released.

Page 334DB C++ API8/14/2009

DbEnv::lock_stat()

• uintmax_t st_nupgrade;

The total number of locks upgraded.

• uintmax_t st_ndowngrade;

The total number of locks downgraded.

• uintmax_t st_lock_wait;

The number of lock requests not immediately available due to conflicts, for which the thread of
control waited.

• uintmax_t st_lock_nowait;

The number of lock requests not immediately available due to conflicts, for which the thread of
control did not wait.

• uintmax_t st_ndeadlocks;

The number of deadlocks.

• db_timeout_t st_locktimeout;

Lock timeout value.

• uintmax_t st_nlocktimeouts;

The number of lock requests that have timed out.

• u_int32_t st_txntimeout;

Transaction timeout value.

• uintmax_t st_ntxntimeouts;

The number of transactions that have timed out. This value is also a component of st_ndeadlocks,
the total number of deadlocks detected.

• uintmax_t st_objs_wait;

The number of requests to allocate or deallocate an object for which the thread of control waited.

• uintmax_t st_objs_nowait;

The number of requests to allocate or deallocate an object for which the thread of control did not
wait.

• uintmax_t st_lockers_wait;

The number of requests to allocate or deallocate a locker for which the thread of control waited.

• uintmax_t st_lockers_nowait;

Page 335DB C++ API8/14/2009

DbEnv::lock_stat()

The number of requests to allocate or deallocate a locker for which the thread of control did not
wait.

• u_int32_t st_hash_len;

Maximum length of a lock hash bucket.

• roff_t st_regsize;

The size of the lock region, in bytes.

• uintmax_t st_part_wait;

The number of times that a thread of control was forced to wait before obtaining the lock partition
mutex.

• uintmax_t st_part_nowait;

The number of times that a thread of control was able to obtain the lock partition mutex without
waiting.

• uintmax_t st_part_max_wait;

The maximum number of times that a thread of control was forced to wait before obtaining any one
lock partition mutex.

• uintmax_t st_part_max_nowait;

The number of times that a thread of control was able to obtain any one lock partition mutex without
waiting.

• uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the lock region
mutex.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the lock region mutex without
waiting.

The DbEnv::lock_stat() method may not be called before the DbEnv::open() method is called.

The DbEnv::lock_stat() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Page 336DB C++ API8/14/2009

DbEnv::lock_stat()

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors

The DbEnv::lock_stat() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 337DB C++ API8/14/2009

DbEnv::lock_stat()

DbEnv::lock_stat_print()
#include <db_cxx.h>

int
DbEnv::lock_stat_print(u_int32_t flags);

The DbEnv::lock_stat_print() method displays the locking subsystem statistical information, as
described for the DbEnv::lock_stat() method. The information is printed to a specified output channel
(see the DbEnv::set_msgfile() method for more information), or passed to an application callback
function (see the DbEnv::set_msgcall() method for more information).

The DbEnv::lock_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::lock_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

• DB_STAT_LOCK_CONF

Display the lock conflict matrix.

• DB_STAT_LOCK_LOCKERS

Display the lockers within hash chains.

• DB_STAT_LOCK_OBJECTS

Display the lock objects within hash chains.

• DB_STAT_LOCK_PARAMS

Display the locking subsystem parameters.

Class

DbEnv, DbLock

Page 338DB C++ API8/14/2009

DbEnv::lock_stat_print()

See Also

Locking Subsystem and Related Methods

Page 339DB C++ API8/14/2009

DbEnv::lock_stat_print()

DbEnv::lock_vec()
#include <db_cxx.h>

int
DbEnv::lock_vec(u_int32_t locker, u_int32_t flags,
 DB_LOCKREQ list[], int nlist, DB_LOCKREQ **elistp);

The DbEnv::lock_vec() method atomically obtains and releases one or more locks from the lock table.
The DbEnv::lock_vec() method is intended to support acquisition or trading of multiple locks under
one lock table semaphore, as is needed for lock coupling or in multigranularity locking for lock escalation.

If any of the requested locks cannot be acquired, or any of the locks to be released cannot be released,
the operations before the failing operation are guaranteed to have completed successfully, and
DbEnv::lock_vec() returns a non-zero value. In addition, if elistp is not NULL, it is set to point to the
DB_LOCKREQ entry that was being processed when the error occurred.

Unless otherwise specified, the DbEnv::lock_vec() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

elistp

If an error occurs, and the elistp parameter is non-NULL, it is set to point to the DB_LOCKREQ entry
that was being processed when the error occurred.

flags

The flags parameter must be set to 0 or the following value:

• DB_LOCK_NOWAIT

If a lock cannot be granted because the requested lock conflicts with an existing lock, return
DB_LOCK_NOTGRANTED immediately instead of waiting for the lock to become available. In this
case, if non-NULL, elistp identifies the request that was not granted.

locker

The locker parameter is an unsigned 32-bit integer quantity. It represents the entity requesting or
releasing the lock.

list

The list array provided to DbEnv::lock_vec() is typedef'd as DB_LOCKREQ.

To ensure compatibility with future releases of Berkeley DB, all fields of the DB_LOCKREQ structure
that are not explicitly set should be initialized to 0 before the first time the structure is used. Do this
by declaring the structure external or static, or by calling memset(3).

A DB_LOCKREQ structure has at least the following fields:

Page 340DB C++ API8/14/2009

DbEnv::lock_vec()

• lockop_t op;

The operation to be performed, which must be set to one of the following values:

• DB_LOCK_GET

Get the lock defined by the values of the mode and obj structure fields, for the specified locker.
Upon return from DbEnv::lock_vec(), if the lock field is non-NULL, a reference to the acquired
lock is stored there. (This reference is invalidated by any call to DbEnv::lock_vec() or
DbEnv::lock_put() that releases the lock.)

• DB_LOCK_GET_TIMEOUT

Identical to DB_LOCK_GET except that the value in the timeout structure field overrides any
previously specified timeout value for this lock. A value of 0 turns off any previously specified
timeout.

• DB_LOCK_PUT

The lock to which the lock structure field refers is released. The locker parameter, and mode and
obj fields are ignored.

• DB_LOCK_PUT_ALL

All locks held by the specified locker are released. The lock, mode, and obj structure fields are
ignored. Locks acquired in operations performed by the current call to DbEnv::lock_vec() which
appear before the DB_LOCK_PUT_ALL operation are released; those acquired in operations appearing
after the DB_LOCK_PUT_ALL operation are not released.

• DB_LOCK_PUT_OBJ

All locks held on obj are released. The locker parameter and the lock and mode structure fields
are ignored. Locks acquired in operations performed by the current call to DbEnv::lock_vec() that
appear before the DB_LOCK_PUT_OBJ operation are released; those acquired in operations appearing
after the DB_LOCK_PUT_OBJ operation are not released.

• DB_LOCK_TIMEOUT

Cause the specified locker to timeout immediately. If the database environment has not configured
automatic deadlock detection, the transaction will timeout the next time deadlock detection is
performed. As transactions acquire locks on behalf of a single locker ID, timing out the locker ID
associated with a transaction will time out the transaction itself.

• DB_LOCK lock;

A lock reference.

• const lockmode_t mode;

The lock mode, used as an index into the environment's lock conflict matrix. When using the default
lock conflict matrix, mode must be set to one of the following values:

Page 341DB C++ API8/14/2009

DbEnv::lock_vec()

• DB_LOCK_READ

read (shared)

• DB_LOCK_WRITE

write (exclusive)

• DB_LOCK_IWRITE

intention to write (shared)

• DB_LOCK_IREAD

intention to read (shared)

• DB_LOCK_IWR

intention to read and write (shared)

See DbEnv::set_lk_conflicts() and Standard Lock Modes for more information on the lock conflict
matrix.

• const DBT obj;

An untyped byte string that specifies the object to be locked or released. Applications using the
locking subsystem directly while also doing locking via the Berkeley DB access methods must take
care not to inadvertently lock objects that happen to be equal to the unique file IDs used to lock
files. See Access method locking conventions in the Berkeley DB Programmer's Reference Guide for
more information.

• u_int32_t timeout;

The lock timeout value.

nlist

The nlist parameter specifies the number of elements in the list array.

Errors

The DbEnv::lock_vec() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

Page 342DB C++ API8/14/2009

DbEnv::lock_vec()

../../programmer_reference/lock_stdmode.html
../../programmer_reference/lock_am_conv.html

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_LOCK_NOWAIT flag or lock timers were configured and the lock could not be granted before
the wait-time expired.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

An invalid flag value or parameter was specified.

ENOMEM

The maximum number of locks has been reached.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods

Page 343DB C++ API8/14/2009

DbEnv::lock_vec()

Chapter 8. The DbLsn Handle
#include <db_cxx.h>

class DbLsn : public DB_LSN { ... };

The DbLsn object is a log sequence number which specifies a unique location in a log file. A DbLsn
consists of two unsigned 32-bit integers -- one specifies the log file number, and the other specifies
an offset in the log file.

Page 344DB C++ API8/14/2009

Logging Subsystem and Related Methods

DescriptionLogging Subsystem and Related
Methods

List log and database filesDbEnv::log_archive()

Map Log Sequence Numbers to log filesDbEnv::log_file()

Flush log recordsDbEnv::log_flush()

Append informational message to the logDbEnv::log_printf()

Write a log recordDbEnv::log_put()

Return log subsystem statisticsDbEnv::log_stat()

Print log subsystem statisticsDbEnv::log_stat_print()

Compare two Log Sequence NumbersDbEnv::log_compare()

Logging Subsystem Cursors

Create a log cursor handleDbEnv::log_cursor()

A log cursor handleThe DbLogc Handle

Close a log cursorDbLogc::close()

Retrieve a log recordDbLogc::get()

Logging Subsystem Configuration

Configure the logging subsystemDbEnv::log_set_config(), DbEnv::log_get_config()

Set/get log buffer sizeDbEnv::set_lg_bsize(), DbEnv::get_lg_bsize()

Set/get the environment logging directoryDbEnv::set_lg_dir(), DbEnv::get_lg_dir()

Set/get log file modeDbEnv::set_lg_filemode(),
DbEnv::get_lg_filemode()

Set/get log file sizeDbEnv::set_lg_max(), DbEnv::get_lg_max()

Set/get logging region sizeDbEnv::set_lg_regionmax(),
DbEnv::get_lg_regionmax()

Page 345DB C++ API8/14/2009

Logging Subsystem and Related
Methods

DbEnv::get_lg_bsize()
#include <db_cxx.h>

int
DbEnv::get_lg_bsize(u_int32_t *lg_bsizep);

The DbEnv::get_lg_bsize() method returns the size of the log buffer, in bytes. You can manage this
value using the DbEnv::set_lg_bsize() method.

The DbEnv::get_lg_bsize() method may be called at any time during the life of the application.

The DbEnv::get_lg_bsize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_bsizep

The DbEnv::get_lg_bsize() method returns the size of the log buffer, in bytes in lg_bsizep.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods, DbEnv::set_lg_bsize()

Page 346DB C++ API8/14/2009

DbEnv::get_lg_bsize()

DbEnv::get_lg_dir()
#include <db_cxx.h>

int
DbEnv::get_lg_dir(const char **dirp);

The DbEnv::get_lg_dir() method returns the log directory, which is the location for logging files. You
can manage this value using the DbEnv::set_lg_dir() method.

The DbEnv::get_lg_dir() method may be called at any time during the life of the application.

The DbEnv::get_lg_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The DbEnv::get_lg_dir() method returns a reference to the log directory in dirp.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods, DbEnv::set_lg_dir()

Page 347DB C++ API8/14/2009

DbEnv::get_lg_dir()

DbEnv::get_lg_filemode()
#include <db_cxx.h>

int
DbEnv::get_lg_filemode(int *lg_modep);

The DbEnv::set_lg_filemode() method returns the log file mode. You can manage this value using the
DbEnv::set_lg_filemode() method.

The DbEnv::set_lg_filemode() method may be called at any time during the life of the application.

The DbEnv::set_lg_filemode() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_modep

The DbEnv::set_lg_filemode() method returns the log file mode in lg_modep.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods, DbEnv::set_lg_filemode()

Page 348DB C++ API8/14/2009

DbEnv::get_lg_filemode()

DbEnv::get_lg_max()
#include <db_cxx.h>

int
DbEnv::get_lg_max(u_int32_t *lg_maxp);

The DbEnv::get_lg_max() method returns the maximum log file size. You can manage this value using
the DbEnv::set_lg_max() method.

The DbEnv::get_lg_max() method may be called at any time during the life of the application.

The DbEnv::get_lg_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_maxp

The DbEnv::get_lg_max() method returns the maximum log file size in lg_maxp.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods, DbEnv::set_lg_max()

Page 349DB C++ API8/14/2009

DbEnv::get_lg_max()

DbEnv::get_lg_regionmax()
#include <db_cxx.h>

int
DbEnv::get_lg_regionmax(u_int32_t *lg_regionmaxp);

The DbEnv::get_lg_regionmax() method returns the size of the underlying logging subsystem region.
You can manage this value using the DbEnv::set_lg_regionmax() method.

The DbEnv::get_lg_regionmax() method may be called at any time during the life of the application.

The DbEnv::get_lg_regionmax() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_regionmaxp

The DbEnv::get_lg_regionmax() method returns the size of the underlying logging subsystem region
in lg_regionmaxp.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods, DbEnv::set_lg_regionmax()

Page 350DB C++ API8/14/2009

DbEnv::get_lg_regionmax()

DbEnv::log_archive()
#include <db_cxx.h>

int
DbEnv::log_archive(char *(*listp)[], u_int32_t flags);

The DbEnv::log_archive() method returns an array of log or database filenames.

By default, DbEnv::log_archive() returns the names of all of the log files that are no longer in use
(for example, that are no longer involved in active transactions), and that may safely be archived for
catastrophic recovery and then removed from the system. If there are no filenames to return, the
memory location to which listp refers will be set to NULL.

Arrays of log filenames are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

Log cursor handles (returned by the DbEnv::log_cursor() method) may have open file descriptors for
log files in the database environment. Also, the Berkeley DB interfaces to the database environment
logging subsystem (for example, DbEnv::log_put() and DbTxn::abort()) may allocate log cursors and
have open file descriptors for log files as well. On operating systems where filesystem related system
calls (for example, rename and unlink on Windows/NT) can fail if a process has an open file descriptor
for the affected file, attempting to move or remove the log files listed by DbEnv::log_archive() may
fail. All Berkeley DB internal use of log cursors operates on active log files only and furthermore, is
short-lived in nature. So, an application seeing such a failure should be restructured to close any open
log cursors it may have, and otherwise to retry the operation until it succeeds. (Although the latter is
not likely to be necessary; it is hard to imagine a reason to move or rename a log file in which
transactions are being logged or aborted.)

See db_archive for more information on database archival procedures.

The DbEnv::log_archive() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_ARCH_ABS

All pathnames are returned as absolute pathnames, instead of relative to the database home directory.

• DB_ARCH_DATA

Page 351DB C++ API8/14/2009

DbEnv::log_archive()

Return the database files that need to be archived in order to recover the database from catastrophic
failure. If any of the database files have not been accessed during the lifetime of the current log
files, DbEnv::log_archive() will not include them in this list. It is also possible that some of the files
referred to by the log have since been deleted from the system.

The DB_ARCH_DATA and DB_ARCH_LOG flags are mutually exclusive.

• DB_ARCH_LOG

Return all the log filenames, regardless of whether or not they are in use.

The DB_ARCH_DATA and DB_ARCH_LOG flags are mutually exclusive.

• DB_ARCH_REMOVE

Remove log files that are no longer needed; no filenames are returned. Automatic log file removal
is likely to make catastrophic recovery impossible.

The DB_ARCH_REMOVE flag may not be specified with any other flag.

listp

The listp parameter references memory into which the allocated array of log or database filenames is
copied. If there are no filenames to return, the memory location to which listp refers will be set to
NULL.

Errors

The DbEnv::log_archive() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 352DB C++ API8/14/2009

DbEnv::log_archive()

DbEnv::log_cursor()
#include <db_cxx.h>

int
DbEnv::log_cursor(DbLogc **cursorp, u_int32_t flags);

The DbEnv::log_cursor() method returns a created log cursor.

The DbEnv::log_cursor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp

The cursorp parameter references memory into which a pointer to the created log cursor is copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::log_cursor() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 353DB C++ API8/14/2009

DbEnv::log_cursor()

DbEnv::log_file()
#include <db_cxx.h>

int
DbEnv::log_file(const DbLsn *lsn, char *namep, size_t len);

The DbEnv::log_file() method maps DbLsn structures to filenames, returning the name of the file
containing the record named by lsn.

This mapping of DbLsn structures to files is needed for database administration. For example, a
transaction manager typically records the earliest DbLsn needed for restart, and the database
administrator may want to archive log files to tape when they contain only DbLsn entries before the
earliest one needed for restart.

The DbEnv::log_file() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

The lsn parameter is the DbLsn structure for which a filename is wanted.

namep

The namep parameter references memory into which the name of the file containing the record named
by lsn is copied.

len

The len parameter is the length of the namep buffer in bytes. If namep is too short to hold the filename,
DbEnv::log_file() will fail. (Log filenames are always 14 characters long.)

Errors

The DbEnv::log_file() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If supplied buffer was too small to hold the log filename; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 354DB C++ API8/14/2009

DbEnv::log_file()

DbEnv::log_flush()
#include <db_cxx.h>

int
DbEnv::log_flush(const DbLsn *lsn);

The DbEnv::log_flush() method writes log records to disk.

The DbEnv::log_flush() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

All log records with DbLsn values less than or equal to the lsn parameter are written to disk. If lsn is
NULL, all records in the log are flushed.

Errors

The DbEnv::log_flush() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 355DB C++ API8/14/2009

DbEnv::log_flush()

DbEnv::log_get_config()
#include <db_cxx.h>

int
DbEnv::log_get_config(u_int32_t which, int *onoffp)

The DbEnv::log_get_config() method returns whether the specified which parameter is currently set
or not. You can manage this value using the DbEnv::log_set_config() method.

The DbEnv::log_get_config() method may be called at any time during the life of the application.

The DbEnv::log_get_config() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be set to
one of the following values:

• DB_LOG_DIRECT

System buffering is turned off for Berkeley DB log files to avoid double caching.

• DB_LOG_DSYNC

Berkeley DB is configured to flush log writes to the backing disk before returning from the write
system call, rather than flushing log writes explicitly in a separate system call, as necessary.

• DB_LOG_AUTO_REMOVE

Berkeley DB automatically removes log files that are no longer needed.

• DB_LOG_IN_MEMORY

Transaction logs are maintained in memory rather than on disk. This means that transactions exhibit
the ACI (atomicity, consistency, and isolation) properties, but not D (durability).

• DB_LOG_ZERO

All pages of a log file are zeroed when that log file is created.

onoffp

The onoffp parameter references memory into which the configuration of the specified which parameter
is copied.

If the returned onoff value is zero, the parameter is off; otherwise, on.

Page 356DB C++ API8/14/2009

DbEnv::log_get_config()

Class

DbEnv

See Also

Logging Subsystem and Related Methods, DbEnv::log_set_config()

Page 357DB C++ API8/14/2009

DbEnv::log_get_config()

DbEnv::log_printf()
#include <db_cxx.h>

int
DbEnv::log_printf(DB_TXN *txnid, const char *fmt, ...);

The DbEnv::log_printf() method appends an informational message to the Berkeley DB database
environment log files.

The DbEnv::log_printf()method allows applications to include information in the database environment
log files, for later review using the db_printlog utility. This method is intended for debugging and
performance tuning.

The DbEnv::log_printf() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the logged message refers to an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); otherwise NULL.

fmt

A format string that specifies how subsequent arguments (or arguments accessed via the variable-length
argument facilities of stdarg(3)) are converted for output. The format string may contain any formatting
directives supported by the underlying C library vsnprintf(3) function.

Errors

The DbEnv::log_printf() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 358DB C++ API8/14/2009

DbEnv::log_printf()

DbEnv::log_put()
#include <db_cxx.h>

int
DbEnv::log_put(DbLsn *lsn, const Dbt *data, u_int32_t flags);

The DbEnv::log_put() method appends records to the log. The DbLsn of the put record is returned in
the lsn parameter.

The DbEnv::log_put() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

data

The data parameter is the record to write to the log.

The caller is responsible for providing any necessary structure to data. (For example, in a write-ahead
logging protocol, the application must understand what part of data is an operation code, what part
is redo information, and what part is undo information. In addition, most transaction managers will
store in data the DbLsn of the previous log record for the same transaction, to support chaining back
through the transaction's log records during undo.)

flags

The flags parameter must be set to 0 or the following value:

• DB_FLUSH

The log is forced to disk after this record is written, guaranteeing that all records with DbLsn values
less than or equal to the one being "put" are on disk before DbEnv::log_put() returns.

lsn

The lsn parameter references memory into which the DbLsn of the put record is copied.

Errors

The DbEnv::log_put() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the record to be logged is larger than the maximum log record; or if an invalid flag value or parameter
was specified.

Class

DbEnv, DbLogc, DbLsn

Page 359DB C++ API8/14/2009

DbEnv::log_put()

See Also

Logging Subsystem and Related Methods

Page 360DB C++ API8/14/2009

DbEnv::log_put()

DbEnv::log_set_config()
#include <db_cxx.h>

int
DbEnv::log_set_config(u_int32_t flags, int onoff);

The DbEnv::log_set_config() method configures the Berkeley DB logging subsystem.

The DbEnv::log_set_config()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::log_set_config() method may be called at any time during the life of the application.

The DbEnv::log_set_config() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

• DB_LOG_DIRECT

Turn off system buffering of Berkeley DB log files to avoid double caching.

Calling DbEnv::log_set_config() with the DB_LOG_DIRECT flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DbEnv handles opened in the environment must either set the
DB_LOG_DIRECT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_LOG_DIRECT flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_LOG_DSYNC

Configure Berkeley DB to flush log writes to the backing disk before returning from the write system
call, rather than flushing log writes explicitly in a separate system call, as necessary. This is only
available on some systems (for example, systems supporting the IEEE/ANSI Std 1003.1 (POSIX) standard
O_DSYNC flag, or systems supporting the Windows FILE_FLAG_WRITE_THROUGH flag). This flag may
result in inaccurate file modification times and other file-level information for Berkeley DB log files.
This flag may offer a performance increase on some systems and a performance decrease on others.

Calling DbEnv::log_set_config() with the DB_LOG_DSYNC flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DbEnv handles opened in the environment must either set the
DB_LOG_DSYNC flag or the flag should be specified in the DB_CONFIG configuration file.

Page 361DB C++ API8/14/2009

DbEnv::log_set_config()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

The DB_LOG_DSYNC flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_LOG_AUTO_REMOVE

If set, Berkeley DB will automatically remove log files that are no longer needed.

Automatic log file removal is likely to make catastrophic recovery impossible.

Replication applications will rarely want to configure automatic log file removal as it increases the
likelihood a master will be unable to satisfy a client's request for a recent log record.

Calling DbEnv::log_set_config()with the DB_LOG_AUTO_REMOVE flag affects the database environment,
including all threads of control accessing the database environment.

The DB_LOG_AUTO_REMOVE flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_LOG_IN_MEMORY

If set, maintain transaction logs in memory rather than on disk. This means that transactions exhibit
the ACI (atomicity, consistency, and isolation) properties, but not D (durability); that is, database
integrity will be maintained, but if the application or system fails, integrity will not persist. All
database files must be verified and/or restored from a replication group master or archival backup
after application or system failure.

When in-memory logs are configured and no more log buffer space is available, Berkeley DB methods
may return an additional error value, DB_LOG_BUFFER_FULL. When choosing log buffer and file sizes
for in-memory logs, applications should ensure the in-memory log buffer size is large enough that
no transaction will ever span the entire buffer, and avoid a state where the in-memory buffer is full
and no space can be freed because a transaction that started in the first log "file" is still active.

Calling DbEnv::log_set_config() with the DB_LOG_IN_MEMORY flag affects the database environment,
including all threads of control accessing the database environment.

The DB_LOG_IN_MEMORY flag may be used to configure Berkeley DB only before the DbEnv::open()
method is called.

• DB_LOG_ZERO

If set, zero all pages of a log file when that log file is created. This has shown to provide greater
transaction throughput in some environments. The log file will be zeroed by the thread which needs
to re-create the new log file. Other threads may not write to the log file while this is happening.

Calling DbEnv::log_set_config() with the DB_LOG_ZERO flag affects only the current environment
handle.

The DB_LOG_ZERO flag may be used to configure Berkeley DB at any time.

Page 362DB C++ API8/14/2009

DbEnv::log_set_config()

onoff

If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.

Errors

The DbEnv::log_set_config() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Logging Subsystem and Related Methods

Page 363DB C++ API8/14/2009

DbEnv::log_set_config()

DbEnv::log_stat()
#include <db_cxx.h>

int
DbEnv::log_stat(DB_LOG_STAT **statp, u_int32_t flags);

The DbEnv::log_stat() method returns the logging subsystem statistics.

The DbEnv::log_stat() method creates a statistical structure of type DB_LOG_STAT and copies a pointer
to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_LOG_STAT fields will be filled in:

• u_int32_t st_magic;

The magic number that identifies a file as a log file.

• u_int32_t st_version;

The version of the log file type.

• int st_mode;

The mode of any created log files.

• u_int32_t st_lg_bsize;

The in-memory log record cache size.

• u_int32_t st_lg_size;

The log file size.

• uintmax_t st_record;

The number of records written to this log.

• u_int32_t st_w_mbytes;

The number of megabytes written to this log.

• u_int32_t st_w_bytes;

The number of bytes over and above st_w_mbytes written to this log.

Page 364DB C++ API8/14/2009

DbEnv::log_stat()

• u_int32_t st_wc_mbytes;

The number of megabytes written to this log since the last checkpoint.

• u_int32_t st_wc_bytes;

The number of bytes over and above st_wc_mbytes written to this log since the last checkpoint.

• uintmax_t st_wcount;

The number of times the log has been written to disk.

• uintmax_t st_wcount_fill;

The number of times the log has been written to disk because the in-memory log record cache filled
up.

• uintmax_t st_rcount;

The number of times the log has been read from disk.

• uintmax_t st_scount;

The number of times the log has been flushed to disk.

• u_int32_t st_cur_file;

The current log file number.

• u_int32_t st_cur_offset;

The byte offset in the current log file.

• u_int32_t st_disk_file;

The log file number of the last record known to be on disk.

• u_int32_t st_disk_offset;

The byte offset of the last record known to be on disk.

• u_int32_t st_maxcommitperflush;

The maximum number of commits contained in a single log flush.

• u_int32_t st_mincommitperflush;

The minimum number of commits contained in a single log flush that contained a commit.

• roff_t st_regsize;

The size of the log region, in bytes.

Page 365DB C++ API8/14/2009

DbEnv::log_stat()

• uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the log region
mutex.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the log region mutex without waiting.

The DbEnv::log_stat() method may not be called before the DbEnv::open() method is called.

The DbEnv::log_stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors

The DbEnv::log_stat() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 366DB C++ API8/14/2009

DbEnv::log_stat()

DbEnv::log_stat_print()
#include <db_cxx.h>

int
DbEnv::log_stat_print(u_int32_t flags);

The DbEnv::log_stat_print()method displays the logging subsystem statistical information, as described
for the DbEnv::log_stat() method. The information is printed to a specified output channel (see the
DbEnv::set_msgfile() method for more information), or passed to an application callback function (see
the DbEnv::set_msgcall() method for more information).

The DbEnv::log_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::log_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 367DB C++ API8/14/2009

DbEnv::log_stat_print()

DbEnv::set_lg_bsize()
#include <db_cxx.h>

int
DbEnv::set_lg_bsize(u_int32_t lg_bsize);

Set the size of the in-memory log buffer, in bytes.

When the logging subsystem is configured for on-disk logging, the default size of the in-memory log
buffer is approximately 32KB. Log information is stored in-memory until the storage space fills up or
transaction commit forces the information to be flushed to stable storage. In the presence of long-running
transactions or transactions producing large amounts of data, larger buffer sizes can increase throughput.

When the logging subsystem is configured for in-memory logging, the default size of the in-memory
log buffer is 1MB. Log information is stored in-memory until the storage space fills up or transaction
abort or commit frees up the memory for new transactions. In the presence of long-running transactions
or transactions producing large amounts of data, the buffer size must be sufficient to hold all log
information that can accumulate during the longest running transaction. When choosing log buffer and
file sizes for in-memory logs, applications should ensure the in-memory log buffer size is large enough
that no transaction will ever span the entire buffer, and avoid a state where the in-memory buffer is
full and no space can be freed because a transaction that started in the first log "file" is still active.

The database environment's log buffer size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_bsize", one or more
whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lg_bsize() method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_lg_bsize() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lg_bsize() will be ignored.

The DbEnv::set_lg_bsize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_bsize

The lg_bsize parameter is the size of the in-memory log buffer, in bytes.

Errors

The DbEnv::set_lg_bsize() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

Page 368DB C++ API8/14/2009

DbEnv::set_lg_bsize()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 369DB C++ API8/14/2009

DbEnv::set_lg_bsize()

DbEnv::set_lg_dir()
#include <db_cxx.h>

int
DbEnv::set_lg_dir(const char *dir);

The path of a directory to be used as the location of logging files. Log files created by the Log Manager
subsystem will be created in this directory.

If no logging directory is specified, log files are created in the environment home directory. See Berkeley
DB File Naming for more information.

For the greatest degree of recoverability from system or application failure, database files and log
files should be located on separate physical devices.

The database environment's logging directory may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_dir", one or more
whitespace characters, and the directory name. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lg_dir() method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv::set_lg_dir() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lg_dir() must be consistent with the existing environment or corruption can occur.

The DbEnv::set_lg_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is the directory used to store the logging files.

When using a Unicode build on Windows (the default), the dir argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_lg_dir() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Page 370DB C++ API8/14/2009

DbEnv::set_lg_dir()

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 371DB C++ API8/14/2009

DbEnv::set_lg_dir()

DbEnv::set_lg_filemode()
#include <db_cxx.h>

int
DbEnv::set_lg_filemode(int lg_filemode);

Set the absolute file mode for created log files. This method is only useful for the rare Berkeley DB
application that does not control its umask value.

Normally, if Berkeley DB applications set their umask appropriately, all processes in the application
suite will have read permission on the log files created by any process in the application suite. However,
if the Berkeley DB application is a library, a process using the library might set its umask to a value
preventing other processes in the application suite from reading the log files it creates. In this rare
case, the DbEnv::set_lg_filemode() method can be used to set the mode of created log files to an
absolute value.

The database environment's log file mode may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_filemode", one or more
whitespace characters, and the absolute mode of created log files. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lg_filemode() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lg_filemode() method may be called at any time during the life of the application.

The DbEnv::set_lg_filemode() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_filemode

The lg_filemode parameter is the absolute mode of the created log file.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 372DB C++ API8/14/2009

DbEnv::set_lg_filemode()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_lg_max()
#include <db_cxx.h>

int
DbEnv::set_lg_max(u_int32_t lg_max);

Set the maximum size of a single file in the log, in bytes. Because DbLsn file offsets are unsigned
four-byte values, the set value may not be larger than the maximum unsigned four-byte value.

When the logging subsystem is configured for on-disk logging, the default size of a log file is 10MB.

When the logging subsystem is configured for in-memory logging, the default size of a log file is 256KB.
In addition, the configured log buffer size must be larger than the log file size. (The logging subsystem
divides memory configured for in-memory log records into "files", as database environments configured
for in-memory log records may exchange log records with other members of a replication group, and
those members may be configured to store log records on-disk.) When choosing log buffer and file sizes
for in-memory logs, applications should ensure the in-memory log buffer size is large enough that no
transaction will ever span the entire buffer, and avoid a state where the in-memory buffer is full and
no space can be freed because a transaction that started in the first log "file" is still active.

See Log File Limits for more information.

The database environment's log file size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_max", one or more
whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lg_max() method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_lg_max() method may be called at any time during the life of the application.

If no size is specified by the application, the size last specified for the database region will be used,
or if no database region previously existed, the default will be used.

The DbEnv::set_lg_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_max

The lg_max parameter is the size of a single log file, in bytes.

Errors

The DbEnv::set_lg_max() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

Page 373DB C++ API8/14/2009

DbEnv::set_lg_max()

../../programmer_reference/log_limits.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

EINVAL

If the size of the log file is less than four times the size of the in-memory log buffer; the specified log
file size was too large; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 374DB C++ API8/14/2009

DbEnv::set_lg_max()

DbEnv::set_lg_regionmax()
#include <db_cxx.h>

int
DbEnv::set_lg_regionmax(u_int32_t lg_regionmax);

Set the size of the underlying logging area of the Berkeley DB environment, in bytes. By default, or if
the value is set to 0, the minimum region size is used, approximately 128KB. The log region is used to
store filenames, and so may need to be increased in size if a large number of files will be opened and
registered with the specified Berkeley DB environment's log manager.

The database environment's log region size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_regionmax", one or more
whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_lg_regionmax() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lg_regionmax() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_lg_regionmax() will be ignored.

The DbEnv::set_lg_regionmax() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_regionmax

The lg_regionmax parameter is the size of the logging area in the Berkeley DB environment, in bytes.

Errors

The DbEnv::set_lg_regionmax() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 375DB C++ API8/14/2009

DbEnv::set_lg_regionmax()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

The DbLogc Handle
#include <db_cxx.h>

int
DbEnv::log_cursor(DbLogc **cursorp, u_int32_t flags);

The DbLogc object is the handle for a cursor into the log files, supporting sequential access to the
records stored in log files. The handle is not free-threaded. Once the DbLogc::close() method is called,
the handle may not be accessed again, regardless of that method's return.

For more information, see the DbLsn handle.

Page 376DB C++ API8/14/2009

The DbLogc Handle

DbLogc::close()
#include <db_cxx.h>

int
DbLogc::close(u_int32_t flags);

The DbLogc::close() method discards the log cursor. After DbLogc::close() has been called, regardless
of its return, the cursor handle may not be used again.

The DbLogc::close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbLogc::close() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 377DB C++ API8/14/2009

DbLogc::close()

DbLogc::get()
#include <db_cxx.h>

int
DbLogc::get(DbLsn *lsn, Dbt *data, u_int32_t flags);

The DbLogc::get() method returns records from the log.

Unless otherwise specified, the DbLogc::get() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

data

The data field of the data structure is set to the record retrieved, and the size field indicates the
number of bytes in the record. See Dbt for a description of other fields in the data structure. The
DB_DBT_MALLOC, DB_DBT_REALLOC and DB_DBT_USERMEM flags may be specified for any Dbt used for
data retrieval.

flags

The flags parameter must be set to one of the following values:

• DB_CURRENT

Return the log record to which the log currently refers.

• DB_FIRST

The first record from any of the log files found in the log directory is returned in the data parameter.
The lsn parameter is overwritten with the DbLsn of the record returned.

The DbLogc::get() method will return DB_NOTFOUND if DB_FIRST is set and the log is empty.

• DB_LAST

The last record in the log is returned in the data parameter. The lsn parameter is overwritten with
the DbLsn of the record returned.

The DbLogc::get() method will return DB_NOTFOUND if DB_LAST is set and the log is empty.

• DB_NEXT

The current log position is advanced to the next record in the log, and that record is returned in the
data parameter. The lsn parameter is overwritten with the DbLsn of the record returned.

If the cursor has not been initialized via DB_FIRST, DB_LAST, DB_SET, DB_NEXT, or DB_PREV,
DbLogc::get() will return the first record in the log.

Page 378DB C++ API8/14/2009

DbLogc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

The DbLogc::get() method will return DB_NOTFOUND if DB_NEXT is set and the last log record has
already been returned or the log is empty.

• DB_PREV

The current log position is advanced to the previous record in the log, and that record is returned
in the data parameter. The lsn parameter is overwritten with the DbLsn of the record returned.

If the cursor has not been initialized via DB_FIRST, DB_LAST, DB_SET, DB_NEXT, or DB_PREV,
DbLogc::get() will return the last record in the log.

The DbLogc::get() method will return DB_NOTFOUND if DB_PREV is set and the first log record has
already been returned or the log is empty.

• DB_SET

Retrieve the record specified by the lsn parameter.

lsn

When the flag parameter is set to DB_CURRENT, DB_FIRST, DB_LAST, DB_NEXT or DB_PREV, the lsn
parameter is overwritten with the DbLsn value of the record retrieved. When flag is set to DB_SET,
the lsn parameter is the DbLsn value of the record to be retrieved.

Errors

The DbLogc::get() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the DB_CURRENT flag was set and the log cursor has not yet been initialized; the DB_CURRENT,
DB_NEXT, or DB_PREV flags were set and the log was opened with the DB_THREAD flag set; the DB_SET
flag was set and the specified log sequence number does not appear in the log; or if an invalid flag
value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 379DB C++ API8/14/2009

DbLogc::get()

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DbEnv::log_compare()
#include <db_cxx.h>

static int
DbEnv::log_compare(const DbLsn *lsn0, const DbLsn *lsn1);

The DbEnv::log_compare() method allows the caller to compare two DbLsn structures, returning 0 if
they are equal, 1 if lsn0 is greater than lsn1, and -1 if lsn0 is less than lsn1.

Parameters

lsn0

The lsn0 parameter is one of the DbLsn structures to be compared.

lsn1

The lsn1 parameter is one of the DbLsn structures to be compared.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods

Page 380DB C++ API8/14/2009

DbEnv::log_compare()

Chapter 9. The DbMpoolFile Handle
#include <db_cxx.h>

class DbMpoolFile {
public:
 DB_MPOOLFILE *DbMpoolFile::get_DB_MPOOLFILE();
 const DB_MPOOLFILE *DbMpoolFile::get_const_DB_MPOOLFILE() const; ...
};

The memory pool interfaces for the Berkeley DB database environment are methods of the DbEnv
handle. The DbEnv memory pool methods and the DB_MPOOLFILE class provide general-purpose,
page-oriented buffer management of files. Although designed to work with the other Dbclasses, they
are also useful for more general purposes. The memory pools are referred to in this document as simply
the cache.

The cache may be shared between processes. The cache is usually filled by pages from one or more
files. Pages in the cache are replaced in LRU (least-recently-used) order, with each new page replacing
the page that has been unused the longest. Pages retrieved from the cache using DbMpoolFile::get()
are pinned in the cache until they are returned to the control of the cache using the DbMpoolFile::put()
method.

The DbMpoolFile object is the handle for a file in the cache. The handle is not free-threaded. Once
the DbMpoolFile::close() method is called, the handle may not be accessed again, regardless of that
method's return.

Page 381DB C++ API8/14/2009

Memory Pools and Related Methods

DescriptionMemory Pools and Related Methods

Exception class for insufficient memoryDbMemoryException

Return the DbMpoolFile for a DbDb::get_mpf()

Return cache statisticsDbEnv::memp_stat()

Print cache statisticsDbEnv::memp_stat_print()

Flush all pages from the cacheDbEnv::memp_sync()

Flush some pages from the cacheDbEnv::memp_trickle()

Memory Pool Configuration

Register a custom file typeDbEnv::memp_register()

Set/get the maximum cache sizeDbEnv::set_cache_max(), DbEnv::get_cache_max()

Set/get the environment cache sizeDbEnv::set_cachesize(), DbEnv::get_cachesize()

Set/get the maximum number of open file
descriptors

DbEnv::set_mp_max_openfd(),
DbEnv::get_mp_max_openfd()

Set/get the maximum number of sequential disk
writes

DbEnv::set_mp_max_write(),
DbEnv::get_mp_max_write()

Set/get maximum file size to memory map when
opened read-only

DbEnv::set_mp_mmapsize(),
DbEnv::get_mp_mmapsize()

Memory Pool Files

Create a memory pool file handleDbEnv::memp_fcreate()

Close a file in the cacheDbMpoolFile::close()

Get page from a file in the cacheDbMpoolFile::get()

Open a file in the cacheDbMpoolFile::open()

Return a page to the cacheDbMpoolFile::put()

Flush pages from a file from the cacheDbMpoolFile::sync()

Memory Pool File Configuration

Set/get number of bytes to clear when creating a
new page

DbMpoolFile::set_clear_len(),
DbMpoolFile::get_clear_len()

Set/get file unique identifierDbMpoolFile::set_fileid(), DbMpoolFile::get_fileid()

Set/get file optionsDbMpoolFile::set_flags(), DbMpoolFile::get_flags()

Set/get file typeDbMpoolFile::set_ftype(), DbMpoolFile::get_ftype()

Set/get file log-sequence-number offsetDbMpoolFile::set_lsn_offset(),
DbMpoolFile::get_lsn_offset()

Set/get maximum file sizeDbMpoolFile::set_maxsize(),
DbMpoolFile::get_maxsize()

Page 382DB C++ API8/14/2009

Memory Pools and Related Methods

DescriptionMemory Pools and Related Methods

Set/get file cookie for pgin/pgoutDbMpoolFile::set_pgcookie(),
DbMpoolFile::get_pgcookie()

Set/get cache file priorityDbMpoolFile::set_priority(),
DbMpoolFile::get_priority()

Page 383DB C++ API8/14/2009

Memory Pools and Related Methods

Db::get_mpf()
#include <db_cxx.h>

DbMpoolFile *
Db::get_mpf();

The Db::get_mpf() method returns the handle for the cache file underlying the database.

The Db::get_mpf() method should be used with caution on a replication client site. This method exposes
an internal structure that may not be valid after a client site synchronizes with its master site.

The Db::get_mpf() method may be called at any time during the life of the application.

Class

Db

See Also

Memory Pools and Related Methods

Page 384DB C++ API8/14/2009

Db::get_mpf()

DbEnv::get_cache_max()
#include <db_cxx.h>

int
DbEnv::get_cache_max(u_int32_t *gbytesp, u_int32_t *bytesp);

The DbEnv::get_cache_max() method returns the maximum size of the cache as set using the
DbEnv::set_cache_max() method.

The DbEnv::get_cache_max() method may be called at any time during the life of the application.

The DbEnv::get_cache_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the cache is
copied.

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache is copied.

Class

DbEnv

See Also

Database Environments and Related Methods, DbEnv::set_cache_max()

Page 385DB C++ API8/14/2009

DbEnv::get_cache_max()

DbEnv::get_cachesize()
#include <db_cxx.h>

int
DbEnv::get_cachesize(u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The DbEnv::get_cachesize() method returns the current size and composition of the cache, as set
using the DbEnv::set_cachesize() method.

The DbEnv::get_cachesize() method may be called at any time during the life of the application.

The DbEnv::get_cachesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the cache is
copied.

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class

DbEnv

See Also

Memory Pools and Related Methods, Database Environments and Related Methods, DbEnv::set_cachesize()

Page 386DB C++ API8/14/2009

DbEnv::get_cachesize()

DbEnv::get_mp_max_openfd()
#include <db_cxx.h>

int
DbEnv::get_mp_max_openfd(int *maxopenfdp);

Returns the maximum number of file descriptors the library will open concurrently when flushing dirty
pages from the cache. This value is set by the DbEnv::set_mp_max_openfd() method.

The DbEnv::get_mp_max_openfd() method may be called at any time during the life of the application.

The DbEnv::get_mp_max_openfd() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxopenfdp

The DbEnv::get_mp_max_openfd() method returns the maximum number of file descriptors open in
maxopenfdp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbEnv::set_mp_max_openfd()

Page 387DB C++ API8/14/2009

DbEnv::get_mp_max_openfd()

DbEnv::get_mp_max_write()
#include <db_cxx.h>

int
DbEnv::get_mp_max_write(int *maxwritep, db_timeout_t *maxwrite_sleepp);

The DbEnv::get_mp_max_write() method returns the current maximum number of sequential write
operations and microseconds to pause that the library can schedule when flushing dirty pages from the
cache. These values are set by the DbEnv::set_mp_max_write() method.

The DbEnv::get_mp_max_write() method may be called at any time during the life of the application.

The DbEnv::get_mp_max_write() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxwritep

The maxwritep parameter references memory into which the maximum number of sequential write
operations is copied.

maxwrite_sleepp

The maxwrite_sleepp parameter references memory into which the microseconds to pause before
scheduling further write operations is copied.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbEnv::set_mp_max_write()

Page 388DB C++ API8/14/2009

DbEnv::get_mp_max_write()

DbEnv::get_mp_mmapsize()
#include <db_cxx.h>

int
DbEnv::get_mp_mmapsize(size_t *mp_mmapsizep);

The DbEnv::get_mp_mmapsize() method returns the the maximum file size, in bytes, for a file to be
mapped into the process address space. This value can be managed using the DbEnv::set_mp_mmapsize()
method.

The DbEnv::get_mp_mmapsize() method may be called at any time during the life of the application.

The DbEnv::get_mp_mmapsize() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mp_mmapsizep

The DbEnv::get_mp_mmapsize() method returns the maximum file map size in mp_mmapsizep.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbEnv::set_mp_mmapsize()

Page 389DB C++ API8/14/2009

DbEnv::get_mp_mmapsize()

DbEnv::memp_fcreate()
#include <db_cxx.h>

int
DbEnv::memp_fcreate(DbMpoolFile **dbmfp, u_int32_t flags);

The DbEnv::memp_fcreate() method creates a DbMpoolFile structure that is the handle for a Berkeley
DB cache (that is, a shared memory buffer pool file). A pointer to this structure is returned in the
memory to which dbmfp refers. Calling the DbMpoolFile::close() method will discard the returned
handle.

The DbEnv::memp_fcreate() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dbmfp

The DbEnv::memp_fcreate() method returns a pointer to a mpool structure in dbmfp.

flags

The flags parameter is currently unused, and must be set to 0.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 390DB C++ API8/14/2009

DbEnv::memp_fcreate()

DbEnv::memp_register()
#include <db_cxx.h>

extern "C" {
 typedef int (*pgin_fcn_type)(DB_ENV *dbenv,
 db_pgno_t pgno, void *pgaddr, DBT *pgcookie);
 typedef int (*pgout_fcn_type)(DB_ENV *dbenv,
 db_pgno_t pgno, void *pgaddr, DBT *pgcookie);
};
int
DbEnv::memp_register(int ftype,
 pgin_fcn_type pgin_fcn, pgout_fcn_type pgout_fcn);

The DbEnv::memp_register() method registers page-in and page-out functions for files of type ftype
in the cache.

If the pgin_fcn function is non-NULL, it is called each time a page is read into the cache from a file
of type ftype, or a page is created for a file of type ftype (see the DB_MPOOL_CREATE flag for the
DbMpoolFile::get() method).

If the pgout_fcn function is non-NULL, it is called each time a page is written to a file of type ftype.

The purpose of the DbEnv::memp_register() function is to support processing when pages are entered
into, or flushed from, the cache. For example, this functionality might be used to do byte-endian
conversion as pages are read from, or written to, the underlying file.

A file type must be specified to make it possible for unrelated threads or processes that are sharing a
cache, to evict each other's pages from the cache. During initialization, applications should call
DbEnv::memp_register() for each type of file requiring input or output processing that will be sharing
the underlying cache. (No registry is necessary for the standard Berkeley DB access method types
because Db::open() registers them separately.)

If a thread or process does not call DbEnv::memp_register() for a file type, it is impossible for it to
evict pages for any file requiring input or output processing from the cache. For this reason,
DbEnv::memp_register() should always be called by each application sharing a cache for each type of
file included in the cache, regardless of whether or not the application itself uses files of that type.

The DbEnv::memp_register() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ftype

The ftype parameter specifies the type of file for which the page-in and page-out functions will be
called.

The ftype value for a file must be a non-zero positive number less than 128 (0 and negative numbers
are reserved for internal use by the Berkeley DB library).

Page 391DB C++ API8/14/2009

DbEnv::memp_register()

pgin_fcn, pgout_fcn

The page-in and page-out functions.

The pgin_fcn and pgout_fcn functions are called with a reference to the current database environment,
the page number being read or written, a pointer to the page being read or written, and any parameter
pgcookie that was specified to the DbMpoolFile::set_pgcookie() method.

The pgin_fcn and pgout_fcn functions should return 0 on success, and a non-zero value on failure, in
which case the shared Berkeley DB library function calling it will also fail, returning that non-zero
value. The non-zero value should be selected from values outside of the Berkeley DB library namespace.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 392DB C++ API8/14/2009

DbEnv::memp_register()

DbEnv::memp_stat()
#include <db_cxx.h>

int
DbEnv::memp_stat(DB_MPOOL_STAT **gsp,
 DB_MPOOL_FSTAT *(*fsp)[], u_int32_t flags);

The DbEnv::memp_stat()method returns the memory pool (that is, the buffer cache) subsystem statistics.

The DbEnv::memp_stat()method creates statistical structures of type DB_MPOOL_STAT and DB_MPOOL_FSTAT,
and copy pointers to them into user-specified memory locations. The cache statistics are stored in the
DB_MPOOL_STAT structure and the per-file cache statistics are stored the DB_MPOOL_FSTAT structure.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

If gsp is non-NULL, the global statistics for the cache mp are copied into the memory location to which
it refers. The following DB_MPOOL_STAT fields will be filled in:

• u_int32_t st_gbytes;

Gigabytes of cache (total cache size is st_gbytes + st_bytes).

• u_int32_t st_bytes;

Bytes of cache (total cache size is st_gbytes + st_bytes).

• u_int32_t st_ncache;

Number of caches.

• u_int32_t st_max_ncache;

Maximum number of caches, as configured with the DbEnv::set_cache_max() method.

• roff_t st_regsize;

Individual cache size, in bytes.

• size_t st_mmapsize;

Maximum memory-mapped file size.

• int st_maxopenfd;

Maximum open file descriptors.

• int st_maxwrite;

Page 393DB C++ API8/14/2009

DbEnv::memp_stat()

Maximum sequential buffer writes.

• db_timeout_t st_maxwrite_sleep;

Microseconds to pause after writing maximum sequential buffers.

• u_int32_t st_map;

Requested pages mapped into the process' address space (there is no available information about
whether or not this request caused disk I/O, although examining the application page fault rate may
be helpful).

• uintmax_t st_cache_hit;

Requested pages found in the cache.

• uintmax_t st_cache_miss;

Requested pages not found in the cache.

• uintmax_t st_page_create;

Pages created in the cache.

• uintmax_t st_page_in;

Pages read into the cache.

• uintmax_t st_page_out;

Pages written from the cache to the backing file.

• uintmax_t st_ro_evict;

Clean pages forced from the cache.

• uintmax_t st_rw_evict;

Dirty pages forced from the cache.

• uintmax_t st_page_trickle;

Dirty pages written using the DbEnv::memp_trickle() method.

• u_int32_t st_pages;

Pages in the cache.

• uintmax_t st_page_clean;

Clean pages currently in the cache.

• uintmax_t st_page_dirty;

Page 394DB C++ API8/14/2009

DbEnv::memp_stat()

Dirty pages currently in the cache.

• uintmax_t st_hash_buckets;

Number of hash buckets in buffer hash table.

• uintmax_t st_hash_searches;

Total number of buffer hash table lookups.

• uintmax_t st_hash_longest;

Longest chain ever encountered in buffer hash table lookups.

• uintmax_t st_hash_examined;

Total number of hash elements traversed during hash table lookups.

• uintmax_t st_hash_nowait;

Number of times that a thread of control was able to obtain a hash bucket lock without waiting.

• uintmax_t st_hash_wait;

Number of times that a thread of control was forced to wait before obtaining a hash bucket lock.

• uintmax_t st_hash_max_nowait;

The number of times a thread of control was able to obtain the hash bucket lock without waiting on
the bucket which had the maximum number of times that a thread of control needed to wait.

• uintmax_t st_hash_max_wait;

Maximum number of times any hash bucket lock was waited for by a thread of control.

• uintmax_t st_region_wait;

Number of times that a thread of control was forced to wait before obtaining a cache region mutex.

• uintmax_t st_region_nowait;

Number of times that a thread of control was able to obtain a cache region mutex without waiting.

• uintmax_t st_mvcc_frozen;

Number of buffers frozen.

• uintmax_t st_mvcc_thawed;

Number of buffers thawed.

• uintmax_t st_mvcc_freed;

Page 395DB C++ API8/14/2009

DbEnv::memp_stat()

Number of frozen buffers freed.

• uintmax_t st_alloc;

Number of page allocations.

• uintmax_t st_alloc_buckets;

Number of hash buckets checked during allocation.

• uintmax_t st_alloc_max_buckets;

Maximum number of hash buckets checked during an allocation.

• uintmax_t st_alloc_pages;

Number of pages checked during allocation.

• uintmax_t st_alloc_max_pages;

Maximum number of pages checked during an allocation.

• uintmax_t st_io_wait;

Number of operations blocked waiting for I/O to complete.

• uintmax_t st_sync_interrupted;

Number of mpool sync operations interrupted.

If fsp is non-NULL, a pointer to a NULL-terminated variable length array of statistics for individual files,
in the cache mp, is copied into the memory location to which it refers. If no individual files currently
exist in the cache, fsp will be set to NULL.

The per-file statistics are stored in structures of type DB_MPOOL_FSTAT. The following DB_MPOOL_FSTAT
fields will be filled in for each file in the cache; that is, each element of the array:

• char * file_name;

The name of the file.

• size_t st_pagesize;

Page size in bytes.

• uintmax_t st_cache_hit;

Requested pages found in the cache.

• uintmax_t st_cache_miss;

Requested pages not found in the cache.

Page 396DB C++ API8/14/2009

DbEnv::memp_stat()

• u_int32_t st_map;

Requested pages mapped into the process' address space.

• uintmax_t st_page_create;

Pages created in the cache.

• uintmax_t st_page_in;

Pages read into the cache.

• uintmax_t st_page_out;

Pages written from the cache to the backing file.

The DbEnv::memp_stat() method may not be called before the DbEnv::open() method is called.

The DbEnv::memp_stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

fsp

The fsp parameter references memory into which a pointer to the allocated per-file statistics structures
is copied.

gsp

The gsp parameter references memory into which a pointer to the allocated global statistics structure
is copied.

Errors

The DbEnv::memp_stat() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Page 397DB C++ API8/14/2009

DbEnv::memp_stat()

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 398DB C++ API8/14/2009

DbEnv::memp_stat()

DbEnv::memp_stat_print()
#include <db_cxx.h>

int
DbEnv::memp_stat_print(u_int32_t flags);

The DbEnv::memp_stat_print() method displays cache subsystem statistical information, as described
for the DbEnv::memp_stat() method. The information is printed to a specified output channel (see the
DbEnv::set_msgfile() method for more information), or passed to an application callback function (see
the DbEnv::set_msgcall() method for more information).

The DbEnv::memp_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::memp_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

• DB_STAT_MEMP_HASH

Display the buffers with hash chains.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 399DB C++ API8/14/2009

DbEnv::memp_stat_print()

DbEnv::memp_sync()
#include <db_cxx.h>

int
DbEnv::memp_sync(DbLsn *lsn);

The DbEnv::memp_sync() method flushes modified pages in the cache to their backing files.

Pages in the cache that cannot be immediately written back to disk (for example, pages that are
currently in use by another thread of control) are waited for and written to disk as soon as it is possible
to do so.

The DbEnv::memp_sync() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

The purpose of the lsn parameter is to enable a transaction manager to ensure, as part of a checkpoint,
that all pages modified by a certain time have been written to disk.

All modified pages with a a log sequence number (DbLsn) less than the lsn parameter are written to
disk. If lsn is NULL, all modified pages in the cache are written to disk.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 400DB C++ API8/14/2009

DbEnv::memp_sync()

DbEnv::memp_trickle()
#include <db_cxx.h>

int
DbEnv::memp_trickle(int percent, int *nwrotep);

The DbEnv::memp_trickle() method ensures that a specified percent of the pages in the cache are
clean, by writing dirty pages to their backing files.

The purpose of the DbEnv::memp_trickle() function is to enable a memory pool manager to ensure
that a page is always available for reading in new information without having to wait for a write.

The DbEnv::memp_trickle() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

nwrotep

The nwrotep parameter references memory into which the number of pages written to reach the
specified percentage is copied.

percent

The percent parameter is the percent of the pages in the cache that should be clean.

Errors

The DbEnv::memp_trickle() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors: following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 401DB C++ API8/14/2009

DbEnv::memp_trickle()

DbEnv::set_cache_max()
#include <db_cxx.h>

int
DbEnv::set_cache_max(u_int32_t gbytes, u_int32_t bytes);

The DbEnv::set_cache_max() method sets the maximum cache size, in bytes. The specified size is
rounded to the nearest multiple of the cache region size, which is the initial cache size divided by the
number of regions specified to the DbEnv::set_cachesize() method. If no value is specified, it defaults
to the initial cache size.

The database environment's maximum cache size may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_cache_max",
one or more whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_cache_max()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_cache_max() method may be called at any time during the life of the application.

The DbEnv::set_cache_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytes

The bytes parameter specifies the number of bytes which, when added to the gbytes parameter,
specifies the maximum size of the cache.

gbytes

The gbytes parameter specifies the number of bytes which, when added to the bytes parameter,
specifies the maximum size of the cache.

Errors

The DbEnv::set_cache_max() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

Page 402DB C++ API8/14/2009

DbEnv::set_cache_max()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Database Environments and Related Methods

Page 403DB C++ API8/14/2009

DbEnv::set_cache_max()

DbEnv::set_cachesize()
#include <db_cxx.h>

int
DbEnv::set_cachesize(u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool — that is, the cache. The cache should be the size of
the normal working data set of the application, with some small amount of additional memory for
unusual situations. (Note: the working set is not the same as the number of pages accessed
simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size less than
500MB is automatically increased by 25% to account for cache overhead; cache sizes larger than 500MB
are used as specified. The maximum size of a single cache is 4GB on 32-bit systems and 10TB on 64-bit
systems. (All sizes are in powers-of-two, that is, 256KB is 2^18 not 256,000.) For information on tuning
the Berkeley DB cache size, see Selecting a cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated contiguously on
some architectures. For example, some releases of Solaris limit the amount of memory that may be
allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated contiguously in
memory. If it is greater than 1, the cache will be split across ncache separate regions, where the
region size is equal to the initial cache size divided by ncache.

The cache may be resized by calling DbEnv::set_cachesize() after the environment is open. The
supplied size will be rounded to the nearest multiple of the region size and may not be larger than the
maximum size configured with DbEnv::set_cache_max(). The ncache parameter is ignored when resizing
the cache.

The database environment's initial cache size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_cachesize", one or more
whitespace characters, and the initial cache size specified in three parts: the gigabytes of cache, the
additional bytes of cache, and the number of caches, also separated by whitespace characters. For
example, "set_cachesize 2 524288000 3" would create a 2.5GB logical cache, split between three
physical caches. Because the DB_CONFIG file is read when the database environment is opened, it will
silently overrule configuration done before that time.

The DbEnv::set_cachesize()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_cachesize() method may be called at any time during the life of the application.

The DbEnv::set_cachesize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytes

The size of the cache is set to gbytes gigabytes plus bytes.

Page 404DB C++ API8/14/2009

DbEnv::set_cachesize()

../../programmer_reference/general_am_conf.html#am_conf_cachesize
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

gbytes

The size of the cache is set to gbytes gigabytes plus bytes.

ncache

The ncache parameter is the number of caches to create.

Errors

The DbEnv::set_cachesize() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the specified cache size was impossibly small; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods

Page 405DB C++ API8/14/2009

DbEnv::set_cachesize()

DbEnv::set_mp_max_openfd()
#include <db_cxx.h>

int
DbEnv::set_mp_max_openfd(int maxopenfd);

The DbEnv::set_mp_max_openfd() method limits the number of file descriptors the library will open
concurrently when flushing dirty pages from the cache.

The database environment's limit on open file descriptors to flush dirty pages may also be configured
using the environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_max_openfd", one or more whitespace characters, and the number of open file descriptors.
Because the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_mp_max_openfd() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_mp_max_openfd() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxopenfd

The maximum number of file descriptors that may be concurrently opened by the library when flushing
dirty pages from the cache.

Errors

The DbEnv::set_mp_max_openfd() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 406DB C++ API8/14/2009

DbEnv::set_mp_max_openfd()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::set_mp_max_write()
#include <db_cxx.h>

int
DbEnv::set_mp_max_write(int maxwrite, db_timeout_t maxwrite_sleep);

The DbEnv::set_mp_max_write() method limits the number of sequential write operations scheduled
by the library when flushing dirty pages from the cache.

The database environment's maximum number of sequential write operations may also be configured
using the environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_mp_max_write", one or more whitespace characters, and the maximum number of sequential
writes and the number of microseconds to sleep, also separated by whitespace characters. Because
the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_mp_max_write() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_mp_max_write() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxwrite

The maximum number of sequential write operations scheduled by the library when flushing dirty pages
from the cache, or 0 if there is no limitation on the number of sequential write operations.

maxwrite_sleep

The number of microseconds the thread of control should pause before scheduling further write
operations. It must be specified as an unsigned 32-bit number of microseconds, limiting the maximum
pause to roughly 71 minutes.

Errors

The DbEnv::set_mp_max_write() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

Page 407DB C++ API8/14/2009

DbEnv::set_mp_max_write()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Memory Pools and Related Methods

Page 408DB C++ API8/14/2009

DbEnv::set_mp_max_write()

DbEnv::set_mp_mmapsize()
#include <db_cxx.h>

int
DbEnv::set_mp_mmapsize(size_t mp_mmapsize);

Files that are opened read-only in the cache (and that satisfy a few other criteria) are, by default,
mapped into the process address space instead of being copied into the local cache. This can result in
better-than-usual performance because available virtual memory is normally much larger than the
local cache, and page faults are faster than page copying on many systems. However, it can cause
resource starvation in the presence of limited virtual memory, and it can result in immense process
sizes in the presence of large databases.

The DbEnv::set_mp_mmapsize() method sets the maximum file size, in bytes, for a file to be mapped
into the process address space. If no value is specified, it defaults to 10MB.

The database environment's maximum mapped file size may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_mp_mmapsize",
one or more whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_mp_mmapsize() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_mp_mmapsize() method may be called at any time during the life of the application.

The DbEnv::set_mp_mmapsize() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mp_mmapsize

The mp_mmapsize parameter is the maximum file size, in bytes, for a file to be mapped into the
process address space.

Errors

The DbEnv::set_mp_mmapsize() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

Page 409DB C++ API8/14/2009

DbEnv::set_mp_mmapsize()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Memory Pools and Related Methods

Page 410DB C++ API8/14/2009

DbEnv::set_mp_mmapsize()

DbMpoolFile::close()
#include <db_cxx.h>

int
DbMpoolFile::close(u_int32_t flags);

The DbMpoolFile::close() method closes the source file indicated by the DbMpoolFile structure. Calling
DbMpoolFile::close() does not imply a call to DbMpoolFile::sync(); that is, no pages are written to
the source file as as a result of calling DbMpoolFile::close.().

If the DbMpoolFile was temporary, any underlying files created for this DbMpoolFile will be removed.

After DbMpoolFile::close() has been called, regardless of its return, the DbMpoolFile handle may not
be accessed again.

The DbMpoolFile::close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 411DB C++ API8/14/2009

DbMpoolFile::close()

DbMpoolFile::get()
#include <db_cxx.h>

int
DbMpoolFile::get(db_pgno_t *pgnoaddr,
 DbTxn *txnid, u_int32_t flags, void **pagep);

The DbMpoolFile::get() method returns pages from the cache.

All pages returned by DbMpoolFile::get() will be retained (that is, latched) in the cache until a
subsequent call to DbMpoolFile::put(). There is no deadlock detection amoung latches so care must be
taken in the application if the DB_MPOOL_DIRTY or DB_MPOOL_EDIT flags are used as these get exlusive
latches on the pages.

The returned page is size_t type aligned.

Fully or partially created pages have all their bytes set to a nul byte, unless the
DbMpoolFile::set_clear_len() method was called to specify other behavior before the file was opened.

The DbMpoolFile::get() method will return DB_PAGE_NOTFOUND if the requested page does not exist
and DB_MPOOL_CREATE was not set. Unless otherwise specified, the DbMpoolFile::get() method either
returns a non-zero error value or throws an exception that encapsulates a non-zero error value on
failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_MPOOL_CREATE

If the specified page does not exist, create it. In this case, the pgin method, if specified, is called.

• DB_MPOOL_DIRTY

The page will be modified and must be written to the source file before being evicted from the
cache. For files open with the DB_MULTIVERSION flag set, a new copy of the page will be made if
this is the first time the specified transaction is modifying it. A page fetched with the DB_MPOOL_DIRTY
flag will be excluively latched until a subsequent call to DbMpoolFile::put().

• DB_MPOOL_EDIT

The page will be modified and must be written to the source file before being evicted from the
cache. No copy of the page will be made, regardless of the DB_MULTIVERSION setting. This flag is
only intended for use in situations where a transaction handle is not available, such as during aborts
or recovery. A page fetched with the DB_MPOOL_EDIT flag will be excluively latched until a subsequent
call to DbMpoolFile::put().

Page 412DB C++ API8/14/2009

DbMpoolFile::get()

• DB_MPOOL_LAST

Return the last page of the source file, and copy its page number into the memory location to which
pgnoaddr refers.

• DB_MPOOL_NEW

Create a new page in the file, and copy its page number into the memory location to which pgnoaddr
refers. In this case, the pgin_fcn callback, if specified on DbEnv::memp_register(), is not called.

The DB_MPOOL_CREATE, DB_MPOOL_LAST, and DB_MPOOL_NEW flags are mutually exclusive.

pagep

The pagep parameter references memory into which a pointer to the returned page is copied.

pgnoaddr

If the flags parameter is set to DB_MPOOL_LAST or DB_MPOOL_NEW, the page number of the created page
is copied into the memory location to which the pgnoaddr parameter refers. Otherwise, the pgnoaddr
parameter is the page to create or retrieve.

Page numbers begin at 0; that is, the first page in the file is page number 0, not page number 1.☞
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); otherwise NULL. A transaction is required if the file is open
for multiversion concurrency control by passing DB_MULTIVERSION to DbMpoolFile::open() and the
DB_MPOOL_DIRTY, DB_MPOOL_CREATE or DB_MPOOL_NEW flags were specified. Otherwise it is ignored.

Errors

The DbMpoolFile::get() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EACCES

The DB_MPOOL_DIRTY or DB_MPOOL_EDIT flag was set and the source file was not opened for writing.

EAGAIN

The page reference count has overflowed. (This should never happen unless there is a bug in the
application.)

EINVAL

If the DB_MPOOL_NEW flag was set, and the source file was not opened for writing; more than one of
DB_MPOOL_CREATE, DB_MPOOL_LAST, and DB_MPOOL_NEW was set; or if an invalid flag value or parameter
was specified.

Page 413DB C++ API8/14/2009

DbMpoolFile::get()

DB_LOCK_DEADLOCK

For transactions configured with DB_TXN_SNAPSHOT, the page has been modified since the transaction
began.

ENOMEM

The cache is full, and no more pages will fit in the cache.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 414DB C++ API8/14/2009

DbMpoolFile::get()

DbMpoolFile::open()
#include <db_cxx.h>

int
DbMpoolFile::open(const char *file, u_int32_t flags, int mode, size_t pagesize);

The DbMpoolFile::open() method opens a file in the in-memory cache.

The DbMpoolFile::open() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the name of the file to be opened. If file is NULL, a private temporary file is
created that cannot be shared with any other process (although it may be shared with other threads
of control in the same process).

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_CREATE

Create any underlying files, as necessary. If the database do not already exist and the DB_CREATE
flag is not specified, the call will fail.

• DB_DIRECT

If set and supported by the system, turn off system buffering of the file to avoid double caching.

• DB_MULTIVERSION

Open the file with support for multiversion concurrency control. Calls to DbMpoolFile::get() with
dirty pages will cause copies to be made in the cache.

• DB_NOMMAP

Always copy this file into the local cache instead of potentially mapping it into process memory (see
the DbEnv::set_mp_mmapsize() method for further information).

• DB_ODDFILESIZE

Page 415DB C++ API8/14/2009

DbMpoolFile::open()

../../programmer_reference/transapp_read.html

Attempts to open files which are not a multiple of the page size in length will fail, by default. If the
DB_ODDFILESIZE flag is set, any partial page at the end of the file will be ignored and the open will
proceed.

• DB_RDONLY

Open any underlying files for reading only. Any attempt to modify the file using the memory pool
(cache) functions will fail, regardless of the actual permissions of the file.

mode

On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by DbMpoolFile::open()
are created with mode mode (as described in chmod(2)) and modified by the process' umask value at
the time of creation (see umask(2)). Created files are owned by the process owner; the group ownership
of created files is based on the system and directory defaults, and is not further specified by Berkeley
DB. System shared memory segments created by DbMpoolFile::open() are created with mode mode,
unmodified by the process' umask value. If mode is 0, DbMpoolFile::open() will use a default mode of
readable and writable by both owner and group.

pagesize

The pagesize parameter is the size, in bytes, of the unit of transfer between the application and the
cache, although it is not necessarily the unit of transfer between the cache and the underlying
filesystem.

Errors

The DbMpoolFile::open() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the file has already been entered into the cache, and the pagesize value is not the same as when
the file was entered into the cache, or the length of the file is not zero or a multiple of the pagesize;
the DB_RDONLY flag was specified for an in-memory cache; or if an invalid flag value or parameter
was specified.

ENOMEM

The maximum number of open files has been reached.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 416DB C++ API8/14/2009

DbMpoolFile::open()

DbMpoolFile::put()
#include <db_cxx.h>

int
DbMpoolFile::put(void *pgaddr, DB_CACHE_PRIORITY priority, u_int32_t flags);

The DbMpoolFile::put() method returns a reference to a page in the cache, setting the priority of the
page as specified by the priority parameter.

The DbMpoolFile::put() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

pgaddr

The pgaddr parameter is the address of the page to be returned to the cache. The pgaddr parameter
must be a value previously returned by the DbMpoolFile::get() method.

priority

Set the page's priority as follows:

• DB_PRIORITY_UNCHANGED

The priority is unchanged.

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Page 417DB C++ API8/14/2009

DbMpoolFile::put()

Errors

The DbMpoolFile::put() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 418DB C++ API8/14/2009

DbMpoolFile::put()

DbMpoolFile::sync()
#include <db_cxx.h>

int
DbMpoolFile::sync();

The DbMpoolFile::sync() method writes all modified pages associated with the DbMpoolFile back to
the source file. If any of the modified pages are pinned (that is, currently in use), DbMpoolFile::sync()
will ignore them.

The DbMpoolFile::sync() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 419DB C++ API8/14/2009

DbMpoolFile::sync()

DbMpoolFile::get_clear_len()
#include <db_cxx.h>

int
DbMpoolFile::get_clear_len(u_int32_t *lenp);

The DbMpoolFile::get_clear_len() method returns the bytes to be cleared.

The DbMpoolFile::get_clear_len() method may be called at any time during the life of the application.

The DbMpoolFile::get_clear_len()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lenp

The DbMpoolFile::get_clear_len() method returns the bytes to be cleared in lenp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 420DB C++ API8/14/2009

DbMpoolFile::get_clear_len()

DbMpoolFile::get_fileid()
#include <db_cxx.h>

int DbMpoolFile::get_fileid(u_int8_t *fileid);

The DbMpoolFile::get_fileid() method copies the file's identifier into the memory location referenced
by fileid. The fileid specifies a unique identifier for the file, which is used so that the cache functions
(that is, the shared memory buffer pool functions) are able to uniquely identify files. This is necessary
for multiple processes wanting to share a file to correctly identify the file in the cache.

The DbMpoolFile::get_fileid() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_fileid()

Page 421DB C++ API8/14/2009

DbMpoolFile::get_fileid()

DbMpoolFile::get_flags()
#include <db_cxx.h>

int
DbMpoolFile::get_flags(u_int32_t *flagsp);

The DbMpoolFile::get_flags() method returns the flags used to configure a file in the cache.

The DbMpoolFile::get_flags() method may be called at any time during the life of the application.

The DbMpoolFile::get_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbMpoolFile::get_flags() method returns the flags in flagsp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_flags()

Page 422DB C++ API8/14/2009

DbMpoolFile::get_flags()

DbMpoolFile::get_ftype()
#include <db_cxx.h>

int
DbMpoolFile::get_ftype(int *ftypep);

The DbMpoolFile::get_ftype() method returns the file type. The file type is used for the purposes of
file processing, and will be the same as is set using the DbEnv::memp_register() method.

The DbMpoolFile::get_ftype() method may be called at any time during the life of the application.

The DbMpoolFile::get_ftype() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ftypep

The DbMpoolFile::get_ftype() method returns the file type in ftypep.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_ftype()

Page 423DB C++ API8/14/2009

DbMpoolFile::get_ftype()

DbMpoolFile::get_lsn_offset()
#include <db_cxx.h>

int
DbMpoolFile::get_lsn_offset(int32_t *lsn_offsetp);

The DbMpoolFile::get_lsn_offset() method returns the log sequence number byte offset configured
for a file's pages using the DbMpoolFile::set_lsn_offset() method.

The DbMpoolFile::get_lsn_offset()method may be called at any time during the life of the application.

The DbMpoolFile::get_lsn_offset()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn_offsetp

The DbMpoolFile::get_lsn_offset()method returns the log sequence number byte offset in lsn_offsetp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_lsn_offset()

Page 424DB C++ API8/14/2009

DbMpoolFile::get_lsn_offset()

DbMpoolFile::get_maxsize()
#include <db_cxx.h>

int
DbMpoolFile::get_maxsize(u_int32_t *gbytesp, u_int32_t *bytesp);

Returns the maximum size configured for the file, as configured using the DbMpoolFile::set_maxsize()
method.

The DbMpoolFile::get_maxsize() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

The DbMpoolFile::get_maxsize() method may be called at any time during the life of the application.

Parameters

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the maximum
file size is copied.

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the maximum file
size is copied.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_maxsize()

Page 425DB C++ API8/14/2009

DbMpoolFile::get_maxsize()

DbMpoolFile::get_pgcookie()
#include <db_cxx.h>

int
DbMpoolFile::get_pgcookie(DBT *dbt);

The DbMpoolFile::get_pgcookie() method returns the byte string provided to the functions registered
to do input or output processing of the file's pages as they are read from or written to, the backing
filesystem store. This byte string is configured using the DbMpoolFile::set_pgcookie() method.

The DbMpoolFile::get_pgcookie() method may be called at any time during the life of the application.

The DbMpoolFile::get_pgcookie() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dbt

The DbMpoolFile::get_pgcookie() method returns a reference to the byte string in dbt.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_pgcookie()

Page 426DB C++ API8/14/2009

DbMpoolFile::get_pgcookie()

DbMpoolFile::get_priority()
#include <db_cxx.h>

int
DbMpoolFile::get_priority(DB_CACHE_PRIORITY *priorityp);

The DbMpoolFile::get_priority() method returns the cache priority for the file referenced by the
DbMpoolFile handle. The priority of a page biases the replacement algorithm to be more or less likely
to discard a page when space is needed in the cache. This value is set using the
DbMpoolFile::set_priority() method.

The DbMpoolFile::get_priority() method may be called at any time during the life of the application.

The DbMpoolFile::get_priority() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The DbMpoolFile::get_priority() method returns a reference to the cache priority for the file
referenced by the DbMpoolFile handle in priorityp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods, DbMpoolFile::set_priority()

Page 427DB C++ API8/14/2009

DbMpoolFile::get_priority()

DbMpoolFile::set_clear_len()
#include <db_cxx.h>

int DbMpoolFile::set_clear_len(u_int32_t len);

The DbMpoolFile::set_clear_len() method sets the number of initial bytes in a page that should be
set to nul when the page is created as a result of the DB_MPOOL_CREATE or DB_MPOOL_NEW flags
specified to DbMpoolFile::get(). If no clear length is specified, the entire page is cleared when it is
created.

The DbMpoolFile::set_clear_len()method configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DbMpoolFile::set_clear_len() method may not be called after the DbMpoolFile::open() method
is called. If the file is already open in the cache when DbMpoolFile::open() is called, the information
specified to DbMpoolFile::set_clear_len() must be consistent with the existing file or an error will
be returned.

The DbMpoolFile::set_clear_len()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

len

The len parameter is the number of initial bytes in a page that should be set to nul when the page is
created. A value of 0 results in the entire page being set to nul bytes.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 428DB C++ API8/14/2009

DbMpoolFile::set_clear_len()

DbMpoolFile::set_fileid()
#include <db_cxx.h>

int
DbMpoolFile::set_fileid(u_int8_t *fileid);

The DbMpoolFile::set_fileid() method specifies a unique identifier for the file. (The shared memory
buffer pool functions must be able to uniquely identify files in order that multiple processes wanting
to share a file will correctly identify it in the cache.)

On most UNIX/POSIX systems, the fileid field will not need to be set, and the memory pool functions
will use the file's device and inode numbers for this purpose. On Windows systems, the memory pool
functions use the values returned by GetFileInformationByHandle() by default — these values are
known to be constant between processes and over reboot in the case of NTFS (in which they are the
NTFS MFT indices).

On other filesystems (for example, FAT or NFS), these default values are not necessarily unique between
processes or across system reboots. Applications wanting to maintain a shared cache between
processes or across system reboots, in which the cache contains pages from files stored on such
filesystems, must specify a unique file identifier using the DbMpoolFile::set_fileid() method, and
each process opening the file must provide the same unique identifier.

This call should not be necessary for most applications. Specifically, it is not necessary if the cache is
not shared between processes and is reinstantiated after each system reboot, if the application is using
the Berkeley DB access methods instead of calling the pool functions explicitly, or if the files in the
cache are stored on filesystems in which the default values as described previously are invariant
between process and across system reboots.

The DbMpoolFile::set_fileid() method configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DbMpoolFile::set_fileid() method may not be called after the DbMpoolFile::open() method is
called.

The DbMpoolFile::set_fileid() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fileid

The fileid parameter is the unique identifier for the file. Unique file identifiers must be a DB_FILE_ID_LEN
length array of bytes.

Class

DbEnv, DbMpoolFile

Page 429DB C++ API8/14/2009

DbMpoolFile::set_fileid()

See Also

Memory Pools and Related Methods

Page 430DB C++ API8/14/2009

DbMpoolFile::set_fileid()

DbMpoolFile::set_flags()
#include <db_cxx.h>

int
DbMpoolFile::set_flags(u_int32_t flags, bool onoff);

Configure a file in the cache.

To set the flags for a particular database, call the DbMpoolFile::set_flags() method using the
DbMpoolFile handle stored in the mpf field of the Db handle.

The DbMpoolFile::set_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

• DB_MPOOL_NOFILE

If set, no backing temporary file will be opened for the specified in-memory database, even if it
expands to fill the entire cache. Attempts to create new database pages after the cache has been
filled will fail.

The DB_MPOOL_NOFILE flag configures a file in the cache, not only operations performed using the
specified DbMpoolFile handle.

The DB_MPOOL_NOFILE flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_MPOOL_UNLINK

If set, remove the file when the last reference to it is closed.

The DB_MPOOL_ULINK flag configures a file in the cache, not only operations performed using the
specified DbMpoolFile handle.

The DB_MPOOL_ULINK flag may be used to configure Berkeley DB at any time during the life of the
application.

onoff

If onoff is zero, the specified flags are cleared; otherwise they are set.

Class

DbEnv, DbMpoolFile

Page 431DB C++ API8/14/2009

DbMpoolFile::set_flags()

See Also

Memory Pools and Related Methods

Page 432DB C++ API8/14/2009

DbMpoolFile::set_flags()

DbMpoolFile::set_ftype()
#include <db_cxx.h>

int
DbMpoolFile::set_flags(int ftype);

The DbMpoolFile::set_ftype()method specifies a file type for the purposes of input or output processing
of the file's pages as they are read from or written to, the backing filesystem store.

The DbMpoolFile::set_ftype() method configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DbMpoolFile::set_ftype() method may not be called after the DbMpoolFile::open() method is
called. If the file is already open in the cache when DbMpoolFile::open() is called, the information
specified to DbMpoolFile::set_ftype() will replace the existing information.

The DbMpoolFile::set_ftype() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ftype

The ftype parameter sets the file's type for the purposes of input and output processing. The ftype
must be the same as a ftype parameter previously specified to the DbEnv::memp_register() method.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 433DB C++ API8/14/2009

DbMpoolFile::set_ftype()

DbMpoolFile::set_lsn_offset()
#include <db_cxx.h>

int DbMpoolFile::set_lsn_offset(int32_t lsn_offset);

The DbMpoolFile::set_lsn_offset() method specifies the zero-based byte offset of a log sequence
number (DbLsn) on the file's pages, for the purposes of page-flushing as part of transaction checkpoint.
(See the DbEnv::memp_sync() documentation for more information.)

The DbMpoolFile::set_lsn_offset() method configures a file in the cache, not only operations
performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_lsn_offset() method may not be called after the DbMpoolFile::open() method
is called. If the file is already open in the cache when DbMpoolFile::open() is called, the information
specified to DbMpoolFile::set_lsn_offset() must be consistent with the existing file or an error will
be returned.

The DbMpoolFile::set_lsn_offset()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn_offset

The lsn_offset parameter is the zero-based byte offset of the log sequence number on the file's pages.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 434DB C++ API8/14/2009

DbMpoolFile::set_lsn_offset()

DbMpoolFile::set_maxsize()
#include <db_cxx.h>

int
DbMpoolFile::set_maxsize(u_int32_t gbytes, u_int32_t bytes);

Set the maximum size for the file to be gbytes gigabytes plus bytes. Attempts to allocate new pages
in the file after the limit has been reached will fail.

To set the maximum file size for a particular database, call the DbMpoolFile::set_maxsize() method
using the DbMpoolFile handle stored in the mpf field of the Db handle. Attempts to insert new items
into the database after the limit has been reached may fail.

The DbMpoolFile::set_maxsize() method configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DbMpoolFile::set_maxsize() method may be called at any time during the life of the application.

The DbMpoolFile::set_maxsize() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytes

The maximum size of the file is set to gbytes gigabytes plus bytes.

gbytes

The maximum size of the file is set to gbytes gigabytes plus bytes.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 435DB C++ API8/14/2009

DbMpoolFile::set_maxsize()

DbMpoolFile::set_pgcookie()
#include <db_cxx.h>

int
DbMpoolFile::set_pgcookie(DBT *pgcookie);

The DbMpoolFile::set_pgcookie() method specifies a byte string that is provided to the functions
registered to do input or output processing of the file's pages as they are read from or written to, the
backing filesystem store. (See the DbEnv::memp_register() documentation for more information.)

The DbMpoolFile::set_pgcookie() method configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DbMpoolFile::set_pgcookie() method may not be called after the DbMpoolFile::open() method is
called. If the file is already open in the cache when DbMpoolFile::open() is called, the information
specified to DbMpoolFile::set_pgcookie() will replace the existing information.

The DbMpoolFile::set_pgcookie() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pgcookie

The pgcookie parameter is a byte string provided to the functions registered to do input or output
processing of the file's pages.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 436DB C++ API8/14/2009

DbMpoolFile::set_pgcookie()

DbMpoolFile::set_priority()
#include <db_cxx.h>

int
DbMpoolFile::set_priority(DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the DbMpoolFile handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the cache. The bias is temporary, and pages will eventually be discarded if
they are not referenced again. The DbMpoolFile::set_priority() method is only advisory, and does
not guarantee pages will be treated in a specific way.

To set the priority for the pages belonging to a particular database, call the
DbMpoolFile::set_priority() method using the DbMpoolFile handle returned by the Db::get_mpf()
method.

The DbMpoolFile::set_priority() method configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DbMpoolFile::set_priority() method may be called at any time during the life of the application.

The DbMpoolFile::set_priority() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be set to one of the following values:

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Page 437DB C++ API8/14/2009

DbMpoolFile::set_priority()

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods

Page 438DB C++ API8/14/2009

DbMpoolFile::set_priority()

Chapter 10. Mutex Methods
This chapter describes methods that can be used to manage mutexes within DB. Many of the methods
described here are used to configure DB's internal mutex system. However, a series of APIs are available
for use as a general-purpose, cross platform mutex management system. These methods can be used
independently of DB's main purpose, which is as a high-end data management engine.

Page 439DB C++ API8/14/2009

Mutex Methods

DescriptionMutexes and Related Methods

Allocate a mutexDbEnv::mutex_alloc()

Free a mutexDbEnv::mutex_free()

Lock a mutexDbEnv::mutex_lock()

Mutex statisticsDbEnv::mutex_stat()

Print mutex statisticsDbEnv::mutex_stat_print()

Unlock a mutexDbEnv::mutex_unlock()

Mutex Configuration

Configure mutex alignmentDbEnv::mutex_set_align(),
DbEnv::mutex_get_align()

Configure number of additional mutexesDbEnv::mutex_set_increment(),
DbEnv::mutex_get_increment()

Configure total number of mutexesDbEnv::mutex_set_max(), DbEnv::mutex_get_max()

Configure test-and-set mutex spin countDbEnv::mutex_set_tas_spins(),
DbEnv::mutex_get_tas_spins()

Page 440DB C++ API8/14/2009

Mutex Methods

DbEnv::mutex_alloc()
#include <db_cxx.h>

int
DbEnv::mutex_alloc(u_int32_t flags, db_mutex_t *mutexp);

The DbEnv::mutex_alloc() method allocates a mutex and returns a reference to it into the memory
specified by mutexp.

The DbEnv::mutex_alloc() method may not be called before the DbEnv::open() method is called.

The DbEnv::mutex_alloc() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_MUTEX_PROCESS_ONLY

The mutex is associated with a single process. The DbEnv::failchk() method will release mutexes
held by any process which has exited.

• DB_MUTEX_SELF_BLOCK

The mutex must be self-blocking. That is, if a thread of control locks the mutex and then attempts
to lock the mutex again, the thread of control will block until another thread of control releases the
original lock on the mutex, allowing the original thread of control to lock the mutex the second time.
Attempting to re-acquire a mutex for which the DB_MUTEX_SELF_BLOCK flag was not specified will
result in undefined behavior.

mutexp

The mutexp parameter references memory into which the mutex reference is copied.

Errors

The DbEnv::mutex_alloc() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

Page 441DB C++ API8/14/2009

DbEnv::mutex_alloc()

See Also

Mutex Methods

Page 442DB C++ API8/14/2009

DbEnv::mutex_alloc()

DbEnv::mutex_free()
#include <db_cxx.h>

int
DbEnv::mutex_free(db_mutex_t mutex);

The DbEnv::mutex_free() method discards a mutex allocated by DbEnv::mutex_alloc().

The DbEnv::mutex_free() method may not be called before the DbEnv::open() method is called.

The DbEnv::mutex_free() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mutex

The mutex parameter is a mutex previously allocated by DbEnv::mutex_alloc().

Errors

The DbEnv::mutex_free() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods

Page 443DB C++ API8/14/2009

DbEnv::mutex_free()

DbEnv::mutex_get_align()
#include <db_cxx.h>

int
DbEnv::mutex_get_align(u_int32_t *alignp);

The DbEnv::mutex_get_align() method returns the mutex alignment, in bytes.

The DbEnv::mutex_get_align() method may be called at any time during the life of the application.

The DbEnv::mutex_get_align() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

alignp

The DbEnv::mutex_get_align() method returns the mutex alignment, in bytes in alignp.

Class

DbEnv

See Also

Mutex Methods

Page 444DB C++ API8/14/2009

DbEnv::mutex_get_align()

DbEnv::mutex_get_increment()
#include <db_cxx.h>

int
DbEnv::mutex_get_increment(u_int32_t *incrementp);

The DbEnv::mutex_get_increment() method returns the number of additional mutexes to allocate.

The DbEnv::mutex_get_increment() method may be called at any time during the life of the application.

The DbEnv::mutex_get_increment()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

incrementp

The DbEnv::mutex_get_increment() method returns the number of additional mutexes to allocate in
incrementp.

Class

DbEnv

See Also

Mutex Methods

Page 445DB C++ API8/14/2009

DbEnv::mutex_get_increment()

DbEnv::mutex_get_max()
#include <db_cxx.h>

int
DbEnv::mutex_get_max(u_int32_t *maxp);

The DbEnv::mutex_get_max() method returns the total number of mutexes allocated.

The DbEnv::mutex_get_max() method may be called at any time during the life of the application.

The DbEnv::mutex_get_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxp

The DbEnv::mutex_get_max() method returns the total number of mutexes allocated in maxp.

Class

DbEnv

See Also

Mutex Methods

Page 446DB C++ API8/14/2009

DbEnv::mutex_get_max()

DbEnv::mutex_get_tas_spins()
#include <db_cxx.h>

int
DbEnv::mutex_get_tas_spins(u_int32_t *, tas_spinsp);

The DbEnv::mutex_get_tas_spins() method returns the test-and-set spin count. This value may be
configured using the DbEnv::mutex_set_tas_spins() method.

The DbEnv::mutex_get_tas_spins() method may be called at any time during the life of the application.

The DbEnv::mutex_get_tas_spins()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tas_spinsp

The DbEnv::mutex_get_tas_spins() method returns the test-and-set spin count in tas_spinsp.

Class

DbEnv

See Also

Mutex Methods

Page 447DB C++ API8/14/2009

DbEnv::mutex_get_tas_spins()

DbEnv::mutex_lock()
#include <db_cxx.h>

int
DbEnv::mutex_lock(db_mutex_t mutex);

The DbEnv::mutex_lock() method locks the mutex allocated by DbEnv::mutex_alloc(). The thread of
control calling DbEnv::mutex_lock() will block until the lock is available.

The DbEnv::mutex_lock() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mutex

The mutex parameter is a mutex previously allocated by DbEnv::mutex_alloc().

Errors

The DbEnv::mutex_lock() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods

Page 448DB C++ API8/14/2009

DbEnv::mutex_lock()

DbEnv::mutex_set_align()
#include <db_cxx.h>

int
DbEnv::mutex_set_align(u_int32_t align);

Set the mutex alignment, in bytes.

It is sometimes advantageous to align mutexes on specific byte boundaries in order to minimize cache
line collisions. The DbEnv::mutex_set_align() method specifies an alignment for mutexes allocated
by Berkeley DB.

The database environment's mutex alignment may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "mutex_set_align", one or more
whitespace characters, and the mutex alignment in bytes. Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::mutex_set_align() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::mutex_set_align() method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::mutex_set_align() will be ignored.

The DbEnv::mutex_set_align() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

align

The align parameter is the mutex alignment, in bytes. The mutex alignment must be a power-of-two.

Errors

The DbEnv::mutex_set_align() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Mutex Methods

Page 449DB C++ API8/14/2009

DbEnv::mutex_set_align()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::mutex_set_increment()
#include <db_cxx.h>

int
DbEnv::mutex_set_increment(u_int32_t increment);

Configure the number of additional mutexes to allocate.

If an application will allocate mutexes for its own use, the DbEnv::mutex_set_increment() method is
used to add a number of mutexes to the default allocation.

Calling the DbEnv::mutex_set_increment() method discards any value previously set using the
DbEnv::mutex_set_max() method.

The database environment's number of additional mutexes may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"mutex_set_increment", one or more whitespace characters, and the number of additional mutexes.
Because the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::mutex_set_increment() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::mutex_set_increment()method may not be called after the DbEnv::open() method is called.
If the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::mutex_set_increment() will be ignored.

The DbEnv::mutex_set_increment()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

increment

The increment parameter is the number of additional mutexes to allocate.

Errors

The DbEnv::mutex_set_increment() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

Page 450DB C++ API8/14/2009

DbEnv::mutex_set_increment()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Mutex Methods

Page 451DB C++ API8/14/2009

DbEnv::mutex_set_increment()

DbEnv::mutex_set_max()
#include <db_cxx.h>

int
DbEnv::mutex_set_max(u_int32_t max);

Configure the total number of mutexes to allocate.

Berkeley DB allocates a default number of mutexes based on the initial configuration of the database
environment. That default calculation may be too small if the application has an unusual need for
mutexes (for example, if the application opens an unexpectedly large number of databases) or too
large (if the application is trying to minimize its memory footprint). The DbEnv::mutex_set_max()
method is used to specify an absolute number of mutexes to allocate.

Calling the DbEnv::mutex_set_max() method discards any value previously set using the
DbEnv::mutex_set_increment() method.

The database environment's total number of mutexes may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "mutex_set_max",
one or more whitespace characters, and the total number of mutexes. Because the DB_CONFIG file is
read when the database environment is opened, it will silently overrule configuration done before that
time.

The DbEnv::mutex_set_max()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::mutex_set_max() method may not be called after the DbEnv::open() method is called. If
the database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::mutex_set_max() will be ignored.

The DbEnv::mutex_set_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the absolute number of mutexes to allocate.

Errors

The DbEnv::mutex_set_max() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Page 452DB C++ API8/14/2009

DbEnv::mutex_set_max()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Class

DbEnv

See Also

Mutex Methods

Page 453DB C++ API8/14/2009

DbEnv::mutex_set_max()

DbEnv::mutex_set_tas_spins()
#include <db_cxx.h>

int
DbEnv::mutex_set_tas_spins(u_int32_t tas_spins);

Specify that test-and-set mutexes should spin tas_spins times without blocking. The value defaults to
1 on uniprocessor systems and to 50 times the number of processors on multiprocessor systems.

The database environment's test-and-set spin count may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_tas_spins", one
or more whitespace characters, and the number of spins. Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::mutex_set_tas_spins() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::mutex_set_tas_spins() method may be called at any time during the life of the application.

The DbEnv::mutex_set_tas_spins()method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tas_spins

The tas_spins parameter is the number of spins test-and-set mutexes should execute before blocking.

Errors

The DbEnv::mutex_set_tas_spins() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods

Page 454DB C++ API8/14/2009

DbEnv::mutex_set_tas_spins()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::mutex_stat()
#include <db_cxx.h>

int
DbEnv::mutex_stat(DB_MUTEX_STAT **statp, u_int32_t flags);

The DbEnv::mutex_stat() method returns the mutex subsystem statistics.

The DbEnv::mutex_stat() method creates a statistical structure of type DB_MUTEX_STAT and copies a
pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_MUTEX_STAT fields will be filled in:

• u_int32_t st_mutex_align;

The mutex alignment, in bytes.

• u_int32_t st_mutex_tas_spins;

The number of times test-and-set mutexes will spin without blocking.

• int st_mutex_cnt;

The total number of mutexes configured.

• u_int32_t st_mutex_free;

The number of mutexes currently available.

• u_int32_t st_mutex_inuse;

The number of mutexes currently in use.

• u_int32_t st_mutex_inuse_max;

The maximum number of mutexes ever in use.

• roff_t st_regsize;

The size of the mutex region, in bytes.

• uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the mutex region
mutex.

Page 455DB C++ API8/14/2009

DbEnv::mutex_stat()

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the mutex region mutex without
waiting.

The DbEnv::mutex_stat() method may not be called before the DbEnv::open() method is called.

The DbEnv::mutex_stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors

The DbEnv::mutex_stat() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods

Page 456DB C++ API8/14/2009

DbEnv::mutex_stat()

DbEnv::mutex_stat_print()
#include <db_cxx.h>

int
DbEnv::mutex_stat_print(u_int32_t flags);

The DbEnv::mutex_stat_print() method displays the mutex subsystem statistical information, as
described for the DbEnv::mutex_stat() method. The information is printed to a specified output channel
(see the DbEnv::set_msgfile() method for more information), or passed to an application callback
function (see the DbEnv::set_msgcall() method for more information).

The DbEnv::mutex_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::mutex_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Class

DbEnv

See Also

Mutex Methods

Page 457DB C++ API8/14/2009

DbEnv::mutex_stat_print()

DbEnv::mutex_unlock()
#include <db_cxx.h>

int
DbEnv::mutex_unlock(db_mutex_t mutex);

The DbEnv::mutex_unlock() method unlocks the mutex locked by DbEnv::mutex_lock().

The DbEnv::mutex_unlock() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mutex

The mutex parameter is a mutex previously locked by DbEnv::mutex_lock().

Errors

The DbEnv::mutex_unlock() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods

Page 458DB C++ API8/14/2009

DbEnv::mutex_unlock()

Chapter 11. Replication Methods
This chapter describes the APIs available to build Berkeley DB replicated applications. There are two
different ways to build replication into a Berkeley DB application, and the APIs for both are described
in this chapter.

For an overview of the two different ways to build a replicated application, see the Berkeley DB Getting
Started with Replicated Applications guide.

The first, and simplest, way to build a replication Berkeley DB application is via the Replication Manager.
If the Replication Manager does not meet your application's architectural requirements, they you can
write your own replication implementation using the "Base APIs".

Note that the Replication Manager is written using the Base APIs.

Note, also, that applications which make use of the Replication Manager use many of the Base APIs as
the situation warrants. That said, a few Base API methods cannot be used by applications that are
making use of the Replication Manager. Where this is the case, this is noted in the following method
descriptions.

Page 459DB C++ API8/14/2009

Replication and Related Methods

DescriptionReplication Manager Methods

Specify the Replication Manager's remote sitesDbEnv::repmgr_add_remote_site()

Specify the Replication Manager's client
acknowledgement policy

DbEnv::repmgr_set_ack_policy(),
DbEnv::repmgr_get_ack_policy()

Specify the Replication Manager's local siteDbEnv::repmgr_set_local_site()

List the sites and their statusDbEnv::repmgr_site_list()

Start the Replication ManagerDbEnv::repmgr_start()

Replication Manager statisticsDbEnv::repmgr_stat()

Print Replication Manager statisticsDbEnv::repmgr_stat_print()

Base API Methods

Hold a replication electionDbEnv::rep_elect()

Process a replication messageDbEnv::rep_process_message()

Configure replication transport callbackDbEnv::rep_set_transport()

Start replicationDbEnv::rep_start()

Additional Replication Methods

Replication statisticsDbEnv::rep_stat()

Print replication statisticsDbEnv::rep_stat_print()

Replication synchronizationDbEnv::rep_sync()

Replication Configuration

Configure master lease clock adjustmentDbEnv::rep_set_clockskew(),
DbEnv::rep_get_clockskew()

Configure the replication subsystemDbEnv::rep_set_config(), DbEnv::rep_get_config()

Limit data sent in response to a single messageDbEnv::rep_set_limit(), DbEnv::rep_get_limit()

Configure replication group site countDbEnv::rep_set_nsites(), DbEnv::rep_get_nsites()

Configure replication site priorityDbEnv::rep_set_priority(),
DbEnv::rep_get_priority()

Configure replication client retransmission requestsDbEnv::rep_set_request(),
DbEnv::rep_get_request()

Configure replication timeoutsDbEnv::rep_set_timeout(),
DbEnv::rep_get_timeout()

Page 460DB C++ API8/14/2009

Replication and Related Methods

DbEnv::rep_elect()
#include <db_cxx.h>

int
DbEnv::rep_elect(u_int32_t nsites, u_int32_t nvotes, u_int32_t flags);

The DbEnv::rep_elect() method holds an election for the master of a replication group.

The DbEnv::rep_elect() method is not called by most replication applications. It should only be called
by Base API applications implementing their own network transport layer, explicitly holding replication
group elections and handling replication messages outside of the Replication Manager framework.

If the election is successful, Berkeley DB will notify the application of the results of the election by
means of either the DB_EVENT_REP_ELECTED or DB_EVENT_REP_NEWMASTER events (see
DbEnv::set_event_notify() method for more information). The application is responsible for adjusting
its relationship to the other database environments in the replication group, including directing all
database updates to the newly selected master, in accordance with the results of the election.

The thread of control that calls the DbEnv::rep_elect() method must not be the thread of control that
processes incoming messages; processing the incoming messages is necessary to successfully complete
an election.

Before calling this method, the enclosing database environment must already have been opened by
calling the DbEnv::open() method and must already have been configured to send replication messages
by calling the DbEnv::rep_set_transport() method.

How Elections are Held

Elections are done in two parts: first, replication sites collect information from the other replication
sites they know about, and second, replication sites cast their votes for a new master. The second
phase is triggered by one of two things: either the replication site gets election information from nsites
sites, or the election timeout expires. Once the second phase is triggered, the replication site will cast
a vote for the new master of its choice if, and only if, the site has election information from at least
nvotes sites. If a site receives nvotes votes for it to become the new master, then it will become the
new master.

We recommend nvotes be set to at least:

 (sites participating in the election / 2) + 1

to ensure there are never more than two masters active at the same time even in the case of a network
partition. When a network partitions, the side of the partition with more than half the environments
will elect a new master and continue, while the environments communicating with fewer than half of
the environments will fail to find a new master, as no site can get nvotes votes.

We recommend nsites be set to:

 number of sites in the replication group - 1

Page 461DB C++ API8/14/2009

DbEnv::rep_elect()

when choosing a new master after a current master fails. This allows the group to reach a consensus
without having to wait for the timeout to expire.

When choosing a master from among a group of client sites all restarting at the same time, it makes
more sense to set nsites to the total number of sites in the group, since there is no known missing site.
Furthermore, in order to ensure the best choice from among sites that may take longer to boot than
the local site, setting nvotes also to this same total number of sites will guarantee that every site in
the group is considered. Alternatively, using the special timeout for full elections allows full participation
on restart but allows election of a master if one site does not reboot and rejoin the group in a reasonable
amount of time. (See the Elections section in the Berkeley DB Programmer's Reference Guide for more
information.)

Setting nsites to lower values can increase the speed of an election, but can also result in election
failure, and is usually not recommended.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

nsites

The nsites parameter specifies the number of replication sites expected to participate in the election.
Once the current site has election information from that many sites, it will short-circuit the election
and immediately cast its vote for a new master. The nsites parameter must be no less than nvotes,
or 0 if the election should use the value previously set using the DbEnv::rep_set_nsites() method. If an
application is using master leases, then the value must be 0 and the value from DbEnv::rep_set_nsites()
method must be used.

nvotes

The nvotes parameter specifies the minimum number of replication sites from which the current site
must have election information, before the current site will cast a vote for a new master. The nvotes
parameter must be no greater than nsites, or 0 if the election should use the value ((nsites / 2) + 1)
as the nvotes argument.

Errors

The DbEnv::rep_elect() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DB_REP_UNAVAIL

The replication group was unable to elect a master, or was unable to complete the election in the
election timeout period (see DbEnv::rep_set_timeout() method for more information).

EINVAL

If the database environment was not already configured to communicate with a replication group by
a call to DbEnv::rep_set_transport(); if the database environment was not already opened; if this

Page 462DB C++ API8/14/2009

DbEnv::rep_elect()

../../programmer_reference/rep_elect.html

method is called from a Replication Manager application; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 463DB C++ API8/14/2009

DbEnv::rep_elect()

DbEnv::rep_get_clockskew()
#include <db_cxx.h>

DbEnv::rep_get_clockskew(u_int32_t *fast_clockp, u_in32_t *slow_clockp);

The DbEnv::rep_get_clockskew() method returns the current clock skew ratio values, as set by the
DbEnv::rep_set_clockskew() method.

The DbEnv::rep_get_clockskew() method may be called at any time during the life of the application.

The DbEnv::rep_get_clockskew() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fast_clockp

The fast_clockp parameter references memory into which the value for the fastest clock in the group
of sites is copied.

slow_clockp

The slow_clockp parameter references memory into which the value for the slowest clock in the group
of sites is copied.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_clockskew()

Page 464DB C++ API8/14/2009

DbEnv::rep_get_clockskew()

DbEnv::rep_get_config()
#include <db_cxx.h>

int
DbEnv::rep_get_config(u_int32_t which, int *onoffp);

The DbEnv::rep_get_config() method returns whether the specified which parameter is currently set
or not. See the DbEnv::rep_set_config() method for the configuration flags that can be set for replication.

The DbEnv::rep_get_config() method may be called at any time during the life of the application.

The DbEnv::rep_get_config() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

onoffp

The onoffp parameter references memory into which the configuration of the specified which parameter
is copied.

If the returned onoff value is zero, the parameter is off; otherwise it is on.

which

The which parameter is the configuration flag which is being checked. See the DbEnv::rep_set_config()
method for a list of configuration flags that you can provide to this parameter.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_config()

Page 465DB C++ API8/14/2009

DbEnv::rep_get_config()

DbEnv::rep_get_limit()
#include <db_cxx.h>

int
DbEnv::rep_get_limit(u_int32_t *gbytesp, u_int32_t *bytesp);

The DbEnv::rep_get_limit() method returns the byte-count limit on the amount of data that will be
transmitted from a site in response to a single message processed by the DbEnv::rep_process_message()
method. This value is configurable using the DbEnv::rep_set_limit() method.

The DbEnv::rep_get_limit() method may be called at any time during the life of the application.

The DbEnv::rep_get_limit() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytesp

The bytesp parameter references memory into which the bytes component of the current transmission
limit is copied.

gbytesp

The gbytesp parameter references memory into which the gigabytes component of the current
transmission limit is copied.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_limit()

Page 466DB C++ API8/14/2009

DbEnv::rep_get_limit()

DbEnv::rep_get_nsites()
#include <db_cxx.h>

int
DbEnv::rep_get_nsites(u_int32_t *nsitesp);

The DbEnv::rep_get_nsites() method returns the total number of sites in the replication group. This
value is configurable using the DbEnv::rep_set_nsites() method.

The DbEnv::rep_get_nsites() method may be called at any time during the life of the application.

The DbEnv::rep_get_nsites() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

nsitesp

The DbEnv::rep_get_nsites() method returns the total number of sites in the replication group in
nsitesp.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_nsites()

Page 467DB C++ API8/14/2009

DbEnv::rep_get_nsites()

DbEnv::rep_get_priority()
#include <db_cxx.h>

int
DbEnv::rep_get_priority(u_int32_t *priorityp);

The DbEnv::rep_get_priority() method returns the database environment priority as configured using
the DbEnv::rep_set_priority() method.

The DbEnv::rep_get_priority() method may be called at any time during the life of the application.

The DbEnv::rep_get_priority() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The DbEnv::rep_get_priority() method returns the database environment priority in priorityp.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_priority()

Page 468DB C++ API8/14/2009

DbEnv::rep_get_priority()

DbEnv::rep_get_request()
#include <db_cxx.h>

int
DbEnv::rep_get_request(u_int32_t *minp, u_int32_t *maxp);

The DbEnv::rep_get_request() method returns the minimum and maximum number of microseconds
a client waits before requesting retransmission. These values can be configured using the
DbEnv::rep_set_request() method.

The DbEnv::rep_get_request() method may be called at any time during the life of the application.

The DbEnv::rep_get_request() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

minp

The minp parameter references memory into which the minimum number of microseconds a client will
wait before requesting retransmission is copied.

maxp

The maxp parameter references memory into which the maximum number of microseconds a client
will wait before requesting retransmission is copied.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_request()

Page 469DB C++ API8/14/2009

DbEnv::rep_get_request()

DbEnv::rep_get_timeout()
#include <db_cxx.h>

int
DbEnv::rep_get_timeout(int which, u_int32_t *timeoutp);

The DbEnv::rep_get_timeout() method returns the timeout value for the specified which parameter.
Timeout values can be managed using the DbEnv::rep_set_timeout() method.

The DbEnv::rep_get_timeout() method may be called at any time during the life of the application.

The DbEnv::rep_get_timeout() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeoutp

The timeoutp parameter references memory into which the timeout value of the specified which
parameter is copied.

The returned timeout value is in microseconds.

which

The which parameter is the timeout for which the value is being returned. See the
DbEnv::rep_set_timeout() method for a list of timeouts that you can provide to this parameter.

Errors

The DbEnv::rep_get_timeout() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::rep_set_timeout()

Page 470DB C++ API8/14/2009

DbEnv::rep_get_timeout()

DbEnv::rep_process_message()
#include <db_cxx.h>

int
DbEnv::rep_process_message(Dbt *control, Dbt *rec, int envid, DbLsn *ret_lsnp)

The DbEnv::rep_process_message() method processes an incoming replication message sent by a
member of the replication group to the local database environment.

The DbEnv::rep_process_message() method is not called by most replication applications. It should
only be called by Base API applications implementing their own network transport layer, explicitly
holding replication group elections and handling replication messages outside of the Replication Manager
framework.

For implementation reasons, all incoming replication messages must be processed using the same DbEnv
handle. It is not required that a single thread of control process all messages, only that all threads of
control processing messages use the same handle.

Before calling this method, the enclosing database environment must already have been opened by
calling the DbEnv::open() method and must already have been configured to send replication messages
by calling the DbEnv::rep_set_transport() method.

The DbEnv::rep_process_message() method has additional return values:

• DB_REP_DUPMASTER

The DbEnv::rep_process_message() method will return DB_REP_DUPMASTER if the replication group
has more than one master. The application should reconfigure itself as a client by calling the
DbEnv::rep_start() method, and then call for an election by calling DbEnv::rep_elect().

• DB_REP_HOLDELECTION

The DbEnv::rep_process_message() method will return DB_REP_HOLDELECTION if an election is needed.
The application should call for an election by calling DbEnv::rep_elect().

• DB_REP_IGNORE

The DbEnv::rep_process_message() method will return DB_REP_IGNORE if this message cannot be
processed. This is an indication that this message is irrelevant to the current replication state (for
example, an old message from a previous generation arrives and is processed late).

• DB_REP_ISPERM

The DbEnv::rep_process_message() method will return DB_REP_ISPERM if processing this message
results in the processing of records that are permanent. The maximum LSN of the permanent records
stored is returned.

• DB_REP_JOIN_FAILURE

Page 471DB C++ API8/14/2009

DbEnv::rep_process_message()

The DbEnv::rep_process_message() method will return DB_REP_JOIN_FAILURE if a new master has
been chosen but the client is unable to synchronize with the new master (possibly because the client
has been configured with the DB_REP_CONF_NOAUTOINIT flag to turn off automatic internal
initialization).

• DB_REP_NEWSITE

The DbEnv::rep_process_message()method will return DB_REP_NEWSITE if the system received contact
information from a new environment. The rec parameter contains the opaque data specified in the
cdata parameter to the DbEnv::rep_start(). The application should take whatever action is needed
to establish a communication channel with this new environment.

• DB_REP_NOTPERM

The DbEnv::rep_process_message() method will return DB_REP_NOTPERM if a message carrying a
DB_REP_PERMANENT flag was processed successfully, but was not written to disk. The LSN of this
record is returned. The application should take whatever action is deemed necessary to retain its
recoverability characteristics.

Unless otherwise specified, the DbEnv::rep_process_message() method either returns a non-zero error
value or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

control

The control parameter should reference a copy of the control parameter specified by Berkeley DB on
the sending environment. See the DbEnv::rep_set_transport() method for more information.

envid

The envid parameter should contain the local identifier that corresponds to the environment that sent
the message to be processed (see Replication environment IDs for more information).

rec

The rec parameter should reference a copy of the rec parameter specified by Berkeley DB on the
sending environment. See the DbEnv::rep_set_transport() method for more information.

ret_lsnp

If DbEnv::rep_process_message() method returns DB_REP_NOTPERM then the ret_lsnp parameter will
contain the log sequence number of this permanent log message that could not be written to disk. If
DbEnv::rep_process_message()method returns DB_REP_ISPERM then the ret_lsnp parameter will contain
largest log sequence number of the permanent records that are now written to disk as a result of
processing this message. In all other cases the value of ret_lsnp is undefined.

Page 472DB C++ API8/14/2009

DbEnv::rep_process_message()

../../programmer_reference/rep_id.html

Errors

The DbEnv::rep_process_message() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the database environment was not already configured to communicate with a replication group by
a call to DbEnv::rep_set_transport(); if the database environment was not already opened; if this
method is called from a Replication Manager application; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 473DB C++ API8/14/2009

DbEnv::rep_process_message()

DbEnv::rep_set_clockskew()
#include <db_cxx.h>

int
DbEnv::rep_set_clockskew(u_int32_t fast_clock, u_int32_t slow_clock);

The DbEnv::rep_set_clockskew() method sets the clock skew ratio among replication group members
based on the fastest and slowest measurements among the group for use with master leases. Calling
this method is optional; the default values for clock skew assume no skew. The user must also configure
leases via the DbEnv::rep_set_config() method. Additionally, the user must also set the master lease
timeout via the DbEnv::rep_set_timeout() method and the number of sites in the replication group via
the DbEnv::rep_set_nsites() method. These methods may be called in any order. For a description of
the clock skew values, see Clock skew in the Berkeley DB Programmer's Reference Guide. For a
description of master leases, see Master leases in the Berkeley DB Programmer's Reference Guide.

These arguments can be used to express either raw measurements of a clock timing experiment or a
percentage across machines. For example, if a group of sites has a 2% variance, then fast_clock should
be set to 102, and slow_clock should be set to 100. Or, for a 0.03% difference, you can use 10003 and
10000 respectively.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_clockskew",
one or more whitespace characters, and the clockskew specified in two parts: the fast_clock and the
slow_clock. For example, "rep_set_clockskew 102 100". Because the DB_CONFIG file is read when the
database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::rep_set_clockskew() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::rep_set_clockskew() method may not be called after the DbEnv::repmgr_start() or
DbEnv::rep_start() methods are called.

The DbEnv::rep_set_clockskew() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fast_clock

The value, relative to the slow_clock, of the fastest clock in the group of sites.

slow_clock

The value of the slowest clock in the group of sites.

Errors

The DbEnv::rep_set_clockskew() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

Page 474DB C++ API8/14/2009

DbEnv::rep_set_clockskew()

../../programmer_reference/rep_clock_skew.html
../../programmer_reference/rep_lease.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

EINVAL

If the method was called after replication is started with a call to the DbEnv::repmgr_start() or the
DbEnv::rep_start() method; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 475DB C++ API8/14/2009

DbEnv::rep_set_clockskew()

DbEnv::rep_set_config()
#include <db_cxx.h>

int
DbEnv::rep_set_config(u_int32_t which, int onoff);

The DbEnv::rep_set_config() method configures the Berkeley DB replication subsystem.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_config",
one or more whitespace characters, and the method which parameter as a string; for example,
"rep_set_config DB_REP_CONF_NOWAIT". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::rep_set_config()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::rep_set_config() method may not be called to set in-memory replication after the
environment is opened using the DbEnv::open() method. This method may also not be called to set
master leases after the DbEnv::rep_start() or DbEnv::repmgr_start() methods are called. For all other
which parameters, this method may be called at any time during the life of the application.

The DbEnv::rep_set_config() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

onoff

If the onoff parameter is zero, the configuration flag is turned off. Otherwise, it is turned on. All
configuration flags are turned off by default.

which

The which parameter must be set to one of the following values:

• DB_REP_CONF_BULK

The replication master sends groups of records to the clients in a single network transfer.

• DB_REP_CONF_DELAYCLIENT

The client should delay synchronizing to a newly declared master. Clients configured in this way will
remain unsynchronized until the application calls the DbEnv::rep_sync() method.

• DB_REP_CONF_INMEM

Store internal replication information in memory only.

Page 476DB C++ API8/14/2009

DbEnv::rep_set_config()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

By default, replication creates files in the environment home directory to preserve some internal
information. If this configuration flag is turned on, replication only stores this internal information
in-memory and cannot keep persistent state across a site crash or reboot. This results in the following
limitations:

• A master site should not reappoint itself master immediately after crashing or rebooting because
the application would incur a slightly higher risk of client crashes. The former master site should
rejoin the replication group as a client. The application should either hold an election or appoint
a different site to be the next master.

• An application has a slightly higher risk that elections will fail or be unable to complete. Calling
additional elections should eventually yield a winner.

• An application has a slight risk that the wrong site may win an election, resulting in the loss of
some data. This is consistent with the general loss of data durability when running in-memory.

This configuration flag can only be turned on before the environment is opened with the DbEnv::open()
method. Its value cannot be changed while the environment is open.

• DB_REP_CONF_LEASE

Master leases will be used for this site.

Configuring this option may result in DB_REP_LEASE_EXPIRED error returns from the Db::get() and
Dbc::get() methods when attempting to read entries from a database after the site's master lease
has expired.

This configuration flag may not be set after the DbEnv::repmgr_start() method or the
DbEnv::rep_start() method is called.

• DB_REP_CONF_NOAUTOINIT

The replication master will not automatically re-initialize outdated clients.

• DB_REP_CONF_NOWAIT

Berkeley DB method calls that would normally block while clients are in recovery will return errors
immediately.

• DB_REPMGR_CONF_2SITE_STRICT

Replication Manager observes the strict "majority" rule in managing elections, even in a group with
only 2 sites. This means the client in a 2-site group will be unable to take over as master if the
original master fails or becomes disconnected. (See the Elections section in the Berkeley DB
Programmer's Reference Guide for more information.) Both sites in the replication group should have
the same value for this configuration flag.

Errors

The DbEnv::rep_set_config() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

Page 477DB C++ API8/14/2009

DbEnv::rep_set_config()

../../programmer_reference/rep_elect.html

EINVAL

If setting in-memory replication after the database environment is already opened; if setting master
leases after replication is started; if setting the 2-site strict majority rule for a Base API application;
or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 478DB C++ API8/14/2009

DbEnv::rep_set_config()

DbEnv::rep_set_limit()
#include <db_cxx.h>

int
DbEnv::rep_set_limit(u_int32_t gbytes, u_int32_t bytes);

The DbEnv::rep_set_limit() method sets record transmission throttling. This is a byte-count limit on
the amount of data that will be transmitted from a site in response to a single message processed by
the DbEnv::rep_process_message() method. The limit is not a hard limit, and the record that exceeds
the limit is the last record to be sent.

Record transmission throttling is turned on by default with a limit of 10MB.

If the values passed to the DbEnv::rep_set_limit() method are both zero, then the transmission limit
is turned off.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_limit", one
or more whitespace characters, and the limit specified in two parts: the gigabytes and the bytes values.
For example, "rep_set_limit 0 1048576" sets a 1 megabyte limit.. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::rep_set_limit()method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::rep_set_limit() method may be called at any time during the life of the application.

The DbEnv::rep_set_limit() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytes

The bytes parameter specifies the number of bytes which, when added to the gbytes parameter,
specifies the maximum number of bytes that will be sent in a single call to the
DbEnv::rep_process_message() method.

gbytes

The gbytes parameter specifies the number of gigabytes which, when added to the bytes parameter,
specifies the maximum number of bytes that will be sent in a single call to the
DbEnv::rep_process_message() method.

Class

DbEnv

Page 479DB C++ API8/14/2009

DbEnv::rep_set_limit()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

See Also

Replication and Related Methods

Page 480DB C++ API8/14/2009

DbEnv::rep_set_limit()

DbEnv::rep_set_nsites()
#include <db_cxx.h>

int
DbEnv::rep_set_nsites(u_int32_t nsites);

The DbEnv::rep_set_nsites() method specifies the total number of sites in a replication group.

The DbEnv::rep_set_nsites()method is typically called by Replication Manager applications. (However,
see also the DbEnv::rep_elect() method nsites parameter.)

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_nsites", one
or more whitespace characters, and the number of sites specified. For example, "rep_set_nsites 5" sets
the number of sites to 5. Because the DB_CONFIG file is read when the database environment is opened,
it will silently overrule configuration done before that time.

The DbEnv::rep_set_nsites()method configures a database environment, not only operations performed
using the specified DbEnv handle.

If master leases are in use, the DbEnv::rep_set_nsites() method may not be called after the
DbEnv::rep_start() or DbEnv::repmgr_start() methods are called. If master leases are not in use, the
DbEnv::rep_set_nsites() method may be called at any time during the life of the application.

The DbEnv::rep_set_nsites() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

nsites

An integer specifying the total number of sites in the replication group.

Errors

The DbEnv::rep_set_nsites() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If master leases are in use and replication has already been started; or if an invalid flag value or
parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 481DB C++ API8/14/2009

DbEnv::rep_set_nsites()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::rep_set_priority()
#include <db_cxx.h>

int
DbEnv::rep_set_priority(u_int32_t priority);

The DbEnv::rep_set_priority() method specifies the database environment's priority in replication
group elections. A special value of 0 indicates that this environment cannot be a replication group
master.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_priority",
one or more whitespace characters, and the priority of this site. For example, "rep_set_priority 1" sets
the priority of this site to 1. Because the DB_CONFIG file is read when the database environment is
opened, it will silently overrule configuration done before that time.

Note that if the application never explicitly sets a priority, then a default value of 100 is used.

The DbEnv::rep_set_priority() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::rep_set_priority() method may be called at any time during the life of the application.

The DbEnv::rep_set_priority() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority of this database environment in the replication group. The priority must be a non-zero
integer, or 0 if this environment cannot be a replication group master. (See Replication environment
priorities for more information).

Class

DbEnv

See Also

Replication and Related Methods

Page 482DB C++ API8/14/2009

DbEnv::rep_set_priority()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/rep_pri.html
../../programmer_reference/rep_pri.html

DbEnv::rep_set_request()
#include <db_cxx.h>

int
DbEnv::rep_set_request(u_int32_t min, u_int32_t max);

The DbEnv::rep_set_request() method sets a threshold for the minimum and maximum time that a
client waits before requesting retransmission of a missing message. Specifically, if the client detects
a gap in the sequence of incoming log records or database pages, Berkeley DB will wait for at least
min microseconds before requesting retransmission of the missing record. Berkeley DB will double that
amount before requesting the same missing record again, and so on, up to a maximum threshold of
max microseconds.

These values are thresholds only. Since Berkeley DB has no thread available in the library as a timer,
the threshold is only checked when a thread enters the Berkeley DB library to process an incoming
replication message. Any amount of time may have passed since the last message arrived and Berkeley
DB only checks whether the amount of time since a request was made is beyond the threshold value
or not.

By default the minimum is 40000 and the maximum is 1280000 (1.28 seconds). These defaults are fairly
arbitrary and the application likely needs to adjust these. The values should be based on expected
load and performance characteristics of the master and client host platforms and transport infrastructure
as well as round-trip message time.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_request",
one or more whitespace characters, and the request times specified in two parts: the min and the max.
For example, "rep_set_request 40000 1280000". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::rep_set_request() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::rep_set_request() method may be called at any time during the life of the application.

The DbEnv::rep_set_request() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The maximum number of microseconds a client waits before requesting retransmission.

min

The minimum number of microseconds a client waits before requesting retransmission.

Page 483DB C++ API8/14/2009

DbEnv::rep_set_request()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Errors

The DbEnv::rep_set_request() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 484DB C++ API8/14/2009

DbEnv::rep_set_request()

DbEnv::rep_set_timeout()
#include <db_cxx.h>

int
DbEnv::rep_set_timeout(int which, u_int32_t timeout);

The DbEnv::rep_set_timeout() method specifies a variety of replication timeout values.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "rep_set_timeout",
one or more whitespace characters, and the which parameter specified as a string and the timeout
specified as two parts. For example, "rep_set_timeout DB_REP_CONNECTION_RETRY 15000000" specifies
the connection retry timeout for 15 seconds. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::rep_set_timeout() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::rep_set_timeout() method may not be called to set the master lease timeout after the
DbEnv::repmgr_start() method or the DbEnv::rep_start() method is called. For all other timeouts, the
DbEnv::rep_set_timeout() method may be called at any time during the life of the application.

The DbEnv::rep_set_timeout() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeout

The timeout parameter is the timeout value. It must be specified as an unsigned 32-bit number of
microseconds, limiting the maximum timeout to roughly 71 minutes.

which

The which parameter must be set to one of the following values:

• DB_REP_ACK_TIMEOUT

Configure the amount of time the Replication Manager's transport function waits to collect enough
acknowledgments from replication group clients, before giving up and returning a failure indication.
The default wait time is 1 second.

• DB_REP_CHECKPOINT_DELAY

Configure the amount of time a master site will delay between completing a checkpoint and writing
a checkpoint record into the log. This delay allows clients to complete their own checkpoints before
the master requires completion of them. The default is 30 seconds. If all databases in the environment,
and the environment's transaction log, are configured to reside in memory (never preserved to disk),
then, although checkpoints are still necessary, the delay is not useful and should be set to 0.

Page 485DB C++ API8/14/2009

DbEnv::rep_set_timeout()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

• DB_REP_CONNECTION_RETRY

Configure the amount of time the Replication Manager will wait before trying to re-establish a
connection to another site after a communication failure. The default wait time is 30 seconds.

• DB_REP_ELECTION_TIMEOUT

The timeout period for an election. The default timeout is 2 seconds.

• DB_REP_ELECTION_RETRY

Configure the amount of time the Replication Manager will wait before retrying a failed election.
The default wait time is 10 seconds.

• DB_REP_FULL_ELECTION_TIMEOUT

An optional configuration timeout period to wait for full election participation the first time the
replication group finds a master. By default this option is turned off and normal election timeouts
are used. (See the Elections section in the Berkeley DB Programmer's Reference Guide for more
information.)

• DB_REP_HEARTBEAT_MONITOR

The amount of time the Replication Manager, running at a client site, waits for some message activity
on the connection from the master (heartbeats or other messages) before concluding that the
connection has been lost. This timeout should be of longer duration than the DB_REP_HEARTBEAT_SEND
timeout to ensure that heartbeats are not missed. When 0 (the default), no monitoring is performed.

• DB_REP_HEARTBEAT_SEND

The frequency at which the Replication Manager, running at a master site, broadcasts a heartbeat
message in an otherwise idle system. When 0 (the default), no heartbeat messages will be sent.

• DB_REP_LEASE_TIMEOUT

Configure the amount of time a client grants its master lease to a master. When using master leases
all sites in a replication group must use the same lease timeout value. There is no default value. If
leases are desired, this method must be called prior to calling DbEnv::rep_start() method. See also
DbEnv::rep_set_clockskew() method, DbEnv::rep_set_config() method or Master leases.

Errors

The DbEnv::rep_set_timeout() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If setting the lease timeout and replication has already been started; if setting a Replication Manager
timeout for a Base API application; or if an invalid flag value or parameter was specified.

Page 486DB C++ API8/14/2009

DbEnv::rep_set_timeout()

../../programmer_reference/rep_elect.html
../../programmer_reference/rep_lease.html

Class

DbEnv

See Also

Replication and Related Methods

Page 487DB C++ API8/14/2009

DbEnv::rep_set_timeout()

DbEnv::rep_set_transport()
#include <db_cxx.h>

int
DbEnv::rep_set_transport(int envid,
 int (*send)(DB_ENV *dbenv,
 const Dbt *control, const Dbt *rec, const DbLsn *lsnp,
 int envid, u_int32_t flags));

The DbEnv::rep_set_transport() method initializes the communication infrastructure for a database
environment participating in a replicated application.

The DbEnv::rep_set_transport() method is not called by most replication applications. It should only
be called by Base API applications implementing their own network transport layer, explicitly holding
replication group elections and handling replication messages outside of the Replication Manager
framework.

The DbEnv::rep_set_transport() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::rep_set_transport() method may be called at any time during the life of the application.

The DbEnv::rep_set_transport() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Berkeley DB is not re-entrant. The callback function for this method should not attempt to make
library calls (for example, to release locks or close open handles). Re-entering Berkeley DB is not
guaranteed to work correctly, and the results are undefined.

☞

Parameters

envid

The envid parameter is the local environment's ID. It must be a non-negative integer and uniquely
identify this Berkeley DB database environment (see Replication environment IDs for more information).

send

The send callback function is used to transmit data using the replication application's communication
infrastructure. The parameters to send are as follows:

• dbenv

The dbenv parameter is the enclosing database environment handle.

• control

The control parameter is the first of the two data elements to be transmitted by the send function.

• rec

Page 488DB C++ API8/14/2009

DbEnv::rep_set_transport()

../../programmer_reference/rep_id.html

The rec parameter is the second of the two data elements to be transmitted by the send function.

• lsnp

If the type of message to be sent has an LSN associated with it, then the lsnp parameter contains
the LSN of the record being sent. This LSN can be used to determine that certain records have been
processed successfully by clients.

• envid

The envid parameter is a positive integer identifier that specifies the replication environment to
which the message should be sent (see Replication environment IDs for more information).

The special identifier DB_EID_BROADCAST indicates that a message should be broadcast to every
environment in the replication group. The application may use a true broadcast protocol or may send
the message in sequence to each machine with which it is in communication. In both cases, the
sending site should not be asked to process the message.

The special identifier DB_EID_INVALID indicates an invalid environment ID. This may be used to
initialize values that are subsequently checked for validity.

• flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_REP_ANYWHERE

The message is a client request that can be satisfied by another client as well as by the master.

• DB_REP_NOBUFFER

The record being sent should be transmitted immediately and not buffered or delayed.

• DB_REP_PERMANENT

The record being sent is critical for maintaining database integrity (for example, the message
includes a transaction commit). The application should take appropriate action to enforce the
reliability guarantees it has chosen, such as waiting for acknowledgement from one or more clients.

• DB_REP_REREQUEST

The message is a client request that has already been made and to which no response was received.

It may sometimes be useful to pass application-specific data to the send function; see Environment
FAQ for a discussion on how to do this.

The send function must return 0 on success and non-zero on failure. If the send function fails, the
message being sent is necessary to maintain database integrity, and the local log is not configured for
synchronous flushing, the local log will be flushed; otherwise, any error from the send function will
be ignored.

Page 489DB C++ API8/14/2009

DbEnv::rep_set_transport()

../../programmer_reference/rep_id.html
../../programmer_reference/rep_id.html#rep_id.DB_EID_INVALID
../../programmer_reference/env_faq.html
../../programmer_reference/env_faq.html

Errors

The DbEnv::rep_set_transport() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

The method is called from a Replication Manager application; or an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 490DB C++ API8/14/2009

DbEnv::rep_set_transport()

DbEnv::rep_start()
#include <db_cxx.h>

int
DbEnv::rep_start(Dbt *cdata, u_int32_t flags);

The DbEnv::rep_start() method configures the database environment as a client or master in a group
of replicated database environments.

The DbEnv::rep_start() method is not called by most replication applications. It should only be called
by Base API applications implementing their own network transport layer, explicitly holding replication
group elections and handling replication messages outside of the Replication Manager framework.

Replication master environments are the only database environments where replicated databases may
be modified. Replication client environments are read-only as long as they are clients. Replication
client environments may be upgraded to be replication master environments in the case that the current
master fails or there is no master present. If master leases are in use, this method cannot be used to
appoint a master, and should only be used to configure a database environment as a master as the
result of an election.

The enclosing database environment must already have been opened by calling the DbEnv::open()
method and must already have been configured to send replication messages by calling the
DbEnv::rep_set_transport() method.

The DbEnv::rep_start() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

cdata

The cdata parameter is an opaque data item that is sent over the communication infrastructure when
the client comes online (see Connecting to a new site for more information). If no such information is
useful, cdata should be NULL.

flags

The flags parameter must be set to one of the following values:

• DB_REP_CLIENT

Configure the environment as a replication client.

• DB_REP_MASTER

Configure the environment as a replication master.

Page 491DB C++ API8/14/2009

DbEnv::rep_start()

../../programmer_reference/rep_newsite.html

Errors

The DbEnv::rep_start() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DB_REP_UNAVAIL

DB_REP_UNAVAIL

If the flags parameter was passed as DB_REP_MASTER but the database environment cannot currently
become the replication master because it is temporarily initializing and is incomplete.

If the database environment was not already configured to communicate with a replication group by
a call to DbEnv::rep_set_transport(); the database environment was not already opened; this method
is called from a Replication Manager application; outstanding master leases are granted; this method
is used to appoint a new master when master leases are in use; or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 492DB C++ API8/14/2009

DbEnv::rep_start()

DbEnv::rep_stat()
#include <db_cxx.h>

int
DbEnv::rep_stat(DB_REP_STAT **statp, u_int32_t flags);

The DbEnv::rep_stat() method returns the replication subsystem statistics.

The DbEnv::rep_stat() method creates a statistical structure of type DB_REP_STAT and copies a pointer
to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_REP_STAT fields will be filled in:

• uintmax_t st_bulk_fills;

The number of times the bulk buffer filled up, forcing the buffer content to be sent.

• uintmax_t st_bulk_overflows;

The number of times a record was bigger than the entire bulk buffer, and therefore had to be sent
as a singleton.

• uintmax_t st_bulk_records;

The number of records added to a bulk buffer.

• uintmax_t st_bulk_transfers;

The number of bulk buffers transferred (via a call to the application's send function).

• uintmax_t st_client_rerequests;

The number of times this client site received a "re-request" message, indicating that a request it
previously sent to another client could not be serviced by that client. (Compare to
st_client_svc_miss.)

• uintmax_t st_client_svc_miss;

The number of "request" type messages received by this client that could not be processed, forcing
the originating requester to try sending the request to the master (or another client).

• uintmax_t st_client_svc_req;

Page 493DB C++ API8/14/2009

DbEnv::rep_stat()

The number of "request" type messages received by this client. ("Request" messages are usually sent
from a client to the master, but a message marked with the DB_REP_ANYWHERE flag in the invocation
of the application's send function may be sent to another client instead.)

• u_int32_t st_dupmasters;

The number of duplicate master conditions originally detected at this site.

• u_int32_t st_egen;

The election generation number for the current or next election.

• int st_election_cur_winner;

The environment ID of the winner of the current or last election.

• u_int32_t st_election_gen;

The master generation number of the winner of the current or last election.

• DB_LSN st_election_lsn;

The maximum LSN of the winner of the current or last election.

• u_int32_t st_election_nsites;

The number of sites responding to this site during the current election.

• u_int32_t st_election_nvotes;

The number of votes required in the current or last election.

• u_int32_t st_election_priority;

The priority of the winner of the current or last election.

• u_int32_t st_election_sec;

The number of seconds the last election took (the total election time is st_election_sec plus
st_election_usec).

• int st_election_status;

The current election phase (0 if no election is in progress).

• u_int32_t st_election_tiebreaker;

The tiebreaker value of the winner of the current or last election.

• u_int32_t st_election_usec;

The number of microseconds the last election took (the total election time is st_election_sec plus
st_election_usec).

Page 494DB C++ API8/14/2009

DbEnv::rep_stat()

• u_int32_t st_election_votes;

The number of votes received during the current election.

• uintmax_t st_elections;

The number of elections held.

• uintmax_t st_elections_won;

The number of elections won.

• int st_env_id;

The current environment ID.

• u_int32_t st_env_priority;

The current environment priority.

• u_int32_t st_gen;

The current master generation number.

• uintmax_t st_log_duplicated;

The number of duplicate log records received.

• uintmax_t st_log_queued;

The number of log records currently queued.

• uintmax_t st_log_queued_max;

The maximum number of log records ever queued at once.

• uintmax_t st_log_queued_total;

The total number of log records queued.

• uintmax_t st_log_records;

The number of log records received and appended to the log.

• uintmax_t st_log_requested;

The number of times log records were missed and requested.

• int st_master;

The current master environment ID.

• uintmax_t st_master_changes;

Page 495DB C++ API8/14/2009

DbEnv::rep_stat()

The number of times the master has changed.

• u_int32_t st_max_lease_sec;

The number of seconds of the longest lease (the total lease time is st_max_lease_sec plus
st_max_lease_usec).

• u_int32_t st_max_lease_usec;

The number of microseconds of the longest lease (the total lease time is st_max_lease_sec plus
st_max_lease_usec).

• DB_LSN st_max_perm_lsn;

The LSN of the maximum permanent log record, or 0 if there are no permanent log records.

• uintmax_t st_msgs_badgen;

The number of messages received with a bad generation number.

• uintmax_t st_msgs_processed;

The number of messages received and processed.

• uintmax_t st_msgs_recover;

The number of messages ignored due to pending recovery.

• uintmax_t st_msgs_send_failures;

The number of failed message sends.

• uintmax_t st_msgs_sent;

The number of messages sent.

• uintmax_t st_newsites;

The number of new site messages received.

• DB_LSN st_next_lsn;

In replication environments configured as masters, the next LSN to be used. In replication environments
configured as clients, the next LSN expected.

• u_int32_t st_next_pg;

The next page number we expect to receive.

• u_int32_t st_nsites;

The number of sites used in the last election.

Page 496DB C++ API8/14/2009

DbEnv::rep_stat()

• uintmax_t st_nthrottles;

Transmission limited. This indicates the number of times that data transmission was stopped to limit
the amount of data sent in response to a single call to DbEnv::rep_process_message().

• uintmax_t st_outdated;

The number of outdated conditions detected.

• uintmax_t st_pg_duplicated;

The number of duplicate pages received.

• uintmax_t st_pg_records;

The number of pages received and stored.

• uintmax_t st_pg_requested;

The number of pages missed and requested from the master.

• uintmax_t st_startsync_delayed;

The number of times the client had to delay the start of a cache flush operation (initiated by the
master for an impending checkpoint) because it was missing some previous log record(s).

• u_int32_t st_startup_complete;

The client site has completed its startup procedures and is now handling live records from the master.

• u_int32_t st_status;

The current replication mode. Set to DB_REP_MASTER if the environment is a replication master,
DB_REP_CLIENT if the environment is a replication client, or 0 if replication is not configured.

• uintmax_t st_txns_applied;

The number of transactions applied.

• DB_LSN st_waiting_lsn;

The LSN of the first log record we have after missing log records being waited for, or 0 if no log
records are currently missing.

• u_int32_t st_waiting_pg;

The page number of the first page we have after missing pages being waited for, or 0 if no pages are
currently missing.

The DbEnv::rep_stat() method may not be called before the DbEnv::open() method is called.

Page 497DB C++ API8/14/2009

DbEnv::rep_stat()

The DbEnv::rep_stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors

The DbEnv::rep_stat() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the database environment was not already opened; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 498DB C++ API8/14/2009

DbEnv::rep_stat()

DbEnv::rep_stat_print()
#include <db_cxx.h>

int
DbEnv::rep_stat_print(u_int32_t flags);

The DbEnv::rep_stat_print() method displays the replication subsystem statistical information, as
described for the DbEnv::rep_stat() method. The information is printed to a specified output channel
(see the DbEnv::set_msgfile() method for more information), or passed to an application callback
function (see the DbEnv::set_msgcall() method for more information).

The DbEnv::rep_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::rep_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Errors

The DbEnv::rep_stat_print() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 499DB C++ API8/14/2009

DbEnv::rep_stat_print()

DbEnv::rep_sync()
#include <db_cxx.h>

int
DbEnv::rep_sync(u_int32_t flags);

The DbEnv::rep_sync() method forces master synchronization to begin for this client. This method is
the other half of setting the DB_REP_CONF_DELAYCLIENT flag via the DbEnv::rep_set_config() method.

If an application has configured delayed master synchronization, the application must synchronize
explicitly (otherwise the client will remain out-of-date and will ignore all database changes forwarded
from the replication group master). The DbEnv::rep_sync() method may be called any time after the
client application learns that the new master has been established (by receiving a
DB_EVENT_REP_NEWMASTER event notification).

Before calling this method, the enclosing database environment must already have been opened by
calling the DbEnv::open() method and must already have been configured to send replication messages
by calling the DbEnv::rep_set_transport() method.

The DbEnv::rep_sync() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::rep_sync() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the database environment was not already configured to communicate with a replication group by
a call to DbEnv::rep_set_transport(); the database environment was not already opened; or if an invalid
flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 500DB C++ API8/14/2009

DbEnv::rep_sync()

DbEnv::repmgr_add_remote_site()
#include <db_cxx.h>

int
DbEnv::repmgr_add_remote_site(const char *host, u_int port, int *eidp, u_int32_t flags);

The DbEnv::repmgr_add_remote_site() method adds a new replication site to the Replication Manager's
list of known sites. It is not necessary for all sites in a replication group to know about all other sites
in the group.

The DbEnv::repmgr_add_remote_site() method may be called at any time during the life of the
application.

The DbEnv::repmgr_add_remote_site() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

eidp

If eidp is non-NULL, and the database environment has already been opened by calling DbEnv::open(),
then the environment ID assigned to the remote site is returned in the memory location referenced by
eidp.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_REPMGR_PEER

Specifying the DB_REPMGR_PEER flag configures client-to-client synchronization with the specified
remote site.

Currently, the Replication Manager framework only supports a single client peer, and the last specified
peer is used.

host

The site's host identification string, generally a TCP/IP host name.

port

The port number on which the remote site is receiving.

Errors

The DbEnv::repmgr_add_remote_site() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero errors:

Page 501DB C++ API8/14/2009

DbEnv::repmgr_add_remote_site()

EINVAL

If this method is called from a base replication API application; or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 502DB C++ API8/14/2009

DbEnv::repmgr_add_remote_site()

DbEnv::repmgr_get_ack_policy()
#include <db_cxx.h>

int
DbEnv::repmgr_get_ack_policy(int *ack_policyp);

The DbEnv::repmgr_get_ack_policy() method returns the Replication Manager's client acknowledgment
policy. This is configured using the DbEnv::repmgr_set_ack_policy() method.

The DbEnv::repmgr_get_ack_policy() method may be called at any time during the life of the
application.

The DbEnv::repmgr_get_ack_policy() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ack_policyp

The ack_policyp parameter references memory into which the Replication Manager's client
acknowledgement policy is copied.

Class

DbEnv

See Also

Replication and Related Methods, DbEnv::repmgr_set_ack_policy()

Page 503DB C++ API8/14/2009

DbEnv::repmgr_get_ack_policy()

DbEnv::repmgr_set_ack_policy()
#include <db_cxx.h>

int
DbEnv::repmgr_set_ack_policy(int ack_policy);

The DbEnv::repmgr_set_ack_policy() method specifies how master and client sites will handle
acknowledgment of replication messages which are necessary for "permanent" records. The current
implementation requires all sites in a replication group configure the same acknowledgement policy.

The database environment's replication subsystem may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"repmgr_set_ack_policy", one or more whitespace characters, and the ack_policy parameter specified
as a string. For example, "repmgr_set_ack_policy DB_REPMGR_ACKS_ALL". Because the DB_CONFIG file
is read when the database environment is opened, it will silently overrule configuration done before
that time.

Waiting for client acknowledgements is always limited by the DB_REP_ACK_TIMEOUT specified by the
DbEnv::rep_set_timeout() method.

The DbEnv::repmgr_set_ack_policy() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::repmgr_set_ack_policy() method may be called at any time during the life of the
application.

The DbEnv::repmgr_set_ack_policy() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ack_policy

Some acknowledgement policies use the concept of an electable peer, which is a client capable of
being subsequently elected master of the replication group. The ack_policy parameter must be set to
one of the following values:

• DB_REPMGR_ACKS_ALL

The master should wait until all replication clients have acknowledged each permanent replication
message.

• DB_REPMGR_ACKS_ALL_PEERS

The master should wait until all electable peers have acknowledged each permanent replication
message.

• DB_REPMGR_ACKS_NONE

The master should not wait for any client replication message acknowledgments.

Page 504DB C++ API8/14/2009

DbEnv::repmgr_set_ack_policy()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

• DB_REPMGR_ACKS_ONE

The master should wait until at least one client site has acknowledged each permanent replication
message.

• DB_REPMGR_ACKS_ONE_PEER

The master should wait until at least one electable peer has acknowledged each permanent replication
message.

• DB_REPMGR_ACKS_QUORUM

The master should wait until it has received acknowledgements from the minimum number of electable
peers sufficient to ensure that the effect of the permanent record remains durable if an election is
held. This is the default acknowledgement policy.

Errors

The DbEnv::repmgr_set_ack_policy()method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If this method is called from a base replication API application; or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 505DB C++ API8/14/2009

DbEnv::repmgr_set_ack_policy()

DbEnv::repmgr_set_local_site()
#include <db_cxx.h>

int
repmgr_set_local_site(const char * host, u_int16_t port, u_int32_t flags);

The DbEnv::repmgr_set_local_site() method specifies the host identification string and port number
for the local system.

The DbEnv::repmgr_set_local_site() method may not be called after the DbEnv::repmgr_start()
method is called.

The DbEnv::repmgr_set_local_site() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

host

The site's host identification string, generally a TCP/IP host name.

port

The port number on which the local site is listening.

Errors

The DbEnv::repmgr_set_local_site()method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If this method is called from a Base API application; if the method was called after replication is started
with a call to the DbEnv::repmgr_start() method; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 506DB C++ API8/14/2009

DbEnv::repmgr_set_local_site()

DbEnv::repmgr_site_list()
#include <db_cxx.h>

int
DbEnv::repmgr_site_list(u_int *countp, DB_REPMGR_SITE **listp);

The DbEnv::repmgr_site_list()method returns the status of the sites currently known by the Replication
Manager.

The DbEnv::repmgr_site_list() method creates a statistical structure of type DB_REPMGR_SITE and
copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_REPMGR_SITE fields will be filled in:

• int eid;

Environment ID assigned by the Replication Manager. This is the same value that is passed to the
application's event notification function for the DB_EVENT_REP_NEWMASTER event.

• char host[];

Null-terminated host name.

• u_int port;

TCP/IP port number.

• u_int32_t status;

Zero (if unknown), or one of the following constants: DB_REPMGR_CONNECTED, DB_REPMGR_DISCONNECTED.

The DbEnv::repmgr_site_list() method may be called at any time during the life of the application.

The DbEnv::repmgr_site_list() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

countp

A count of the returned structures will be stored into the memory referenced by countp.

listp

A reference to an array of structures will be stored into the memory referenced by listp.

Page 507DB C++ API8/14/2009

DbEnv::repmgr_site_list()

Class

DbEnv

See Also

Replication and Related Methods

Page 508DB C++ API8/14/2009

DbEnv::repmgr_site_list()

DbEnv::repmgr_start()
#include <db_cxx.h>

int
DbEnv::repmgr_start(int nthreads, u_int32_t flags);

The DbEnv::repmgr_start() method starts the Replication Manager.

There are two ways to build Berkeley DB replication applications: the most common approach is to use
the Berkeley DB library Replication Manager, where the Berkeley DB library manages the replication
group, including network transport, all replication message processing and acknowledgment, and group
elections. Applications using the Replication Manager generally make the following calls:

1. Call DbEnv::repmgr_set_local_site() to configure the local site in the replication group.

2. Call DbEnv::repmgr_add_remote_site() to configure the remote site(s) in the replication group.

3. Call DbEnv::repmgr_set_ack_policy() to configure the message acknowledgment policy which best
supports the replication group's transactional needs.

4. Call DbEnv::rep_set_priority() to configure the local site's election priority.

5. Call DbEnv::repmgr_start() to start the replication application.

For more information on building Replication Manager applications, please see the Replication Getting
Started Guide included in the Berkeley DB documentation.

Applications with special needs (for example, applications using network protocols not supported by
the Berkeley DB Replication Manager), must perform additional configuration and call other Berkeley
DB replication Base API methods. For more information on building Base API applications, please see
the Base API Methods section in the Berkeley DB Programmer's Reference Guide.

Starting the Replication Manager consists of opening the TCP/IP listening socket to accept incoming
connections, and starting all necessary background threads. When multiple processes share a database
environment, only one process can open the listening socket; the DbEnv::repmgr_start() method
automatically opens the socket in the first process to call it, and skips this step in the later calls from
other processes.

The DbEnv::repmgr_start() method may not be called before the DbEnv::open() method is called to
open the local environment and the DbEnv::repmgr_set_local_site() method is called to configure the
local site. In addition, the local environment must be opened with the DB_THREAD flag set.

The DbEnv::repmgr_start() method will return DB_REP_IGNORE as an informational, non-error return
code, if another process has previously become the TCP/IP listener (though the current call has
nevertheless successfully started Replication Manager's background threads). Unless otherwise specified,
the DbEnv::repmgr_start() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Page 509DB C++ API8/14/2009

DbEnv::repmgr_start()

../../programmer_reference/rep_base_meth.html

Parameters

flags

The flags parameter must be set to one of the following values:

• DB_REP_MASTER

Start as a master site, and do not call for an election. Note there must never be more than a single
master in any replication group, and only one site at a time should ever be started with the
DB_REP_MASTER flag specified.

• DB_REP_CLIENT

Start as a client site, and do not call for an election.

• DB_REP_ELECTION

Start as a client, and call for an election if no master is found.

nthreads

Specify the number of threads of control created and dedicated to processing replication messages.
In addition to these message processing threads, the Replication Manager creates and manages a few
of its own threads of control.

Errors

The DbEnv::repmgr_start() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the database environment was not already opened or was opened without the DB_THREAD flag set; a
local site has not already been configured, this method is called from a Base API application; or if an
invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 510DB C++ API8/14/2009

DbEnv::repmgr_start()

DbEnv::repmgr_stat()
#include <db_cxx.h>

int
DbEnv::repmgr_stat(DB_REPMGR_STAT **statp, u_int32_t flags);

The DbEnv::repmgr_stat() method returns the Replication Manager statistics.

The DbEnv::repmgr_stat() method creates a statistical structure of type DB_REPMGR_STAT and copies
a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_REPMGR_STAT fields will be filled in:

• uintmax_t st_connect_fail;

The number of times an attempt to open a new TCP/IP connection failed.

• uintmax_t st_connection_drop;

The number of times an existing TCP/IP connection failed.

• uintmax_t st_msgs_dropped;

The number of outgoing messages that were completely dropped, because the outgoing message
queue was full. (Berkeley DB replication is tolerant of dropped messages, and will automatically
request retransmission of any missing messages as needed.)

• uintmax_t st_msgs_queued;

The number of outgoing messages which could not be transmitted immediately, due to a full network
buffer, and had to be queued for later delivery.

• uintmax_t st_perm_failed;

The number of times a message critical for maintaining database integrity (for example, a transaction
commit), originating at this site, did not receive sufficient acknowledgement from clients, according
to the configured acknowledgement policy and acknowledgement timeout.

The DbEnv::repmgr_stat() method may not be called before the DbEnv::open() method is called.

The DbEnv::repmgr_stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Page 511DB C++ API8/14/2009

DbEnv::repmgr_stat()

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors

The DbEnv::repmgr_stat() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 512DB C++ API8/14/2009

DbEnv::repmgr_stat()

DbEnv::repmgr_stat_print()
#include <db_cxx.h>

int
DbEnv::repmgr_stat_print(u_int32_t flags);

The DbEnv::repmgr_stat_print() method displays the Replication Manager statistical information, as
described for the DbEnv::repmgr_stat() method. The information is printed to a specified output
channel (see the DbEnv::set_msgfile() method for more information), or passed to an application
callback function (see the DbEnv::set_msgcall() method for more information).

The DbEnv::repmgr_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::repmgr_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Errors

The DbEnv::repmgr_stat_print() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods

Page 513DB C++ API8/14/2009

DbEnv::repmgr_stat_print()

Chapter 12. The DbSequence Handle
Sequences provide an arbitrary number of persistent objects that return an increasing or decreasing
sequence of integers. Opening a sequence handle associates it with a record in a database. The handle
can maintain a cache of values from the database so that a database update is not needed as the
application allocates a value.

A sequence is stored as a record pair in a database. The database may be of any type, but must not
have been configured to support duplicate data items. The sequence is referenced by the key used
when the sequence is created, therefore the key must be compatible with the underlying access method.
If the database stores fixed-length records, the record size must be at least 64 bytes long.

You create a sequence using the DbSequence method.

For more information on sequences, see the Berkeley DB Programmer's Reference Guide guide.

Page 514DB C++ API8/14/2009

Sequences and Related Methods

DescriptionSequences and Related Methods

Create a sequence handleDbSequence

Close a sequenceDbSequence::close()

Get the next sequence element(s)DbSequence::get()

Return a handle for the underlying sequence
database

DbSequence::get_dbp()

Return the key for a sequenceDbSequence::get_key()

Set the initial value of a sequenceDbSequence::initial_value()

Open a sequenceDbSequence::open()

Remove a sequenceDbSequence::remove()

Return sequence statisticsDbSequence::stat()

Print sequence statisticsDbSequence::stat_print()

Sequences Configuration

Set/get the cache size of a sequenceDbSequence::set_cachesize(),
DbSequence::get_cachesize()

Set/get the flags for a sequenceDbSequence::set_flags(), DbSequence::get_flags()

Set/get the range for a sequenceDbSequence::set_range(), DbSequence::get_range()

Page 515DB C++ API8/14/2009

Sequences and Related Methods

DbSequence
#include <db_cxx.h>

class DbSequence {
public:
 DbSequence(Db *db, u_int32_t flags);
 ~DbSequence();

 DB_SEQUENCE *DbSequence::get_DB();
 const DB *DbSequence::get_const_DB() const;
 static DbSequence *DbSequence::get_DbSequence(DB *db);
 static const DbSequence *DbSequence::get_const_DbSequence(const DB *db);
 ...
};

The DbSequence handle is the handle used to manipulate a sequence object. A sequence object is stored
in a record in a database.

DbSequence handles are free-threaded if the DB_THREAD flag is specified to the DbSequence::open()
method when the sequence is opened. Once the DbSequence::close() or DbSequence::remove() methods
are called, the handle can not be accessed again, regardless of the method's return.

Each handle opened on a sequence may maintain a separate cache of values which are returned to the
application using the DbSequence::get() method either singly or in groups depending on its delta
parameter.

Calling the DbSequence::close() or DbSequence::remove() methods discards this handle.

Parameters

db

The db parameter is an open database handle which holds the persistent data for the sequence. The
database may be of any type, but must not have been configured to support duplicate data items.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The db_sequence_create method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Page 516DB C++ API8/14/2009

DbSequence

Class

DbSequence

See Also

Sequences and Related Methods

Page 517DB C++ API8/14/2009

DbSequence

DbSequence::close()
#include <db_cxx.h>

int
DbSequence::close(u_int32_t flags);

The DbSequence::close() method closes the sequence handle. Any unused cached values are lost.

The DbSequence handle may not be accessed again after DbSequence::close() is called, regardless of
its return.

The DbSequence::close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbSequence::close() method method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods

Page 518DB C++ API8/14/2009

DbSequence::close()

DbSequence::get()
#include <db_cxx.h>

int
DbSequence::get(DbTxn *txnid, int32_t delta, db_seq_t *retp, u_int32_t flags);

The DbSequence::get() method returns the next available element in the sequence and changes the
sequence value by delta. The value of delta must be greater than zero. If there are enough cached
values in the sequence handle then they will be returned. Otherwise the next value will be fetched
from the database and incremented (decremented) by enough to cover the delta and the next batch
of cached values.

For maximum concurrency a non-zero cache size should be specified prior to opening the sequence
handle and DB_TXN_NOSYNC should be specified for each DbSequence::get() method call.

By default, sequence ranges do not wrap; to cause the sequence to wrap around the beginning or end
of its range, specify the DB_SEQ_WRAP flag to the DbSequence::set_flags() method.

The DbSequence::get() method will return EINVAL if the record in the database is not a valid sequence
record, or the sequence has reached the beginning or end of its range and is not configured to wrap.

Parameters

delta

Specifies the amount to increment or decrement the sequence.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_TXN_NOSYNC

If the operation is implicitly transaction protected (the txnid argument is NULL but the operation
occurs to a transactional database), do not synchronously flush the log when the transaction commits.

retp

retp points to the memory to hold the return value from the sequence.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected. No txnid handle may be specified if the sequence handle was
opened with a non-zero cache size.

Page 519DB C++ API8/14/2009

DbSequence::get()

If the underlying database handle was opened in a transaction, calling DbSequence::get() may result
in changes to the sequence object; these changes will be automatically committed in a transaction
internal to the Berkeley DB library. If the thread of control calling DbSequence::get() has an active
transaction, which holds locks on the same database as the one in which the sequence object is stored,
it is possible for a thread of control calling DbSequence::get() to self-deadlock because the active
transaction's locks conflict with the internal transaction's locks. For this reason, it is often preferable
for sequence objects to be stored in their own database.

Class

DbSequence

See Also

Sequences and Related Methods

Page 520DB C++ API8/14/2009

DbSequence::get()

DbSequence::get_cachesize()
#include <db_cxx.h>

int DbSequence::get_cachesize(u_int32_t *sizep);

The DbSequence::get_cachesize() method returns the current cache size.

The DbSequence::get_cachesize() method may be called at any time during the life of the application.

The DbSequence::get_cachesize() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sizep

The DbSequence::get_cachesize() method returns the current cache size in sizep.

Class

DbSequence

See Also

Sequences and Related Methods

Page 521DB C++ API8/14/2009

DbSequence::get_cachesize()

DbSequence::get_dbp()
#include <db_cxx.h>

int
DbSequence::get_dbp(Db **dbp);

The DbSequence::get_dbp() method returns the database handle used by the sequence.

The DbSequence::get_dbp() method may be called at any time during the life of the application.

The DbSequence::get_dbp() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dbp

The dbp parameter references memory into which a pointer to the database handle is copied.

Class

DbSequence

See Also

Sequences and Related Methods

Page 522DB C++ API8/14/2009

DbSequence::get_dbp()

DbSequence::get_flags()
#include <db_cxx.h>

int DbSequence::get_flags(u_int32_t *flagsp);

The DbSequence::get_flags() method returns the current flags.

The DbSequence::get_flags() method may be called at any time during the life of the application.

The DbSequence::get_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbSequence::get_flags() method returns the current flags in flagsp.

Class

DbSequence

See Also

Sequences and Related Methods

Page 523DB C++ API8/14/2009

DbSequence::get_flags()

DbSequence::get_key()
#include <db_cxx.h>

int
DbSequence::get_key(Dbt *key);

The DbSequence::get_key() method returns the key for the sequence.

The DbSequence::get_key() method may be called at any time during the life of the application.

The DbSequence::get_key() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

key

The key parameter references memory into which a pointer to the key data is copied.

Class

DbSequence

See Also

Sequences and Related Methods

Page 524DB C++ API8/14/2009

DbSequence::get_key()

DbSequence::get_range()
#include <db_cxx.h>

int DbSequence::get_range(u_int32_t, db_seq_t *minp, db_seq_t *maxp);

The DbSequence::get_range() method returns the range of values in the sequence.

The DbSequence::get_range() method may be called at any time during the life of the application.

The DbSequence::get_range() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

minp

The DbSequence::get_range() method returns the minimum value in minp.

maxp

The DbSequence::get_range() method returns the maximum value in maxp.

Class

DbSequence

See Also

Sequences and Related Methods

Page 525DB C++ API8/14/2009

DbSequence::get_range()

DbSequence::initial_value()
#include <db_cxx.h>

int
DbSequence::initial_value(db_seq_t value);

Set the initial value for a sequence. This call is only effective when the sequence is being created.

The DbSequence::initial_value() method may not be called after the DbSequence::open() method is
called.

The DbSequence::initial_value() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

value

The initial value to set.

Errors

The DbSequence::initial_value() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods

Page 526DB C++ API8/14/2009

DbSequence::initial_value()

DbSequence::open()
#include <db_cxx.h>

int
DbSequence::open(DbTxn *txnid, Dbt *key, u_int32_t flags);

The DbSequence::open() method opens the sequence represented by the key. The key must be
compatible with the underlying database specified in the corresponding call to DbSequence.

The DbSequence::open() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

key

The key specifies which record in the database stores the persistent sequence data.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_CREATE

Create the sequence. If the sequence does not already exist and the DB_CREATE flag is not specified,
the DbSequence::open() method will fail.

• DB_EXCL

Return an error if the sequence already exists. This flag is only meaningful when specified with the
DB_CREATE flag.

• DB_THREAD

Cause the DbSequence handle returned by DbSequence::open() to be free-threaded; that is, usable
by multiple threads within a single address space. Note that if multiple threads create multiple
sequences using the same database handle that handle must have been opened specifying this flag.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected. Transactionally protected operations on a DbSequence handle
require the DbSequence handle itself be transactionally protected during its open if the open creates
the sequence.

Page 527DB C++ API8/14/2009

DbSequence::open()

Class

DbSequence

See Also

Sequences and Related Methods

Page 528DB C++ API8/14/2009

DbSequence::open()

DbSequence::remove()
#include <db_cxx.h>

int
DbSequence::remove(u_int32_t flags);

The DbSequence::remove() method removes the sequence from the database. This method should not
be called if there are other open handles on this sequence.

The DbSequence handle may not be accessed again after DbSequence::remove() is called, regardless
of its return.

The DbSequence::remove() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_TXN_NOSYNC

If the operation is implicitly transaction protected (the txnid argument is NULL but the operation
occurs to a transactional database), do not synchronously flush the log when the transaction commits.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Errors

The DbSequence::remove() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

Page 529DB C++ API8/14/2009

DbSequence::remove()

See Also

Sequences and Related Methods

Page 530DB C++ API8/14/2009

DbSequence::remove()

DbSequence::set_cachesize()
#include <db_cxx.h>

int
DbSequence::set_cachesize(int32_t size);

Configure the number of elements cached by a sequence handle.

The DbSequence::set_cachesize() method may not be called after the DbSequence::open() method is
called.

The DbSequence::set_cachesize() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

size

The number of elements in the cache.

Errors

The DbSequence::set_cachesize() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods

Page 531DB C++ API8/14/2009

DbSequence::set_cachesize()

DbSequence::set_flags()
#include <db_cxx.h>

int
DbSequence::set_flags(u_int32_t flags);

Configure a sequence. The flags are only effective when creating a sequence. Calling
DbSequence::set_flags() is additive; there is no way to clear flags.

The DbSequence::set_flags() method may not be called after the DbSequence::open() method is
called.

The DbSequence::set_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_SEQ_DEC

Specify that the sequence should be decremented.

• DB_SEQ_INC

Specify that the sequence should be incremented. This is the default.

• DB_SEQ_WRAP

Specify that the sequence should wrap around when it is incremented (decremented) past the
specified maximum (minimum) value.

Errors

The DbSequence::set_flags() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

Page 532DB C++ API8/14/2009

DbSequence::set_flags()

See Also

Sequences and Related Methods

Page 533DB C++ API8/14/2009

DbSequence::set_flags()

DbSequence::set_range()
#include <db_cxx.h>

int
DbSequence::set_range(db_seq_t min, db_seq_t max);

Configure a sequence range. This call is only effective when the sequence is being created. The range
is limited to a signed 64 bit integer.

The DbSequence::set_range() method may not be called after the DbSequence::open() method is
called.

The DbSequence::set_range() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

min

Specifies the minimum value for the sequence.

max

Specifies the maximum value for the sequence.

Errors

The DbSequence::set_range() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods

Page 534DB C++ API8/14/2009

DbSequence::set_range()

DbSequence::stat()
#include <db_cxx.h>

int
DbSequence::stat(DB_SEQUENCE_STAT **spp, u_int32_t flags);

The DbSequence::stat() method creates a statistical structure and copies a pointer to it into
user-specified memory locations. Specifically, if spp is non-NULL, a pointer to the statistics for the
database are copied into the memory location to which it refers.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

In the presence of multiple threads or processes accessing an active sequence, the information returned
by DbSequence::stat() may be out-of-date.

The DbSequence::stat() method cannot be transaction-protected. For this reason, it should be called
in a thread of control that has no open cursors or active transactions.

The DbSequence::stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

The statistics are stored in a structure of type DB_SEQUENCE_STAT. The following fields will be filled in:

• uintmax_t st_wait;

The number of times a thread of control was forced to wait on the handle mutex.

• uintmax_t st_nowait;

The number of times that a thread of control was able to obtain handle mutex without waiting.

• db_seq_t st_current;

The current value of the sequence in the database.

• db_seq_t st_value;

The current cached value of the sequence.

• db_seq_t st_last_value;

The last cached value of the sequence.

• db_seq_t st_min;

The minimum permitted value of the sequence.

Page 535DB C++ API8/14/2009

DbSequence::stat()

• db_seq_t st_max;

The maximum permitted value of the sequence.

• int32_t st_cache_size;

The number of values that will be cached in this handle.

• u_int32_t st_flags;

The flags value for the sequence.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

• DB_STAT_CLEAR

Reset statistics after printing their values.

Class

DbSequence

See Also

Sequences and Related Methods

Page 536DB C++ API8/14/2009

DbSequence::stat()

DbSequence::stat_print()
#include <db_cxx>

int
DbSequence::stat_print(u_int32_t flags);

The DbSequence::stat_print() method prints diagnostic information to the output channel described
by the DbEnv::set_msgfile() method.

The DbSequence::stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

• DB_STAT_CLEAR

Reset statistics after printing their values.

Class

DbSequence

See Also

Sequences and Related Methods

Page 537DB C++ API8/14/2009

DbSequence::stat_print()

Chapter 13. The DbTxn Handle
#include <db_cxx.h>

class DbTxn {
public:
 DB_TXN *DbTxn::get_DB_TXN();
 const DB_TXN *DbTxn::get_const_DB_TXN() const;
 static DbTxn *DbTxn::get_DbTxn(DB_TXN *txn);
 static const DbTxn *DbTxn::get_const_DbTxn(const DB_TXN *txn);
 ...

};

The DbTxn object is the handle for a transaction. Methods of the DbTxn handle are used to configure,
abort and commit the transaction. DbTxn handles are provided to Db methods in order to transactionally
protect those database operations.

DbTxn handles are not free-threaded; transactions handles may be used by multiple threads, but only
serially, that is, the application must serialize access to the DbTxn handle. Once the DbTxn::abort() or
DbTxn::commit() methods are called, the handle may not be accessed again, regardless of the method's
return. In addition, parent transactions may not issue any Berkeley DB operations while they have
active child transactions (child transactions that have not yet been committed or aborted) except for
DbEnv::txn_begin(), DbTxn::abort() and DbTxn::commit().

Each DbTxn object has an associated DB_TXN struct, which is used by the underlying implementation of
Berkeley DB and its C++ language API. The DbTxn::get_DB_TXN() method returns a pointer to this struct.
Given a const DbTxn object, txnMget_const_DB_TXN() returns a const pointer to the same struct.

Given a DB_TXN struct, the DbTxn::get_DbTxn() method returns the corresponding DbTxn object, if there
is one. If the DB_TXN object was not associated with a DbTxn (that is, it was not returned from a call
to DbTxn::get_DB_TXN()), then the result of DbTxn::get_DbTxn is undefined. Given a const DB_TXN struct,
DbTxn::get_const_DbTxn() returns the associated const DbTxn object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language software.
It should not be necessary to use these calls in a purely C++ application.

Page 538DB C++ API8/14/2009

Transaction Subsystem and Related Methods

DescriptionTransaction Subsystem and Related
Methods

Checkpoint the transaction subsystemDbEnv::txn_checkpoint()

Distributed transaction recoveryDbEnv::txn_recover()

Set transaction timeoutDbTxn::set_timeout()

Return transaction subsystem statisticsDbEnv::txn_stat()

Print transaction subsystem statisticsDbEnv::txn_stat_print()

Transaction Subsystem Configuration

Set/get lock and transaction timeoutDbEnv::set_timeout(), DbEnv::get_timeout()

Does the Db have transaction supportDb::get_transactional()

Get a locker ID in Berkeley DB Concurrent Data
Store

DbEnv::cdsgroup_begin()

Set/get maximum number of transactionsDbEnv::set_tx_max(), DbEnv::get_tx_max()

Set/get recovery timestampDbEnv::set_tx_timestamp(),
DbEnv::get_tx_timestamp()

Transaction Operations

Abort a transactionDbTxn::abort()

Begin a transactionDbEnv::txn_begin()

Commit a transactionDbTxn::commit()

Discard a prepared but not resolved transaction
handle

DbTxn::discard()

Return a transaction's IDDbTxn::id()

Prepare a transaction for commitDbTxn::prepare()

Associate a string with a transactionDbTxn::set_name(), DbTxn::get_name()

Page 539DB C++ API8/14/2009

Transaction Subsystem and Related
Methods

Db::get_transactional()
#include <db_cxx.h>

int
Db::get_transactional()

The Db::get_transactional() method returns non-zero if the Db handle has been opened in a
transactional mode.

The Db::get_transactional() method may be called at any time during the life of the application.

The Db::get_transactional() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Class

Db

See Also

Transaction Subsystem and Related Methods

Page 540DB C++ API8/14/2009

Db::get_transactional()

DbEnv::cdsgroup_begin()
#include <db_cxx.h>

int
DbEnv::cdsgroup_begin(DbTxn **tid);

The DbEnv::cdsgroup_begin() method allocates a locker ID in an environment configured for Berkeley
DB Concurrent Data Store applications. It copies a pointer to a DbTxn that uniquely identifies the locker
ID into the memory to which tid refers. Calling the DbTxn::commit() method will discard the allocated
locker ID.

See Berkeley DB Concurrent Data Store applications for more information about when this is required.

The DbEnv::cdsgroup_begin() method may be called at any time during the life of the application.

The DbEnv::cdsgroup_begin() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The DbEnv::cdsgroup_begin() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

ENOMEM

The maximum number of lockers has been reached.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 541DB C++ API8/14/2009

DbEnv::cdsgroup_begin()

../../programmer_reference/cam.html#cam_intro

DbEnv::get_tx_max()
#include <db_cxx.h>

int
DbEnv::get_tx_max(u_int32_t *tx_maxp);

The DbEnv::get_tx_max() method returns the maximum number of active transactions currently
configured for the environment. You can manage this value using the DbEnv::set_tx_max() method.

The DbEnv::get_tx_max() method may be called at any time during the life of the application.

The DbEnv::get_tx_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tx_maxp

The DbEnv::get_tx_max() method returns the number of active transactions in tx_maxp.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods, DbEnv::set_tx_max()

Page 542DB C++ API8/14/2009

DbEnv::get_tx_max()

DbEnv::get_tx_timestamp()
#include <db_cxx.h>

int
DbEnv::get_tx_timestamp(time_t *timestampp);

The DbEnv::get_tx_timestamp() method returns the recovery timestamp. This value can be modified
using the DbEnv::set_tx_timestamp() method.

The DbEnv::get_tx_timestamp() method may be called at any time during the life of the application.

The DbEnv::get_tx_timestamp() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timestampp

The DbEnv::get_tx_timestamp() method returns the recovery timestamp in timestampp.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods, DbEnv::set_tx_timestamp()

Page 543DB C++ API8/14/2009

DbEnv::get_tx_timestamp()

DbEnv::set_tx_max()
#include <db_cxx.h>

int
DbEnv::set_tx_max(u_int32_t max);

Configure the Berkeley DB database environment to support at least max active transactions. This
value bounds the size of the memory allocated for transactions. Child transactions are counted as
active until they either commit or abort.

Transactions that update multiversion databases are not freed until the last page version that the
transaction created is flushed from cache. This means that applications using multi-version concurrency
control may need a transaction for each page in cache, in the extreme case.

When all of the memory available in the database environment for transactions is in use, calls to
DbEnv::txn_begin() will fail (until some active transactions complete). If DbEnv::set_tx_max() is never
called, the database environment is configured to support at least 100 active transactions.

The database environment's number of active transactions may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_tx_max", one
or more whitespace characters, and the number of transactions. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_tx_max() method configures a database environment, not only operations performed
using the specified DbEnv handle.

The DbEnv::set_tx_max() method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv::set_tx_max() will be ignored.

The DbEnv::set_tx_max() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter configures the minimum number of simultaneously active transactions supported
by Berkeley DB database environment.

Errors

The DbEnv::set_tx_max() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

Page 544DB C++ API8/14/2009

DbEnv::set_tx_max()

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 545DB C++ API8/14/2009

DbEnv::set_tx_max()

DbEnv::set_tx_timestamp()
#include <db_cxx.h>

int
DbEnv::set_tx_timestamp(time_t *timestamp);

Recover to the time specified by timestamp rather than to the most current possible date.

Once a database environment has been upgraded to a new version of Berkeley DB involving a log format
change (see Upgrading Berkeley DB installations), it is no longer possible to recover to a specific time
before that upgrade.

The DbEnv::set_tx_timestamp() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_tx_timestamp() method may not be called after the DbEnv::open() method is called.

The DbEnv::set_tx_timestamp() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timestamp

The timestamp parameter references the memory location where the recovery timestamp is located.

The timestamp parameter should be the number of seconds since 0 hours, 0 minutes, 0 seconds, January
1, 1970, Coordinated Universal Time; that is, the Epoch.

Errors

The DbEnv::set_tx_timestamp() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If it is not possible to recover to the specified time using the log files currently present in the
environment; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 546DB C++ API8/14/2009

DbEnv::set_tx_timestamp()

../../programmer_reference/upgrade_process.html

DbTxn::abort()
#include <db_cxx.h>

int
DbTxn::abort();

The DbTxn::abort() method causes an abnormal termination of the transaction. The log is played
backward, and any necessary undo operations are done through the tx_recover function specified to
DbEnv::set_app_dispatch(). Before DbTxn::abort() returns, any locks held by the transaction will have
been released.

In the case of nested transactions, aborting a parent transaction causes all children (unresolved or not)
of the parent transaction to be aborted.

All cursors opened within the transaction must be closed before the transaction is aborted.

After DbTxn::abort() has been called, regardless of its return, the DbTxn handle may not be accessed
again.

The DbTxn::abort() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 547DB C++ API8/14/2009

DbTxn::abort()

DbEnv::txn_begin()
#include <db_cxx.h>

int
DbEnv::txn_begin(DbTxn *parent, DbTxn **tid, u_int32_t flags);

The DbEnv::txn_begin() method creates a new transaction in the environment and copies a pointer
to a DbTxn that uniquely identifies it into the memory to which tid refers. Calling the DbTxn::abort(),
DbTxn::commit() or DbTxn::discard() methods will discard the returned handle.

Transactions may only span threads if they do so serially; that is, each transaction must be active
in only a single thread of control at a time. This restriction holds for parents of nested transactions☞
as well; no two children may be concurrently active in more than one thread of control at any one
time.

Cursors may not span transactions; that is, each cursor must be opened and closed within a single
transaction.☞
A parent transaction may not issue any Berkeley DB operations — except for DbEnv::txn_begin(),
DbTxn::abort() and DbTxn::commit() — while it has active child transactions (child transactions
that have not yet been committed or aborted).

☞

The DbEnv::txn_begin() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_READ_COMMITTED

This transaction will have degree 2 isolation. This provides for cursor stability but not repeatable
reads. Data items which have been previously read by this transaction may be deleted or modified
by other transactions before this transaction completes.

• DB_READ_UNCOMMITTED

This transaction will have degree 1 isolation. Read operations performed by the transaction may
read modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

• DB_TXN_NOSYNC

Do not synchronously flush the log when this transaction commits or prepares. This means the
transaction will exhibit the ACI (atomicity, consistency, and isolation) properties, but not D
(durability); that is, database integrity will be maintained but it is possible that this transaction may
be undone during recovery.

Page 548DB C++ API8/14/2009

DbEnv::txn_begin()

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() method. Any
value specified to this method overrides that setting.

• DB_TXN_NOWAIT

If a lock is unavailable for any Berkeley DB operation performed in the context of this transaction,
cause the operation to return DB_LOCK_DEADLOCK (or DB_LOCK_NOTGRANTED if the database
environment has been configured using the DB_TIME_NOTGRANTED flag).

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() method. Any
value specified to this method overrides that setting.

• DB_TXN_SNAPSHOT

This transaction will execute with snapshot isolation. For databases with the DB_MULTIVERSION flag
set, data values will be read as they are when the transaction begins, without taking read locks.
Silently ignored for operations on databases with DB_MULTIVERSION not set on the underlying database
(read locks are acquired).

The error DB_LOCK_DEADLOCKwill be returned from update operations if a snapshot transaction attempts
to update data which was modified after the snapshot transaction read it.

• DB_TXN_SYNC

Synchronously flush the log when this transaction commits or prepares. This means the transaction
will exhibit all of the ACID (atomicity, consistency, isolation, and durability) properties.

This behavior is the default for Berkeley DB environments unless the DB_TXN_NOSYNC flag was specified
to the DbEnv::set_flags() method. Any value specified to this method overrides that setting.

• DB_TXN_WAIT

If a lock is unavailable for any Berkeley DB operation performed in the context of this transaction,
wait for the lock.

This behavior is the default for Berkeley DB environments unless the DB_TXN_NOWAIT flag was specified
to the DbEnv::set_flags() method. Any value specified to this method overrides that setting.

• DB_TXN_WRITE_NOSYNC

Write, but do not synchronously flush, the log when this transaction commits. This means the
transaction will exhibit the ACI (atomicity, consistency, and isolation) properties, but not D
(durability); that is, database integrity will be maintained, but if the system fails, it is possible some
number of the most recently committed transactions may be undone during recovery. The number
of transactions at risk is governed by how often the system flushes dirty buffers to disk and how
often the log is flushed or checkpointed.

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() method. Any
value specified to this method overrides that setting.

Page 549DB C++ API8/14/2009

DbEnv::txn_begin()

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/transapp_read.html

parent

If the parent parameter is non-NULL, the new transaction will be a nested transaction, with the
transaction indicated by parent as its parent. Transactions may be nested to any level. In the presence
of distributed transactions and two-phase commit, only the parental transaction, that is a transaction
without a parent specified, should be passed as an parameter to DbTxn::prepare().

Errors

The DbEnv::txn_begin() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbMemoryException or ENOMEM

The maximum number of concurrent transactions has been reached.

DbMemoryException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
ENOMEM is returned.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 550DB C++ API8/14/2009

DbEnv::txn_begin()

DbEnv::txn_checkpoint()
#include <db_cxx.h>

int
DbEnv::txn_checkpoint(u_int32_t kbyte, u_int32_t min, u_int32_t flags) const;

If there has been any logging activity in the database environment since the last checkpoint, the
DbEnv::txn_checkpoint() method flushes the underlying memory pool, writes a checkpoint record to
the log, and then flushes the log.

The DbEnv::txn_checkpoint() method returns a non-zero error value on failure and 0 on success.

The DbEnv::txn_checkpoint() method is the underlying method used by the db_checkpoint utility. See
the db_checkpoint utility source code for an example of using DbEnv::txn_checkpoint() in a IEEE/ANSI
Std 1003.1 (POSIX) environment.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_FORCE

Force a checkpoint record, even if there has been no activity since the last checkpoint.

kbyte

If the kbyte parameter is non-zero, a checkpoint will be done if more than kbyte kilobytes of log data
have been written since the last checkpoint.

min

If the min parameter is non-zero, a checkpoint will be done if more than min minutes have passed
since the last checkpoint.

Errors

The DbEnv::txn_checkpoint() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

Page 551DB C++ API8/14/2009

DbEnv::txn_checkpoint()

See Also

Transaction Subsystem and Related Methods

Page 552DB C++ API8/14/2009

DbEnv::txn_checkpoint()

DbTxn::commit()
#include <db_cxx.h>

int
DbTxn::commit(u_int32_t flags);

The DbTxn::commit() method ends the transaction.

In the case of nested transactions, if the transaction is a parent transaction, committing the parent
transaction causes all unresolved children of the parent to be committed. In the case of nested
transactions, if the transaction is a child transaction, its locks are not released, but are acquired by
its parent. Although the commit of the child transaction will succeed, the actual resolution of the child
transaction is postponed until the parent transaction is committed or aborted; that is, if its parent
transaction commits, it will be committed; and if its parent transaction aborts, it will be aborted.

All cursors opened within the transaction must be closed before the transaction is committed.

After DbTxn::commit() has been called, regardless of its return, the DbTxn handle may not be accessed
again. If DbTxn::commit() encounters an error, the transaction and all child transactions of the
transaction are aborted.

The DbTxn::commit() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_TXN_NOSYNC

Do not synchronously flush the log. This means the transaction will exhibit the ACI (atomicity,
consistency, and isolation) properties, but not D (durability); that is, database integrity will be
maintained, but it is possible that this transaction may be undone during recovery.

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() method or for
a single transaction using the DbEnv::txn_begin() method. Any value specified to this method overrides
both of those settings.

• DB_TXN_SYNC

Synchronously flush the log. This means the transaction will exhibit all of the ACID (atomicity,
consistency, isolation, and durability) properties.

This behavior is the default for Berkeley DB environments unless the DB_TXN_NOSYNC flag was
specified to the DbEnv::set_flags() method. This behavior may also be set for a single transaction
using the DbEnv::txn_begin() method. Any value specified to this method overrides both of those
settings.

Page 553DB C++ API8/14/2009

DbTxn::commit()

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 554DB C++ API8/14/2009

DbTxn::commit()

DbTxn::discard()
#include <db_cxx.h>

int
DbTxn::discard(u_int32_t flags);

The DbTxn::discard() method frees up all the per-process resources associated with the specified
DbTxn handle, neither committing nor aborting the transaction. This call may be used only after calls
to DbEnv::txn_recover() when there are multiple global transaction managers recovering transactions
in a single Berkeley DB environment. Any transactions returned by DbEnv::txn_recover() that are not
handled by the current global transaction manager should be discarded using DbTxn::discard().

The DbTxn::discard() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

After DbTxn::discard() has been called, regardless of its return, the DbTxn handle may not be accessed
again.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbTxn::discard() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the transaction handle does not refer to a transaction that was recovered into a prepared but not
yet completed state; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 555DB C++ API8/14/2009

DbTxn::discard()

DbTxn::get_name()
#include <db_cxx.h>

int
DbTxn::get_name(const char **namep);

The DbTxn::get_name() method returns the string associated with the transaction.

The DbTxn::get_name() method may be called at any time during the life of the application.

The DbTxn::get_name() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

namep

The DbTxn::get_name() method returns a reference to the string associated with the transaction in
namep.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 556DB C++ API8/14/2009

DbTxn::get_name()

DbTxn::id()
#include <db_cxx.h>

u_int32_t
DbTxn::id();

The DbTxn::id() method returns the unique transaction id associated with the specified transaction.
Locking calls made on behalf of this transaction should use the value returned from DbTxn::id() as
the locker parameter to the DbEnv::lock_get() or DbEnv::lock_vec() calls.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 557DB C++ API8/14/2009

DbTxn::id()

DbTxn::prepare()
#include <db_cxx.h>

int
DbTxn::prepare(u_int8_t gid[DB_XIDDATASIZE]);

The DbTxn::prepare() method initiates the beginning of a two-phase commit.

In a distributed transaction environment, Berkeley DB can be used as a local transaction manager. In
this case, the distributed transaction manager must send prepare messages to each local manager.
The local manager must then issue a DbTxn::prepare() and await its successful return before responding
to the distributed transaction manager. Only after the distributed transaction manager receives
successful responses from all of its prepare messages should it issue any commit messages.

In the case of nested transactions, preparing the parent causes all unresolved children of the parent
transaction to be committed. Child transactions should never be explicitly prepared. Their fate will
be resolved along with their parent's during global recovery.

The DbTxn::prepare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gid

The gid parameter specifies the global transaction ID by which this transaction will be known. This
global transaction ID will be returned in calls to DbEnv::txn_recover() telling the application which
global transactions must be resolved.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 558DB C++ API8/14/2009

DbTxn::prepare()

DbEnv::txn_recover()
#include <db_cxx.h>

int
DbEnv::txn_recover(DB_PREPLIST preplist[],
 long count, long *retp, u_int32_t flags);

Database environment recovery restores transactions that were prepared, but not yet resolved at the
time of the system shut down or crash, to their state prior to the shut down or crash, including any
locks previously held. The DbEnv::txn_recover() method returns a list of those prepared transactions.

The DbEnv::txn_recover() method should only be called after the environment has been recovered.

Multiple threads of control may call DbEnv::txn_recover(), but only one thread of control may resolve
each returned transaction, that is, only one thread of control may call DbTxn::commit() or DbTxn::abort()
on each returned transaction. Callers of DbEnv::txn_recover() must call DbTxn::discard() to discard
each transaction they do not resolve.

On return from DbEnv::txn_recover(), the preplist parameter will be filled in with a list of transactions
that must be resolved by the application (committed, aborted or discarded). The preplist parameter
is a structure of type DB_PREPLIST; the following DB_PREPLIST fields will be filled in:

• DB_TXN * txn;

The transaction handle for the transaction.

• u_int8_t gid[DB_XIDDATASIZE];

The global transaction ID for the transaction. The global transaction ID is the one specified when the
transaction was prepared. The application is responsible for ensuring uniqueness among global
transaction IDs.

The DbEnv::txn_recover() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

count

The count parameter specifies the number of available entries in the passed-in preplist array. The
retp parameter returns the number of entries DbEnv::txn_recover() has filled in, in the array.

flags

The flags parameter must be set to one of the following values:

• DB_FIRST

Begin returning a list of prepared, but not yet resolved transactions. Specifying this flag begins a
new pass over all prepared, but not yet completed transactions, regardless of whether they have

Page 559DB C++ API8/14/2009

DbEnv::txn_recover()

already been returned in previous calls to DbEnv::txn_recover.() Calls to DbEnv::txn_recover()
from different threads of control should not be intermixed in the same environment.

• DB_NEXT

Continue returning a list of prepared, but not yet resolved transactions, starting where the last call
to DbEnv::txn_recover() left off.

preplist

The preplist parameter references memory into which the list of transactions to be resolved by the
application is copied.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 560DB C++ API8/14/2009

DbEnv::txn_recover()

DbTxn::set_name()
#include <db_cxx.h>

int
DbTxn::set_name(const char *name);

The DbTxn::set_name() method associates the specified string with the transaction. The string is
returned by DbEnv::txn_stat() and displayed by DbEnv::txn_stat_print().

If the database environment has been configured for logging and the Berkeley DB library was configured
with --enable-diagnostic, a debugging log record is written including the transaction ID and the name.

The DbTxn::set_name() method may be called at any time during the life of the application.

The DbTxn::set_name() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

name

The name parameter is the string to associate with the transaction.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 561DB C++ API8/14/2009

DbTxn::set_name()

../../programmer_reference/build_unix_conf.html

DbTxn::set_timeout()
#include <db_cxx.h>

u_int32_t
DbTxn::set_timeout(db_timeout_t timeout, u_int32_t flags);

The DbTxn::set_timeout() method sets timeout values for locks or transactions for the specified
transaction.

Timeouts are checked whenever a thread of control blocks on a lock or when deadlock detection is
performed. In the case of DB_SET_LOCK_TIMEOUT, the timeout is for any single lock request. In the case
of DB_SET_TXN_TIMEOUT, the timeout is for the life of the transaction. As timeouts are only checked
when the lock request first blocks or when deadlock detection is performed, the accuracy of the timeout
depends on how often deadlock detection is performed.

Timeout values may be specified for the database environment as a whole. See DbEnv::set_timeout()
and for more information.

The DbTxn::set_timeout() method configures operations performed on the underlying transaction, not
only operations performed using the specified DbTxn handle.

The DbTxn::set_timeout() method may be called at any time during the life of the application.

The DbTxn::set_timeout() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to one of the following values:

• DB_SET_LOCK_TIMEOUT

Set the timeout value for locks in this transaction.

• DB_SET_TXN_TIMEOUT

Set the timeout value for this transaction.

timeout

The timeout parameter is specified as an unsigned 32-bit number of microseconds, limiting the maximum
timeout to roughly 71 minutes. A value of 0 disables timeouts for the transaction.

Errors

The DbTxn::set_timeout() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

Page 562DB C++ API8/14/2009

DbTxn::set_timeout()

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 563DB C++ API8/14/2009

DbTxn::set_timeout()

DbEnv::txn_stat()
#include <db_cxx.h>

int
DbEnv::txn_stat(DB_TXN_STAT **statp, u_int32_t flags);

The DbEnv::txn_stat() method returns the transaction subsystem statistics.

The DbEnv::txn_stat() method creates a statistical structure of type DB_TXN_STAT and copies a pointer
to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_TXN_STAT fields will be filled in:

• DB_LSN st_last_ckp;

The LSN of the last checkpoint.

• time_t st_time_ckp;

The time the last completed checkpoint finished (as the number of seconds since the Epoch, returned
by the IEEE/ANSI Std 1003.1 (POSIX) time function).

• u_int32_t st_last_txnid;

The last transaction ID allocated.

• u_int32_t st_maxtxns;

The maximum number of active transactions configured.

• u_int32_t st_nactive;

The number of transactions that are currently active.

• u_int32_t st_nsnapshot;

The number of transactions on the snapshot list. These are transactions which modified a database
opened with DB_MULTIVERSION, and which have committed or aborted, but the copies of pages they
created are still in the cache.

• u_int32_t st_maxnactive;

The maximum number of active transactions at any one time.

• u_int32_t st_maxnsnapshot;

Page 564DB C++ API8/14/2009

DbEnv::txn_stat()

The maximum number of transactions on the snapshot list at any one time.

• uintmax_t st_nbegins;

The number of transactions that have begun.

• uintmax_t st_naborts;

The number of transactions that have aborted.

• uintmax_t st_ncommits;

The number of transactions that have committed.

• u_int32_t st_nrestores;

The number of transactions that have been restored.

• roff_t st_regsize;

The size of the transaction region, in bytes.

• uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the transaction
region mutex.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the transaction region mutex without
waiting.

• DB_TXN_ACTIVE *st_txnarray;

A pointer to an array of st_nactive DB_TXN_ACTIVE structures, describing the currently active
transactions. The following fields of the DB_TXN_ACTIVE structure will be filled in:

• u_int32_t txnid;

The transaction ID of the transaction.

• u_int32_t parentid;

The transaction ID of the parent transaction (or 0, if no parent).

• pid_t pid;

The process ID of the originator of the transaction.

• db_threadid_t tid;

The thread of control ID of the originator of the transaction.

Page 565DB C++ API8/14/2009

DbEnv::txn_stat()

• DB_LSN lsn;

The current log sequence number when the transaction was begun.

• DB_LSN read_lsn;

The log sequence number of reads for snapshot transactions.

• u_int32_t mvcc_ref;

The number of buffer copies created by this transaction that remain in cache.

• u_int32_t status;

One of the following list of constants: TXN_ABORTED, TXN_COMMITTED, TXN_PREPARED,
TXN_RUNNING.

• u_int8_t gid[DB_GID_SIZE];

If the transaction was prepared using DbTxn::prepare(), then gid contains the transaction's Global
ID. Otherwise, gid's contents are undefined.

• char name[];

If a name was specified for the transaction, up to the first 50 bytes of that name, followed by a
nul termination byte.

The DbEnv::txn_stat() method may not be called before the DbEnv::open() method is called.

The DbEnv::txn_stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors

The DbEnv::txn_stat() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

Page 566DB C++ API8/14/2009

DbEnv::txn_stat()

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 567DB C++ API8/14/2009

DbEnv::txn_stat()

DbEnv::txn_stat_print()
#include <db_cxx.h>

int
DbEnv::txn_stat_print(u_int32_t flags);

The DbEnv::txn_stat_print() method displays the transaction subsystem statistical information, as
described for the DbEnv::txn_stat() method. The information is printed to a specified output channel
(see the DbEnv::set_msgfile() method for more information), or passed to an application callback
function (see the DbEnv::set_msgcall() method for more information).

The DbEnv::txn_stat_print() method may not be called before the DbEnv::open() method is called.

The DbEnv::txn_stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods

Page 568DB C++ API8/14/2009

DbEnv::txn_stat_print()

Appendix A. Berkeley DB Command
Line Utilities

The following describes the command line utilities that are available for Berkeley DB.

Page 569DB C++ API8/14/2009

Utilities

DescriptionUtility

Archival utilitydb_archive

Transaction checkpoint utilitydb_checkpoint

Deadlock detection utilitydb_deadlock

Database dump utilitydb_dump

Hot backup utilitydb_hotbackup

Database load utilitydb_load

Transaction log display utilitydb_printlog

Recovery utilitydb_recover

SQL schema to Berkeley DB code in Cdb_sql

Statistics utilitydb_stat

Database upgrade utilitydb_upgrade

Verification utilitydb_verify

Page 570DB C++ API8/14/2009

Utilities

db_archive
db_archive [-adlsVv] [-h home] [-P password]

The db_archive utility writes the pathnames of log files that are no longer in use (for example, no
longer involved in active transactions), to the standard output, one pathname per line. These log files
should be written to backup media to provide for recovery in the case of catastrophic failure (which
also requires a snapshot of the database files), but they may then be deleted from the system to reclaim
disk space.

The options are as follows:

• -a

Write all pathnames as absolute pathnames, instead of relative to the database home directory.

• -d

Remove log files that are no longer needed; no filenames are written. This automatic log file removal
is likely to make catastrophic recovery impossible.

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -l

Write out the pathnames of all the database log files, whether or not they are involved in active
transactions.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -s

Write the pathnames of all the database files that need to be archived in order to recover the
database from catastrophic failure. If any of the database files have not been accessed during the
lifetime of the current log files, db_archive will not include them in this output.

It is possible that some of the files to which the log refers have since been deleted from the system.
In this case, db_archive will ignore them. When db_recover is run, any files to which the log refers
that are not present during recovery are assumed to have been deleted and will not be recovered.

• -V

Write the library version number to the standard output, and exit.

Page 571DB C++ API8/14/2009

db_archive

• -v

Run in verbose mode.

Log cursor handles (returned by the DbEnv::log_cursor() method) may have open file descriptors for
log files in the database environment. Also, the Berkeley DB interfaces to the database environment
logging subsystem (for example, DbEnv::log_put() and DbTxn::abort() may allocate log cursors and
have open file descriptors for log files as well. On operating systems where filesystem related system
calls (for example, rename and unlink on Windows/NT) can fail if a process has an open file descriptor
for the affected file, attempting to move or remove the log files listed by db_archive may fail. All
Berkeley DB internal use of log cursors operates on active log files only and furthermore, is short-lived
in nature. So, an application seeing such a failure should be restructured to close any open log cursors
it may have, and otherwise to retry the operation until it succeeds. (Although the latter is not likely
to be necessary; it is hard to imagine a reason to move or rename a log file in which transactions are
being logged or aborted.)

The db_archive utility uses a Berkeley DB environment (as described for the -h option, the environment
variable DB_HOME, or because the utility was run in a directory containing a Berkeley DB environment).
In order to avoid environment corruption when using a Berkeley DB environment, db_archive should
always be given the chance to detach from the environment and exit gracefully. To cause db_archive
to release all environment resources and exit cleanly, send it an interrupt signal (SIGINT).

The db_archive utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 572DB C++ API8/14/2009

db_archive

db_checkpoint
db_checkpoint [-1Vv] [-h home]
 [-k kbytes] [-L file] [-P password] [-p min]

The db_checkpoint utility is a daemon process that monitors the database log, and periodically calls
DbEnv::txn_checkpoint() to checkpoint it.

The options are as follows:

• -1

Force a single checkpoint of the log (regardless of whether or not there has been activity since the
last checkpoint), and then exit.

When the -1 flag is specified, the db_checkpoint utility will checkpoint the log even if unable to
find an existing database environment. This functionality is useful when upgrading database
environments from one version of Berkeley DB to another.

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -k

Checkpoint the database at least as often as every kbytes of log file are written.

• -L

Log the execution of the db_checkpoint utility to the specified file in the following format, where
is the process ID, and the date is the time the utility was started.

 db_checkpoint: ### Wed Jun 15 01:23:45 EDT 1995

This file will be removed if the db_checkpoint utility exits gracefully.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -p

Checkpoint the database at least every min minutes if there has been any activity since the last
checkpoint.

• -V

Write the library version number to the standard output, and exit.

Page 573DB C++ API8/14/2009

db_checkpoint

• -v

Write the time of each checkpoint attempt to the standard output.

At least one of the -1, -k, and -p options must be specified.

The db_checkpoint utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley
DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_checkpoint should always be given the chance to detach from the environment and exit gracefully.
To cause db_checkpoint to release all environment resources and exit cleanly, send it an interrupt
signal (SIGINT).

The db_checkpoint utility does not attempt to create the Berkeley DB shared memory regions if they
do not already exist. The application that creates the region should be started first, and once the
region is created, the db_checkpoint utility should be started.

The db_checkpoint utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 574DB C++ API8/14/2009

db_checkpoint

db_deadlock
db_deadlock [-Vv]
 [-a e | m | n | o | W | w | y] [-h home] [-L file] [-t sec.usec]

The db_deadlock utility traverses the database environment lock region, and aborts a lock request
each time it detects a deadlock or a lock request that has timed out. By default, in the case of a
deadlock, a random lock request is chosen to be aborted.

This utility should be run as a background daemon, or the underlying Berkeley DB deadlock detection
interfaces should be called in some other way, whenever there are multiple threads or processes
accessing a database and at least one of them is modifying it.

The options are as follows:

• -a

When a deadlock is detected, abort the locker:

• m

with the most locks

• n

with the fewest locks

• o

with the oldest locks

• W

with the most write locks

• w

with the fewest write locks

• y

with the youngest locks

• e

When lock or transaction timeouts have been specified, abort any lock request that has timed out.
Note that this option does not perform the entire deadlock detection algorithm, but instead only
checks for timeouts.

• -h

Page 575DB C++ API8/14/2009

db_deadlock

Specify a home directory for the database environment; by default, the current working directory
is used.

• -L

Log the execution of the db_deadlock utility to the specified file in the following format, where ###
is the process ID, and the date is the time the utility was started.

 db_deadlock: ### Wed Jun 15 01:23:45 EDT 1995

This file will be removed if the db_deadlock utility exits gracefully.

• -t

Check the database environment every sec seconds plus usec microseconds to see if a process has
been forced to wait for a lock; if one has, review the database environment lock structures.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode, generating messages each time the detector runs.

If the -t option is not specified, db_deadlock will run once and exit.

The db_deadlock utility uses a Berkeley DB environment (as described for the -h option, the environment
variable DB_HOME, or because the utility was run in a directory containing a Berkeley DB environment).
In order to avoid environment corruption when using a Berkeley DB environment, db_deadlock should
always be given the chance to detach from the environment and exit gracefully. To cause db_deadlock
to release all environment resources and exit cleanly, send it an interrupt signal (SIGINT).

The db_deadlock utility does not attempt to create the Berkeley DB shared memory regions if they
do not already exist. The application which creates the region should be started first, and then, once
the region is created, the db_deadlock utility should be started.

The db_deadlock utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 576DB C++ API8/14/2009

db_deadlock

db_dump
db_dump [-klNpRrV] [-d ahr]
 [-f output] [-h home] [-P password] [-s database] file

db_dump [-kNpV] [-d ahr] [-f output] [-h home] -m database

db_dump185 [-p] [-f output] file

The db_dump utility reads the database file file and writes it to the standard output using a portable
flat-text format understood by the db_load utility. The file argument must be a file produced using
the Berkeley DB library functions.

The db_dump185 utility is similar to the db_dump utility, except that it reads databases in the format
used by Berkeley DB versions 1.85 and 1.86.

The options are as follows:

• -d

Dump the specified database in a format helpful for debugging the Berkeley DB library routines.

• a

Display all information.

• h

Display only page headers.

• r

Do not display the free-list or pages on the free list. This mode is used by the recovery tests.

The output format of the -d option is not standard and may change, without notice, between
releases of the Berkeley DB library.

• -f

Write to the specified file instead of to the standard output.

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -k

Dump record numbers from Queue and Recno databases as keys.

• -l

Page 577DB C++ API8/14/2009

db_dump

List the databases stored in the file.

• -m

Specify a named in-memory database to dump. In this case the file argument must be omitted.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially fatal errors
in Berkeley DB, will be ignored as well. This option is intended only for debugging errors, and should
not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -p

If characters in either the key or data items are printing characters (as defined by isprint(3)), use
printing characters in file to represent them. This option permits users to use standard text editors
and tools to modify the contents of databases.

Note: different systems may have different notions about what characters are considered printing
characters, and databases dumped in this manner may be less portable to external systems.

• -R

Aggressively salvage data from a possibly corrupt file. The -R flag differs from the -r option in that
it will return all possible data from the file at the risk of also returning already deleted or otherwise
nonsensical items. Data dumped in this fashion will almost certainly have to be edited by hand or
other means before the data is ready for reload into another database

• -r

Salvage data from a possibly corrupt file. When used on a uncorrupted database, this option should
return equivalent data to a normal dump, but most likely in a different order.

• -s

Specify a single database to dump. If no database is specified, all databases in the database file are
dumped.

• -V

Write the library version number to the standard output, and exit.

Dumping and reloading Hash databases that use user-defined hash functions will result in new databases
that use the default hash function. Although using the default hash function may not be optimal for
the new database, it will continue to work correctly.

Page 578DB C++ API8/14/2009

db_dump

Dumping and reloading Btree databases that use user-defined prefix or comparison functions will result
in new databases that use the default prefix and comparison functions. In this case, it is quite likely
that the database will be damaged beyond repair permitting neither record storage or retrieval.

The only available workaround for either case is to modify the sources for the db_load utility to load
the database using the correct hash, prefix, and comparison functions.

The db_dump185 utility may not be available on your system because it is not always built when the
Berkeley DB libraries and utilities are installed. If you are unable to find it, see your system administrator
for further information.

The db_dump and db_dump185 utility output formats are documented in the Dump Output Formats
section of the Berkeley DB Reference Guide.

The db_dump utility may be used with a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley
DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_dump should always be given the chance to detach from the environment and exit gracefully. To
cause db_dump to release all environment resources and exit cleanly, send it an interrupt signal
(SIGINT).

Even when using a Berkeley DB database environment, the db_dump utility does not use any kind of
database locking if it is invoked with the -d, -R, or -r arguments. If used with one of these arguments,
the db_dump utility may only be safely run on databases that are not being modified by any other
process; otherwise, the output may be corrupt.

The db_dump utility exits 0 on success, and >0 if an error occurs.

The db_dump185 utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 579DB C++ API8/14/2009

db_dump

../../programmer_reference/dumpload_format.html

db_hotbackup
db_hotbackup [-cDuVv] [-d data_dir ...] [-h home]
 [-l log_dir] [-P password] -b backup_dir

The db_hotbackup utility creates "hot backup" or "hot failover" snapshots of Berkeley DB database
environments.

The db_hotbackup utility performs the following steps:

1. If the -c option is specified, checkpoint the source home database environment, and remove any
unnecessary log files.

2. If the target directory for the backup does not exist, it is created with mode read-write-execute for
the owner.

If the target directory for the backup does exist and the -u option was specified, all log files in the
target directory are removed; if the -u option was not specified, all files in the target directory are
removed.

3. If the -u option was not specified, copy application-specific files found in the database environment
home directory, and any directories specified using the -d option, into the target directory for the
backup.

4. Copy all log files found in the directory specified by the -l option (or in the database environment
home directory, if no -l option was specified), into the target directory for the backup.

5. Perform catastrophic recovery in the target directory for the backup.

6. Remove any unnecessary log files from the target directory for the backup.

The db_hotbackup utility does not resolve pending transactions that are in the prepared state.
Applications that use DbTxn::prepare() must specify DB_RECOVER_FATAL when opening the environment,
and run DbEnv::txn_recover() to resolve any pending transactions, when failing over to the backup.

The options are as follows:

• -b

Specify the target directory for the backup.

• -c

Before performing the backup, checkpoint the source database environment and remove any log
files that are no longer required in that environment. To avoid making catastrophic recovery
impossible, log file removal must be integrated with log file archival.

• -D

Use the data and log directories listed in a DB_CONFIG configuration file in the source directory.
This option has four effects:

Page 580DB C++ API8/14/2009

db_hotbackup

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

• The specified data and log directories will be created relative to the target directory, with mode
read-write-execute owner, if they do not already exist.

• In step #3 above, all files in any source data directories specified in the DB_CONFIG file will be
copied to the target data directories.

• In step #4 above, log files will be copied from any log directory specified in the DB_CONFIG file,
instead of from the default locations.

• The DB_CONFIG configuration file will be copied from the source directory to the target directory,
and subsequently used for configuration if recovery is run in the target directory.

Care should be taken with the -D option where data and log directories are named relative to the
source directory but are not subdirectories (that is, the name includes the element "..") Specifically,
the constructed target directory names must be meaningful and distinct from the source directory
names, otherwise running recovery in the target directory might corrupt the source data files.

It is an error to use absolute pathnames for data or log directories in this mode, as the DB_CONFIG
configuration file copied into the target directory would then point at the source directories and
running recovery would corrupt the source data files.

• -d

Specify one or more directories that contain data files to be copied to the target directory.

As all database files are copied into a single target directory, files named the same, stored in
different source directories, would overwrite each other when copied to the target directory.

Please note the database environment recovery log references database files as they are named by
the application program. If the application uses absolute or relative pathnames to name database
files, (rather than filenames and the DbEnv::set_data_dir() method or the DB_CONFIG
configuration file to specify filenames), running recovery in the target directory may not properly
find the copies of the files or might even find the source files, potentially resulting in corruption.

• -h

Specify the source directory for the backup. That is, the database environment home directory.

• -l

Specify a source directory that contains log files; if none is specified, the database environment
home directory will be searched for log files.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -u

Page 581DB C++ API8/14/2009

db_hotbackup

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Update a pre-existing hot backup snapshot by copying in new log files. If the -u option is specified,
no databases will be copied into the target directory.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode, listing operations as they are done.

The db_hotbackup utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley
DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_hotbackup should always be given the chance to detach from the environment and exit gracefully.
To cause db_hotbackup to release all environment resources and exit cleanly, send it an interrupt
signal (SIGINT).

The db_hotbackup utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 582DB C++ API8/14/2009

db_hotbackup

db_load
db_load [-nTV] [-c name=value] [-f file]
 [-h home] [-P password] [-t btree | hash | queue | recno] file

db_load [-r lsn | fileid] [-h home] [-P password] file

The db_load utility reads from the standard input and loads it into the database file. The database
file is created if it does not already exist.

The input to db_load must be in the output format specified by the db_dump utility, utilities, or as
specified for the -T below.

The options are as follows:

• -c

Specify configuration options ignoring any value they may have based on the input. The command-line
format is name=value. See the Supported Keywords section below for a list of keywords supported
by the -c option.

• -f

Read from the specified input file instead of from the standard input.

• -h

Specify a home directory for the database environment.

If a home directory is specified, the database environment is opened using the DB_INIT_LOCK,
DB_INIT_LOG, DB_INIT_MPOOL, DB_INIT_TXN, and DB_USE_ENVIRON flags to DbEnv::open() (This
means that db_load can be used to load data into databases while they are in use by other processes.)
If the DbEnv::open() call fails, or if no home directory is specified, the database is still updated, but
the environment is ignored; for example, no locking is done.

• -n

Do not overwrite existing keys in the database when loading into an already existing database. If a
key/data pair cannot be loaded into the database for this reason, a warning message is displayed on
the standard error output, and the key/data pair are skipped.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -r

Reset the database's file ID or log sequence numbers (LSNs).

Page 583DB C++ API8/14/2009

db_load

All database pages in transactional environments contain references to the environment's log records.
In order to copy a database into a different database environment, database page references to the
old environment's log records must be reset, otherwise data corruption can occur when the database
is modified in the new environment. The -r lsn option resets a database's log sequence numbers.

All databases contain an ID string used to identify the database in the database environment cache.
If a database is copied, and used in the same environment as another file with the same ID string,
corruption can occur. The -r fileid option resets a database's file ID to a new value.

In both cases, the physical file specified by the file argument is modified in-place.

• -T

The -T option allows non-Berkeley DB applications to easily load text files into databases.

If the database to be created is of type Btree or Hash, or the keyword keys is specified as set, the
input must be paired lines of text, where the first line of the pair is the key item, and the second
line of the pair is its corresponding data item. If the database to be created is of type Queue or
Recno and the keyword keys is not set, the input must be lines of text, where each line is a new
data item for the database.

A simple escape mechanism, where newline and backslash (\) characters are special, is applied to
the text input. Newline characters are interpreted as record separators. Backslash characters in the
text will be interpreted in one of two ways: If the backslash character precedes another backslash
character, the pair will be interpreted as a literal backslash. If the backslash character precedes
any other character, the two characters following the backslash will be interpreted as a hexadecimal
specification of a single character; for example, \0a is a newline character in the ASCII character
set.

For this reason, any backslash or newline characters that naturally occur in the text input must be
escaped to avoid misinterpretation by db_load.

If the -T option is specified, the underlying access method type must be specified using the -t option.

• -t

Specify the underlying access method. If no -t option is specified, the database will be loaded into
a database of the same type as was dumped; for example, a Hash database will be created if a Hash
database was dumped.

Btree and Hash databases may be converted from one to the other. Queue and Recno databases may
be converted from one to the other. If the -k option was specified on the call to db_dump then Queue
and Recno databases may be converted to Btree or Hash, with the key being the integer record
number.

• -V

Write the library version number to the standard output, and exit.

The db_load utility may be used with a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley

Page 584DB C++ API8/14/2009

db_load

DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_load should always be given the chance to detach from the environment and exit gracefully. To
cause db_load to release all environment resources and exit cleanly, send it an interrupt signal (SIGINT).

The db_load utility exits 0 on success, 1 if one or more key/data pairs were not loaded into the database
because the key already existed, and >1 if an error occurs.

Examples

The db_load utility can be used to load text files into databases. For example, the following command
loads the standard UNIX /etc/passwd file into a database, with the login name as the key item and the
entire password entry as the data item:

 awk -F: '{print $1; print $0}' < /etc/passwd |
 sed 's/\\/\\\\/g' | db_load -T -t hash passwd.db

Note that backslash characters naturally occurring in the text are escaped to avoid interpretation as
escape characters by db_load.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Supported Keywords

The following keywords are supported for the -c command-line option to the db_load utility. See the
DbEnv::open() method for further discussion of these keywords and what values should be specified.

The parenthetical listing specifies how the value part of the name=value pair is interpreted. Items
listed as (boolean) expect value to be 1 (set) or 0 (unset). Items listed as (number) convert value to a
number. Items listed as (string) use the string value without modification.

• bt_minkey (number)

The minimum number of keys per page.

• chksum (boolean)

Enable page checksums.

• database (string)

The database to load.

• db_lorder (number)

The byte order for integers in the stored database metadata. For big endian systems, the order
should be 4,321 while for little endian systems is should be 1,234.

Page 585DB C++ API8/14/2009

db_load

• db_pagesize (number)

The size of database pages, in bytes.

• duplicates (boolean)

The value of the DB_DUP flag.

• dupsort (boolean)

The value of the DB_DUPSORT flag.

• extentsize (number)

The size of database extents, in pages, for Queue databases configured to use extents.

• h_ffactor (number)

The density within the Hash database.

• h_nelem (number)

The size of the Hash database.

• keys (boolean)

Specify whether keys are present for Queue or Recno databases.

• re_len (number)

Specify the length for fixed-length records. This number represents different things, depending on
the access method the database is using. See the Db::set_re_len() method for details on what this
number represents.

• re_pad (string)

Specify the fixed-length record pad character.

• recnum (boolean)

The value of the DB_RECNUM flag.

• renumber (boolean)

The value of the DB_RENUMBER flag.

• subdatabase (string)

The subdatabase to load.

Page 586DB C++ API8/14/2009

db_load

db_printlog
db_printlog [-NrV] [-b start-LSN] [-e stop-LSN] [-h home] [-P password]

The db_printlog utility is a debugging utility that dumps Berkeley DB log files in a human-readable
format.

The options are as follows:

• -b

Display log records starting at log sequence number (LSN) start-LSN; start-LSN is specified as a file
number, followed by a slash (/) character, followed by an offset number, with no intervening
whitespace.

• -e

Stop displaying log records at log sequence number (LSN) stop-LSN; stop-LSN is specified as a file
number, followed by a slash (/) character, followed by an offset number, with no intervening
whitespace.

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially fatal errors
in Berkeley DB, will be ignored as well. This option is intended only for debugging errors, and should
not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -r

Read the log files in reverse order.

• -V

Write the library version number to the standard output, and exit.

For more information on the db_printlog output and using it to debug applications, see Reviewing
Berkeley DB log files.

The db_printlog utility uses a Berkeley DB environment (as described for the -h option, the environment
variable DB_HOME, or because the utility was run in a directory containing a Berkeley DB environment).

Page 587DB C++ API8/14/2009

db_printlog

../../programmer_reference/debug_printlog.html
../../programmer_reference/debug_printlog.html

In order to avoid environment corruption when using a Berkeley DB environment, db_printlog should
always be given the chance to detach from the environment and exit gracefully. To cause db_printlog
to release all environment resources and exit cleanly, send it an interrupt signal (SIGINT).

The db_printlog utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 588DB C++ API8/14/2009

db_printlog

db_recover
db_recover [-cefVv] [-h home] [-P password] [-t [[CC]YY]MMDDhhmm[.SS]]]

The db_recover utility must be run after an unexpected application, Berkeley DB, or system failure
to restore the database to a consistent state. All committed transactions are guaranteed to appear
after db_recover has run, and all uncommitted transactions will be completely undone.

Note that this utility performs the same action as if the environment is opened with the DB_RECOVER
flag. If DB_RECOVER is specified on environment open, then use of this utility is not necessary.

The options are as follows:

• -c

Perform catastrophic recovery instead of normal recovery.

• -e

Retain the environment after running recovery. This option will rarely be used unless a DB_CONFIG
file is present in the home directory. If a DB_CONFIG file is not present, then the regions will be
created with default parameter values.

• -f

Display a message on the standard output showing the percent of recovery completed.

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -t

Recover to the time specified rather than to the most current possible date. The timestamp argument
should be in the form [[CC]YY]MMDDhhmm[.SS] where each pair of letters represents the following:

• CC

The first two digits of the year (the century).

• YY

The second two digits of the year. If "YY" is specified, but "CC" is not, a value for "YY" between 69
and 99 results in a "CC" value of 19. Otherwise, a "CC" value of 20 is used.

Page 589DB C++ API8/14/2009

db_recover

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

• MM

The month of the year, from 1 to 12.

• DD

The day of the month, from 1 to 31.

• hh

The hour of the day, from 0 to 23.

• mm

The minute of the hour, from 0 to 59.

• SS

The second of the minute, from 0 to 61.

If the "CC" and "YY" letter pairs are not specified, the values default to the current year. If the "SS"
letter pair is not specified, the value defaults to 0.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode.

In the case of catastrophic recovery, an archival copy — or snapshot — of all database files must be
restored along with all of the log files written since the database file snapshot was made. (If disk space
is a problem, log files may be referenced by symbolic links). For further information on creating a
database snapshot, see Archival Procedures. For further information on performing recovery, see
Recovery Procedures.

If the failure was not catastrophic, the files present on the system at the time of failure are sufficient
to perform recovery.

If log files are missing, db_recover will identify the missing log file(s) and fail, in which case the missing
log files need to be restored and recovery performed again.

The db_recover utility uses a Berkeley DB environment (as described for the -h option, the environment
variable DB_HOME, or because the utility was run in a directory containing a Berkeley DB environment).
In order to avoid environment corruption when using a Berkeley DB environment, db_recover should
always be given the chance to detach from the environment and exit gracefully. To cause db_recover
to release all environment resources and exit cleanly, send it an interrupt signal (SIGINT).

The db_recover utility exits 0 on success, and >0 if an error occurs.

Page 590DB C++ API8/14/2009

db_recover

../../programmer_reference/transapp_archival.html
../../programmer_reference/transapp_recovery.html

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 591DB C++ API8/14/2009

db_recover

db_sql
db_sql [-i <ddl input file>] [-o <output C code file>]
 [-h <output header file>] [-t <test output file>]

Db_sql is a utility program that translates a schema description written in a SQL Data Definition Language
dialect into C code that implements the schema using Berkeley DB. It is intended to provide a quick
and easy means of getting started with Berkeley DB for users who are already conversant with SQL. It
also introduces a convenient way to express a Berkeley DB schema in a format that is both external to
the program that uses it and compatible with relational databases.

The db_sql command reads DDL from an input stream, and writes C code to an output stream. With
no command line options, it will read from stdin and write to stdout. A more common usage mode
would be to supply the DDL in a named input file (-i option). With only the -i option, db_sql will produce
two files: a C-language source code (.c) file and a C-language header (.h) file, with names that are
derived from the name of the input file. You can also control the names of these output files with the
-o and -h options. Finally, the -t option will produce a simple application that invokes the generated
function API. This is a C-language source file that includes a main function, and serves the dual purposes
of providing a simple test for the generated C code, and of being an example of how to use the generated
API.

The options are as follows:

• -i<ddl input file>

Names the input file containing SQL DDL.

• -o <output C code file>

Names the output C-language source code file.

• -h <output header file>

Names the output C-language header file.

• -t <test output file>

Names the output C-langage test file.

The db_sql utility exits 0 on success, and >0 if an error occurs.

Input Syntax

The input file can contain the following SQL DDL statements.

• CREATE DATABASE

The DDL must contain a CREATE DATABASE statement. The syntax is simply

CREATE DATABASE name;

Page 592DB C++ API8/14/2009

db_sql

. The name given here is used as the name of the Berkeley DB environment in which the Berkeley
DB databases are created.

• CREATE TABLE

Each CREATE TABLE statement produces functions to create and delete a primary Berkeley DB
database. Also produced are functions to perform record insertion, retrieval and deletion on this
database.

CREATE TABLE establishes the field set of records that can be stored in the Berkeley DB database.
Every CREATE TABLE statement must identify a primary key to be used as the lookup key in the
Berkeley DB database.

Here is an example to illustrate the syntax of CREATE TABLE that is accepted by db_sql:

CREATE TABLE person (person_id INTEGER PRIMARY KEY,
 name VARCHAR(64),
 age INTEGER);

This results in the creation of functions to manage a database in which every record is an instance
of the following C language data structure:

typedef struct _person_data {
 int person_id;
 char name[PERSON_DATA_NAME_LENGTH];
 int age;
} person_data;

• CREATE INDEX You can create secondary Berkeley DB databases to be used as indexes into a primary
database. For example, to make an index on the "name" field of the "person" table mentioned above,
the SQL DDL would be:

CREATE INDEX name_index ON person(name);

This causes db_sql to emit functions to manage creation and deletion of a secondary database called
"name_index," which is associated with the "person" database and is set up to perform lookups on
the "name" field.

Hint Comments

The SQL DDL input may contain comments. Two types of comments are recognized. C-style comments
begin with "/*" and end with "*/". These comments may extend over multiple lines.

Single line comments begin with "--" and run to the end of the line.

If the first character of a comment is "+" then the comment is interpreted as a "hint comment." Hint
comments can be used to configure Berkeley DB features that cannot be represented in SQL DDL.

Hint comments are comma-separated lists of property assignments of the form "property=value." Hint
comments apply to the SQL DDL statement that immediately precedes their appearance in the input.
For example:

Page 593DB C++ API8/14/2009

db_sql

CREATE DATABASE peopledb; /*+ CACHESIZE = 16m */

This causes the generated environment creation function to set the cache size to sixteen megabytes.

In addition to the CACHESIZE example above, there is only one other hint comment that is currently
recognized: After a CREATE TABLE statement, you may set the database type by assigning the DBTYPE
property in a hint comment. Possible values for DBTYPE are BTREE and HASH.

Type Mapping

db_sql must map the schema expressed as SQL types into C language types. It implements the following
mappings:

BIN char[]
VARBIN char[]
CHAR char[]
VARCHAR char[]
VARCHAR2 char[]
BIT char
TINYINT char
SMALLINT short
INTEGER int
INT int
BIGINT long
REAL float
DOUBLE double
FLOAT double
DECIMAL double
NUMERIC double
NUMBER(p,s) int, long, float, or double

While BIN/VARBIN and CHAR/VARCHAR are both represented as char arrays, the latter are treated as
null-terminated C strings, while the former are treated as binary data.

The Oracle type NUMBER is mapped to different C types, depending on its precision and scale values.
If scale is 0, then it is mapped to an integer type (long if precision is greater than 9). Otherwise it is
mapped to a floating point type (float if precision is less than 7, otherwise double).

Output

Depending on the options given on the command line, db_sql can produce three separate files: a .c
file containing function definitions that implement the generated API; a .h file containing constants,
data structures and prototypes of the generated functions; and a second .c file that contains a sample
program that invokes the generated API. The latter program is usually referred to as a smoke test.

Given the following sample input in a file named "people.sql":

CREATE DATABASE peopledb;
CREATE TABLE person (person_id INTEGER PRIMARY KEY,
 name VARCHAR(64),

Page 594DB C++ API8/14/2009

db_sql

 age INTEGER);
CREATE INDEX name_index ON person(name);

The command

db_sql -i people.sql -t test_people.c

Will produce files named people.h, people.c, and test_people.c.

The file people.h will contain the information needed to use the generated API. Among other things,
an examination of the generated .h file will reveal:

#define PERSON_DATA_NAME_LENGTH 63

This is just a constant for the length of the string mapped from the VARCHAR field.

typedef struct _person_data {
 int person_id;
 char name[PERSON_DATA_NAME_LENGTH];
 int age;
} person_data;

This is the data structure that represents the record type that is stored in the person database. There's
that constant being used.

int create_peopledb_env(DB_ENV **envpp);
int create_person_database(DB_ENV *envp, DB **dbpp);
int create_name_index_secondary(DB_ENV *envp, DB *primary_dbp,
 DB **secondary_dbpp);

These functions must be invoked to initialize the Berkeley DB environment. However, see the next bit:

extern DB_ENV * peopledb_envp;
extern DB *person_dbp;
extern DB *name_index_dbp;

int initialize_peopledb_environment();

For convenience, db_sql provides global variables for the environment and database, and a single
initialization function that sets up the environment for you. You may choose to use the globals and the
single initialization function, or you may declare your own DB_ENV and DB pointers, and invoke the
individual create_* functions yourself.

The word "create" in these function names might be confusing. It means "create the
environment/database if it doesn't already exist; otherwise open it."

All of the functions in the generated API return Berkeley DB error codes. If the return value is non-zero,
there was an error of some kind, and an explanatory message should have been printed on stderr.

int person_insert_struct(DB *dbp, person_data *personp);
int person_insert_fields(DB * dbp,

Page 595DB C++ API8/14/2009

db_sql

 int person_id,
 char *name,
 int age);

These are the functions that you'd use to store a record in the database. The first form takes a pointer
to the data structure that represents this record. The second form takes each field as a separate
argument.

If two records with the same primary key value are stored, the first one is lost.

int get_person_data(DB *dbp, int person_key, person_data *data);

This function retrieves a record from the database. It seeks the record with the supplied key, and
populates the supplied structure with the contents of the record. If no matching record is found, the
function returns DB_NOTFOUND.

int delete_person_key(DB *dbp, int person_key);

This function removes the record matching the given key.

typedef void (*person_iteration_callback)(void *user_data,
 person_data *personp);

int person_full_iteration(DB *dbp,
 person_iteration_callback user_func,
 void *user_data);

This function performs a complete iteration over every record in the person table. The user must
provide a callback function which is invoked once for every record found. The user's callback function
must match the prototype provided in the typedef "person_iteration_callback." In the callback, the
"user_data" argument is passed unchanged from the "user_data" argument given to person_full_iteration.
This is provided so that the caller of person_full_iteration can communicate some context information
to the callback function. The "personp" argument to the callback is a pointer to the record that was
retrieved from the database. Personp points to data that is valid only for the duration of the callback
invocation.

int name_index_query_iteration(DB *secondary_dbp,
 char *name_index_key,
 person_iteration_callback user_func,
 void *user_data);

This function performs lookups through the secondary index database. Because duplicate keys are
allowed in secondary indexes, this query might return multiple instances. This function takes as an
argument a pointer to a user-written callback function, which must match the function prototype
typedef mentioned above (person_iteration_callback). The callback is invoked once for each record
that matches the secondary key.

Page 596DB C++ API8/14/2009

db_sql

Test output

The test output file is useful as an example of how to invoke the generated API. It will contain calls to
the functions mentioned above, to store a single record and retrieve it by primary key and through the
secondary index.

To compile the test, you would issue a command such as

 cc -I$BDB_INSTALL/include -L$BDB_INSTALL/lib -o test_people people.c \
 test_people.c -ldb-4.8

This will produce the executable file test_people, which can be run to exercise the generated API. The
program generated from people.sql will create a database environment in a directory named "peopledb."
This directory must be created before the program is run.

Page 597DB C++ API8/14/2009

db_sql

db_stat
db_stat -d file [-fN] [-h home] [-P password] [-s database]

db_stat [-cEelmNrtVxZ] [-C Aclop] [-h home] [-L A] [-M Ah] [-R A]
 [-P password]

The db_stat utility displays statistics for Berkeley DB environments.

The options are as follows:

• -C

Display detailed information about the locking subsystem.

• A

Display all information.

• c

Display lock conflict matrix.

• l

Display lockers within hash chains.

• o

Display lock objects within hash chains.

• p

Display locking subsystem parameters.

• -c

Display locking subsystem statistics, as described in the DbEnv::lock_stat() method.

• -d

Display database statistics for the specified file, as described in the Db::stat() method.

If the database contains multiple databases and the -s flag is not specified, the statistics are for the
internal database that describes the other databases the file contains, and not for the file as a whole.

• -E

Display detailed information about the database environment.

• -e

Page 598DB C++ API8/14/2009

db_stat

Display information about the database environment, including all configured subsystems of the
database environment.

• -f

Display only those database statistics that can be acquired without traversing the database.

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -l

Display logging subsystem statistics, as described in the DbEnv::log_stat() method.

• -L

Display all logging subsystem statistics.

• A

Display all information.

• -M

Display detailed information about the cache.

• A

Display all information.

• h

Display buffers within hash chains.

• -m

Display cache statistics, as described in the DbEnv::memp_stat() method.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially fatal errors
in Berkeley DB, will be ignored as well. This option is intended only for debugging errors, and should
not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

Page 599DB C++ API8/14/2009

db_stat

• -R

Display detailed information about the replication subsystem.

• A

Display all information.

• -r

Display replication statistics, as described in in the DbEnv::rep_stat() method.

• -s

Display statistics for the specified database contained in the file specified with the -d flag.

• -t

Display transaction subsystem statistics, as described in the DbEnv::txn_stat() method.

• -V

Write the library version number to the standard output, and exit.

• -x

Display mutex subsystem statistics, as described in the DbEnv::mutex_stat() method.

• -Z

Reset the statistics after reporting them; valid only with the -C, -c, -E, -e, -L, -l, -M, -m, -R, -r, and
-t options.

Values normally displayed in quantities of bytes are displayed as a combination of gigabytes (GB),
megabytes (MB), kilobytes (KB), and bytes (B). Otherwise, values smaller than 10 million are displayed
without any special notation, and values larger than 10 million are displayed as a number followed by
"M".

The db_stat utility may be used with a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley
DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_stat should always be given the chance to detach from the environment and exit gracefully. To
cause db_stat to release all environment resources and exit cleanly, send it an interrupt signal (SIGINT).

The db_stat utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 600DB C++ API8/14/2009

db_stat

db_upgrade
db_upgrade [-NsVv] [-h home] [-P password] file ...

The db_upgrade utility upgrades the Berkeley DB version of one or more files and the databases they
contain to the current release version.

The options are as follows:

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially fatal errors
in Berkeley DB, will be ignored as well. This option is intended only for debugging errors, and should
not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -s

This flag is only meaningful when upgrading databases from releases before the Berkeley DB 3.1
release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-disk format of
duplicate data items changed. To correctly upgrade the format requires that applications specify
whether duplicate data items in the database are sorted or not. Specifying the -s flag means that
the duplicates are sorted; otherwise, they are assumed to be unsorted. Incorrectly specifying the
value of this flag may lead to database corruption.

Because the db_upgrade utility upgrades a physical file (including all the databases it contains), it
is not possible to use db_upgrade to upgrade files where some of the databases it includes have
sorted duplicate data items, and some of the databases it includes have unsorted duplicate data
items. If the file does not have more than a single database, if the databases do not support duplicate
data items, or if all the databases that support duplicate data items support the same style of
duplicates (either sorted or unsorted), db_upgrade will work correctly as long as the -s flag is
correctly specified. Otherwise, the file cannot be upgraded using db_upgrade, and must be upgraded
manually using the db_dump and db_load utilities.

• -V

Write the library version number to the standard output, and exit.

Page 601DB C++ API8/14/2009

db_upgrade

• -v

Run in verbose mode, displaying a message for each successful upgrade.

It is important to realize that Berkeley DB database upgrades are done in place, and so are potentially
destructive. This means that if the system crashes during the upgrade procedure, or if the upgrade
procedure runs out of disk space, the databases may be left in an inconsistent and unrecoverable state.
See Upgrading databases for more information.

The db_upgrade utility may be used with a Berkeley DB environment (as described for the -h option,
the environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley
DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_upgrade should always be given the chance to detach from the environment and exit gracefully.
To cause db_upgrade to release all environment resources and exit cleanly, send it an interrupt signal
(SIGINT).

The db_upgrade utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 602DB C++ API8/14/2009

db_upgrade

../../programmer_reference/am_upgrade.html

db_verify
db_verify [-NoqV] [-h home] [-P password] file ...

The db_verify utility verifies the structure of one or more files and the databases they contain.

The options are as follows:

• -h

Specify a home directory for the database environment; by default, the current working directory
is used.

• -o

Skip the database checks for btree and duplicate sort order and for hashing.

If the file being verified contains databases with non-default comparison or hashing configurations,
calling the db_verify utility without the -o flag will usually return failure. The -o flag causes db_verify
to ignore database sort or hash ordering and allows db_verify to be used on these files. To fully
verify these files, verify them explicitly using the Db::verify() method, after configuring the correct
comparison or hashing functions.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially fatal errors
in Berkeley DB, will be ignored as well. This option is intended only for debugging errors, and should
not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings as soon
as possible, be aware there may be a window of vulnerability on systems where unprivileged users
can see command-line arguments or where utilities are not able to overwrite the memory containing
the command-line arguments.

• -q

Suppress the printing of any error descriptions, simply exit success or failure.

• -V

Write the library version number to the standard output, and exit.

The db_verify utility does not perform any locking, even in Berkeley DB environments that are
configured with a locking subsystem. As such, it should only be used on files that are not being
modified by another thread of control.

The db_verify utility may be used with a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a Berkeley
DB environment). In order to avoid environment corruption when using a Berkeley DB environment,
db_verify should always be given the chance to detach from the environment and exit gracefully. To

Page 603DB C++ API8/14/2009

db_verify

cause db_verify to release all environment resources and exit cleanly, send it an interrupt signal
(SIGINT).

The db_verify utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the path of
the database home, as described in the DbEnv::open() method.

Page 604DB C++ API8/14/2009

db_verify

	Berkeley DB C++ API Reference
	Table of Contents
	Preface
	Chapter 1. Introduction to Berkeley DB APIs
	Chapter 2. The Db Handle
	Database and Related Methods
	Db::associate()
	Parameters
	callback
	flags
	secondary
	txnid

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::associate_foreign()
	Parameters
	callback
	flags
	secondary

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::close()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	Db
	Parameters
	dbenv
	flags

	Class
	See Also

	Db::compact()
	Parameters
	txnid
	start
	stop
	c_data
	flags
	end

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EACCES
	EINVAL

	Class
	See Also

	Db::del()
	Parameters
	flags
	key
	txnid

	Errors
	DB_FOREIGN_CONFLICT
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EACCES
	EINVAL

	Class
	See Also

	Db::err()
	Parameters
	error
	fmt

	Class
	See Also

	Db::exists()
	Parameters
	flags
	key
	txnid

	Class
	See Also

	Db::fd()
	Parameters
	fdp

	Class
	See Also

	Db::get()
	Parameters
	data
	flags
	key
	pkey
	txnid

	Errors
	DbMemoryException or DB_BUFFER_SMALL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DB_REP_LEASE_EXPIRED
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EINVAL

	Class
	See Also

	Db::get_bt_minkey()
	Parameters
	bt_minkeyp

	Class
	See Also

	Db::get_byteswapped()
	Parameters
	isswapped

	Errors
	EINVAL

	Class
	See Also

	Db::get_cachesize()
	Parameters
	bytesp
	gbytesp
	ncachep

	Class
	See Also

	Db::get_create_dir()
	Parameters
	dirp

	Errors
	EINVAL

	Class
	See Also

	Db::get_dbname()
	Parameters
	filenamep
	dbnamep

	Class
	See Also

	Db::get_encrypt_flags()
	Parameters
	flagsp

	Class
	See Also

	Db::get_errfile()
	Parameters
	errfilep

	Class
	See Also

	Db::get_errpfx()
	Parameters
	errpfxp

	Class
	See Also

	Db::get_flags()
	Parameters
	flagsp

	Class
	See Also

	Db::get_h_ffactor()
	Parameters
	h_ffactorp

	Class
	See Also

	Db::get_h_nelem()
	Parameters
	h_nelemp

	Class
	See Also

	Db::get_lorder()
	Parameters
	lorderp

	Class
	See Also

	Db::get_msgfile()
	Parameters
	msgfilep

	Class
	See Also

	Db::get_multiple()
	Class
	See Also

	Db::get_open_flags()
	Parameters
	flagsp

	Class
	See Also

	Db::get_partition_callback()
	Parameters
	partsp
	callback_fcn

	Class
	See Also

	Db::get_partition_dirs()
	Parameters
	dirsp

	Errors
	EINVAL

	Class
	See Also

	Db::get_partition_keys()
	Parameters
	partsp
	keysp

	Class
	See Also

	Db::get_pagesize()
	Parameters
	pagesizep

	Class
	See Also

	Db::get_priority()
	Parameters
	priorityp

	Class
	See Also

	Db::get_q_extentsize()
	Parameters
	extentsizep

	Class
	See Also

	Db::get_re_delim()
	Parameters
	delimp

	Class
	See Also

	Db::get_re_len()
	Parameters
	re_lenp

	Class
	See Also

	Db::get_re_pad()
	Parameters
	re_padp

	Class
	See Also

	Db::get_re_source()
	Parameters
	sourcep

	Class
	See Also

	Db::get_type()
	Parameters
	type

	Errors
	EINVAL

	Class
	See Also

	Db::join()
	Parameters
	curslist
	dbcp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EINVAL

	Class
	See Also

	Db::key_range()
	Parameters
	key
	key_range
	txnid
	flags

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::open()
	Parameters
	database
	file
	flags
	mode
	txnid
	type

	Environment Variables
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	ENOENT
	ENOENT
	DB_OLD_VERSION
	EEXIST
	EINVAL
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT

	Class
	See Also

	Db::put()
	Parameters
	flags
	data
	key
	txnid

	Errors
	DB_FOREIGN_CONFLICT
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EACCES
	EINVAL
	ENOSPC

	Class
	See Also

	Db::remove()
	Parameters
	database
	file

	Environment Variables
	Errors
	EINVAL
	ENOENT

	Class
	See Also

	Db::rename()
	Parameters
	database
	file
	flags
	newname

	Environment Variables
	Errors
	EINVAL
	ENOENT

	Class
	See Also

	Db::set_alloc()
	Errors
	EINVAL

	Class
	See Also

	Db::set_append_recno()
	Parameters
	db_append_recno_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_compare()
	Parameters
	bt_compare_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_compress()
	Parameters
	bt_compress_fcn
	bt_decompress_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_minkey()
	Parameters
	bt_minkey

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_prefix()
	Parameters
	bt_prefix_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_cachesize()
	Parameters
	bytes
	gbytes
	ncache

	Errors
	EINVAL

	Class
	See Also

	Db::set_create_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	Db::set_dup_compare()
	Parameters
	dup_compare_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_encrypt()
	Parameters
	flags
	passwd

	Errors
	EINVAL
	EOPNOTSUPP

	Class
	See Also

	Db::set_errcall()
	Parameters
	db_errcall_fcn

	Class
	See Also

	Db::set_errfile()
	Parameters
	errfile

	Class
	See Also

	Db::set_error_stream()
	Parameters
	stream

	Class
	See Also

	Db::set_errpfx()
	Parameters
	errpfx

	Class
	See Also

	Db::set_feedback()
	Parameters
	db_feedback_fcn

	Class
	See Also

	Db::set_flags()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_compare()
	Parameters
	compare_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_ffactor()
	Parameters
	h_ffactor

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_hash()
	Parameters
	h_hash_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_nelem()
	Parameters
	h_nelem

	Errors
	EINVAL

	Class
	See Also

	Db::set_lorder()
	Parameters
	lorder

	Errors
	EINVAL

	Class
	See Also

	Db::set_message_stream()
	Parameters
	stream

	Class
	See Also

	Db::set_msgcall()
	Parameters
	db_msgcall_fcn

	Class
	See Also

	Db::set_msgfile()
	Parameters
	msgfile

	Class
	See Also

	Db::set_pagesize()
	Parameters
	pagesize

	Errors
	EINVAL

	Class
	See Also

	Db::set_partition()
	Parameters
	parts
	keys
	db_partition_fcn

	Class
	See Also

	Db::set_partition_dirs()
	Parameters
	dirs

	Errors
	EINVAL

	Class
	See Also

	Db::set_priority()
	Parameters
	priority

	Class
	See Also

	Db::set_q_extentsize()
	Parameters
	extentsize

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_delim()
	Parameters
	re_delim

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_len()
	Parameters
	re_len

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_pad()
	Parameters
	re_pad

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_source()
	Parameters
	source

	Errors
	EINVAL

	Class
	See Also

	Db::stat()
	Parameters
	flags
	txnid

	Statistical Structure
	Hash Statistics
	Btree and Recno Statistics
	Queue Statistics

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::stat_print()
	Parameters
	flags

	Class
	See Also

	Db::sync()
	Parameters
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::truncate()
	Parameters
	countp
	flags
	txnid

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL

	Class
	See Also

	Db::upgrade()
	Parameters
	file
	flags

	Environment Variables
	Errors
	DB_OLD_VERSION

	Class
	See Also

	Db::verify()
	Parameters
	database
	file
	flags
	outfile

	Environment Variables
	Errors
	EINVAL
	ENOENT

	Class
	See Also

	Chapter 3. The Dbc Handle
	Database Cursors and Related Methods
	Db::cursor()
	Parameters
	cursorp
	flags
	txnid

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Dbc::close()
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL

	Class
	See Also

	Dbc::cmp()
	Parameters
	other_cursor
	result
	flags

	Errors
	EINVAL

	Class
	See Also

	Dbc::count()
	Parameters
	countp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Dbc::del()
	Parameters
	flags

	Errors
	DB_FOREIGN_CONFLICT
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EACCES
	EINVAL
	EPERM

	Class
	See Also

	Dbc::dup()
	Parameters
	cursorp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Dbc::get()
	Parameters
	data
	flags
	key
	pkey

	Errors
	DbMemoryException or DB_BUFFER_SMALL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DB_REP_LEASE_EXPIRED
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EINVAL

	Class
	See Also

	Dbc::get_priority()
	Parameters
	priorityp

	Class
	See Also

	Dbc::put()
	Parameters
	data
	flags
	key

	Errors
	DB_KEYEXIST
	DB_FOREIGN_CONFLICT
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EACCES
	EINVAL
	EPERM

	Class
	See Also

	Dbc::set_priority()
	Parameters
	priority

	Class
	See Also

	Chapter 4. The Dbt Handle
	DBT and Bulk Operations
	DbMultipleIterator
	Class
	See Also

	DbMultipleDataIterator
	DbMultipleDataIterator.next()
	Class
	See Also

	DbMultipleKeyDataIterator
	DbMultipleKeyDataIterator.next()
	Class
	See Also

	DbMultipleRecnoDataIterator
	DbMultipleRecnoDataIterator.next()
	Class
	See Also

	DbMultipleBuilder
	Class
	See Also

	DbMultipleDataBuilder
	DbMultipleDataBuilder.append()
	DbMultipleDataBuilder.reserve()
	Class
	See Also

	DbMultipleKeyDataBuilder
	DbMultipleKeyDataBuilder.append()
	DbMultipleKeyDataBuilder.reserve()
	Class
	See Also

	DbMultipleRecnoDataBuilder
	DbMultipleRecnoDataBuilder.append()
	DbMultipleRecnoDataBuilder.reserve()
	Class
	See Also

	Chapter 5. The DbEnv Handle
	Database Environments and Related Methods
	Db::get_env()
	Class
	See Also

	DbEnv::add_data_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::close()
	Parameters
	flags

	Class
	See Also

	DbEnv
	Class
	See Also

	DbEnv::dbremove()
	Parameters
	database
	file
	txnid
	flags

	Environment Variables
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	ENOENT

	Class
	See Also

	DbEnv::dbrename()
	Parameters
	database
	file
	flags
	newname
	txnid

	Environment Variables
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	ENOENT

	Class
	See Also

	DbEnv::err()
	Parameters
	error
	fmt

	Class
	See Also

	DbEnv::failchk()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::fileid_reset()
	Parameters
	file
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_create_dir()
	Parameters
	dirp

	Class
	See Also

	DbEnv::get_data_dirs()
	Parameters
	dirpp

	Class
	See Also

	DbEnv::get_encrypt_flags()
	Parameters
	flagsp

	Class
	See Also

	DbEnv::get_errfile()
	Parameters
	errfilep

	Class
	See Also

	DbEnv::get_errpfx()
	Parameters
	errpfxp

	Class
	See Also

	DbEnv::get_flags()
	Parameters
	flagsp

	Class
	See Also

	DbEnv::get_home()
	Class
	See Also

	DbEnv::get_intermediate_dir_mode()
	Parameters
	modep

	Class
	See Also

	DbEnv::get_msgfile()
	Parameters
	msgfilep

	Class
	See Also

	DbEnv::get_open_flags()
	Parameters
	flagsp

	Class
	See Also

	DbEnv::get_shm_key()
	Parameters
	shm_keyp

	Class
	See Also

	DbEnv::get_thread_count()
	Parameters
	countp

	Class
	See Also

	DbEnv::get_timeout()
	Parameters
	flag
	timeoutp

	Class
	See Also

	DbEnv::get_tmp_dir()
	Parameters
	dirp

	Class
	See Also

	DbEnv::get_verbose()
	Parameters
	which
	onoffp

	Class
	See Also

	DbEnv::lsn_reset()
	Parameters
	file
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::open()
	Parameters
	db_home
	flags
	mode

	Errors
	DB_RUNRECOVERY
	DB_VERSION_MISMATCH
	EAGAIN
	EINVAL
	ENOSPC
	ENOENT

	Class
	See Also

	DbEnv::remove()
	Parameters
	db_home
	flags

	Errors
	EBUSY

	Class
	See Also

	DbEnv::set_alloc()
	Parameters
	app_malloc
	app_realloc
	app_free

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_app_dispatch()
	Parameters
	tx_recover

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_data_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_create_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_encrypt()
	Parameters
	flags
	passwd

	Errors
	EINVAL
	EOPNOTSUPP

	Class
	See Also

	DbEnv::set_event_notify()
	Parameters
	db_event_fcn

	Class
	See Also

	DbEnv::set_errcall()
	Parameters
	db_errcall_fcn

	Class
	See Also

	DbEnv::set_errfile()
	Parameters
	errfile

	Class
	See Also

	DbEnv::set_error_stream()
	Parameters
	stream

	Class
	See Also

	DbEnv::set_errpfx()
	Parameters
	errpfx

	Class
	See Also

	DbEnv::set_feedback()
	Parameters
	db_feedback_fcn

	Class
	See Also

	DbEnv::set_flags()
	Parameters
	flags
	onoff

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_intermediate_dir_mode()
	Parameters
	mode

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_isalive()
	Parameters
	is_alive

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_message_stream()
	Parameters
	stream

	Class
	See Also

	DbEnv::set_msgcall()
	Parameters
	db_msgcall_fcn

	Class
	See Also

	DbEnv::set_msgfile()
	Parameters
	msgfile

	Class
	See Also

	DbEnv::set_shm_key()
	Parameters
	shm_key

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_thread_count()
	Parameters
	count

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_thread_id()
	Parameters
	thread_id

	Errors
	EINVAL

	Assigning Thread IDs
	Class
	See Also

	DbEnv::set_thread_id_string()
	Parameters
	thread_id_string

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_timeout()
	Parameters
	flags
	timeout

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_tmp_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_verbose()
	Parameters
	onoff
	which

	Errors
	EINVAL

	Class
	See Also

	DbEnv::stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::strerror()
	Parameters
	error

	Class
	See Also

	DbEnv::version()
	Parameters
	major
	minor
	patch

	Class
	See Also

	Chapter 6. The DbException Class
	DB C++ Exceptions
	DbDeadlockException
	DbLockNotGrantedException
	DbMemoryException
	DbRepHandleDeadException
	DbRunRecoveryException

	Chapter 7. The DbLock Handle
	Locking Subsystem and Related Methods
	DbEnv::get_lk_conflicts()
	Parameters
	lk_conflictsp
	lk_modesp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_detect()
	Parameters
	lk_detectp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_max_lockers()
	Parameters
	lk_maxp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_max_locks()
	Parameters
	lk_maxp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_max_objects()
	Parameters
	lk_maxp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_partitions()
	Parameters
	lk_partitions

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_conflicts()
	Parameters
	conflicts
	nmodes

	Errors
	EINVAL
	ENOMEM

	Class
	See Also

	DbEnv::set_lk_detect()
	Parameters
	detect

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_max_lockers()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_max_locks()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_max_objects()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_partitions()
	Parameters
	partitions

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_detect()
	Parameters
	rejected
	atype
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_get()
	Parameters
	locker
	flags
	object
	lock_mode
	lock

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	EINVAL
	ENOMEM

	Class
	See Also

	DbEnv::lock_id()
	Parameters
	idp

	Class
	See Also

	DbEnv::lock_id_free()
	Parameters
	id

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_put()
	Parameters
	lock

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_stat()
	Parameters
	flags
	statp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::lock_vec()
	Parameters
	elistp
	flags
	locker
	list
	nlist

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	ENOMEM

	Class
	See Also

	Chapter 8. The DbLsn Handle
	Logging Subsystem and Related Methods
	DbEnv::get_lg_bsize()
	Parameters
	lg_bsizep

	Class
	See Also

	DbEnv::get_lg_dir()
	Parameters
	dirp

	Class
	See Also

	DbEnv::get_lg_filemode()
	Parameters
	lg_modep

	Class
	See Also

	DbEnv::get_lg_max()
	Parameters
	lg_maxp

	Class
	See Also

	DbEnv::get_lg_regionmax()
	Parameters
	lg_regionmaxp

	Class
	See Also

	DbEnv::log_archive()
	Parameters
	flags
	listp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_cursor()
	Parameters
	cursorp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_file()
	Parameters
	lsn
	namep
	len

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_flush()
	Parameters
	lsn

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_get_config()
	Parameters
	which
	onoffp

	Class
	See Also

	DbEnv::log_printf()
	Parameters
	txnid
	fmt

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_put()
	Parameters
	data
	flags
	lsn

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_set_config()
	Parameters
	flags
	onoff

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_stat()
	Parameters
	flags
	statp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::set_lg_bsize()
	Parameters
	lg_bsize

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lg_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lg_filemode()
	Parameters
	lg_filemode

	Class
	See Also

	DbEnv::set_lg_max()
	Parameters
	lg_max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lg_regionmax()
	Parameters
	lg_regionmax

	Errors
	EINVAL

	Class
	See Also

	The DbLogc Handle
	DbLogc::close()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbLogc::get()
	Parameters
	data
	flags
	lsn

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_compare()
	Parameters
	lsn0
	lsn1

	Class
	See Also

	Chapter 9. The DbMpoolFile Handle
	Memory Pools and Related Methods
	Db::get_mpf()
	Class
	See Also

	DbEnv::get_cache_max()
	Parameters
	bytesp
	gbytesp

	Class
	See Also

	DbEnv::get_cachesize()
	Parameters
	bytesp
	gbytesp
	ncachep

	Class
	See Also

	DbEnv::get_mp_max_openfd()
	Parameters
	maxopenfdp

	Class
	See Also

	DbEnv::get_mp_max_write()
	Parameters
	maxwritep
	maxwrite_sleepp

	Class
	See Also

	DbEnv::get_mp_mmapsize()
	Parameters
	mp_mmapsizep

	Class
	See Also

	DbEnv::memp_fcreate()
	Parameters
	dbmfp
	flags

	Class
	See Also

	DbEnv::memp_register()
	Parameters
	ftype
	pgin_fcn, pgout_fcn

	Class
	See Also

	DbEnv::memp_stat()
	Parameters
	flags
	fsp
	gsp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::memp_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::memp_sync()
	Parameters
	lsn

	Class
	See Also

	DbEnv::memp_trickle()
	Parameters
	nwrotep
	percent

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_cache_max()
	Parameters
	bytes
	gbytes

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_cachesize()
	Parameters
	bytes
	gbytes
	ncache

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_max_openfd()
	Parameters
	maxopenfd

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_max_write()
	Parameters
	maxwrite
	maxwrite_sleep

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_mmapsize()
	Parameters
	mp_mmapsize

	Errors
	EINVAL

	Class
	See Also

	DbMpoolFile::close()
	Parameters
	flags

	Class
	See Also

	DbMpoolFile::get()
	Parameters
	flags
	pagep
	pgnoaddr
	txnid

	Errors
	EACCES
	EAGAIN
	EINVAL
	DB_LOCK_DEADLOCK
	ENOMEM

	Class
	See Also

	DbMpoolFile::open()
	Parameters
	file
	flags
	mode
	pagesize

	Errors
	EINVAL
	ENOMEM

	Class
	See Also

	DbMpoolFile::put()
	Parameters
	flags
	pgaddr
	priority

	Errors
	EINVAL

	Class
	See Also

	DbMpoolFile::sync()
	Class
	See Also

	DbMpoolFile::get_clear_len()
	Parameters
	lenp

	Class
	See Also

	DbMpoolFile::get_fileid()
	Class
	See Also

	DbMpoolFile::get_flags()
	Parameters
	flagsp

	Class
	See Also

	DbMpoolFile::get_ftype()
	Parameters
	ftypep

	Class
	See Also

	DbMpoolFile::get_lsn_offset()
	Parameters
	lsn_offsetp

	Class
	See Also

	DbMpoolFile::get_maxsize()
	Parameters
	bytesp
	gbytesp

	Class
	See Also

	DbMpoolFile::get_pgcookie()
	Parameters
	dbt

	Class
	See Also

	DbMpoolFile::get_priority()
	Parameters
	priorityp

	Class
	See Also

	DbMpoolFile::set_clear_len()
	Parameters
	len

	Class
	See Also

	DbMpoolFile::set_fileid()
	Parameters
	fileid

	Class
	See Also

	DbMpoolFile::set_flags()
	Parameters
	flags
	onoff

	Class
	See Also

	DbMpoolFile::set_ftype()
	Parameters
	ftype

	Class
	See Also

	DbMpoolFile::set_lsn_offset()
	Parameters
	lsn_offset

	Class
	See Also

	DbMpoolFile::set_maxsize()
	Parameters
	bytes
	gbytes

	Class
	See Also

	DbMpoolFile::set_pgcookie()
	Parameters
	pgcookie

	Class
	See Also

	DbMpoolFile::set_priority()
	Parameters
	priority

	Class
	See Also

	Chapter 10. Mutex Methods
	Mutex Methods
	DbEnv::mutex_alloc()
	Parameters
	flags
	mutexp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_free()
	Parameters
	mutex

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_get_align()
	Parameters
	alignp

	Class
	See Also

	DbEnv::mutex_get_increment()
	Parameters
	incrementp

	Class
	See Also

	DbEnv::mutex_get_max()
	Parameters
	maxp

	Class
	See Also

	DbEnv::mutex_get_tas_spins()
	Parameters
	tas_spinsp

	Class
	See Also

	DbEnv::mutex_lock()
	Parameters
	mutex

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_align()
	Parameters
	align

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_increment()
	Parameters
	increment

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_max()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_tas_spins()
	Parameters
	tas_spins

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_stat()
	Parameters
	flags
	statp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::mutex_unlock()
	Parameters
	mutex

	Errors
	EINVAL

	Class
	See Also

	Chapter 11. Replication Methods
	Replication and Related Methods
	DbEnv::rep_elect()
	How Elections are Held
	Parameters
	flags
	nsites
	nvotes

	Errors
	DB_REP_UNAVAIL
	EINVAL

	Class
	See Also

	DbEnv::rep_get_clockskew()
	Parameters
	fast_clockp
	slow_clockp

	Class
	See Also

	DbEnv::rep_get_config()
	Parameters
	onoffp
	which

	Class
	See Also

	DbEnv::rep_get_limit()
	Parameters
	bytesp
	gbytesp

	Class
	See Also

	DbEnv::rep_get_nsites()
	Parameters
	nsitesp

	Class
	See Also

	DbEnv::rep_get_priority()
	Parameters
	priorityp

	Class
	See Also

	DbEnv::rep_get_request()
	Parameters
	minp
	maxp

	Class
	See Also

	DbEnv::rep_get_timeout()
	Parameters
	timeoutp
	which

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_process_message()
	Parameters
	control
	envid
	rec
	ret_lsnp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_clockskew()
	Parameters
	fast_clock
	slow_clock

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_config()
	Parameters
	onoff
	which

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_limit()
	Parameters
	bytes
	gbytes

	Class
	See Also

	DbEnv::rep_set_nsites()
	Parameters
	nsites

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_priority()
	Parameters
	priority

	Class
	See Also

	DbEnv::rep_set_request()
	Parameters
	max
	min

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_timeout()
	Parameters
	timeout
	which

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_transport()
	Parameters
	envid
	send

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_start()
	Parameters
	cdata
	flags

	Errors
	DB_REP_UNAVAIL

	Class
	See Also

	DbEnv::rep_stat()
	Parameters
	flags
	statp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_stat_print()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_sync()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_add_remote_site()
	Parameters
	eidp
	flags
	host
	port

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_get_ack_policy()
	Parameters
	ack_policyp

	Class
	See Also

	DbEnv::repmgr_set_ack_policy()
	Parameters
	ack_policy

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_set_local_site()
	Parameters
	flags
	host
	port

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_site_list()
	Parameters
	countp
	listp

	Class
	See Also

	DbEnv::repmgr_start()
	Parameters
	flags
	nthreads

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_stat()
	Parameters
	flags
	statp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_stat_print()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	Chapter 12. The DbSequence Handle
	Sequences and Related Methods
	DbSequence
	Parameters
	db
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::close()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::get()
	Parameters
	delta
	flags
	retp
	txnid

	Class
	See Also

	DbSequence::get_cachesize()
	Parameters
	sizep

	Class
	See Also

	DbSequence::get_dbp()
	Parameters
	dbp

	Class
	See Also

	DbSequence::get_flags()
	Parameters
	flagsp

	Class
	See Also

	DbSequence::get_key()
	Parameters
	key

	Class
	See Also

	DbSequence::get_range()
	Parameters
	minp
	maxp

	Class
	See Also

	DbSequence::initial_value()
	Parameters
	value

	Errors
	EINVAL

	Class
	See Also

	DbSequence::open()
	Parameters
	key
	flags
	txnid

	Class
	See Also

	DbSequence::remove()
	Parameters
	flags
	txnid

	Errors
	EINVAL

	Class
	See Also

	DbSequence::set_cachesize()
	Parameters
	size

	Errors
	EINVAL

	Class
	See Also

	DbSequence::set_flags()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::set_range()
	Parameters
	min
	max

	Errors
	EINVAL

	Class
	See Also

	DbSequence::stat()
	Parameters
	flags

	Class
	See Also

	DbSequence::stat_print()
	Parameters
	flags

	Class
	See Also

	Chapter 13. The DbTxn Handle
	Transaction Subsystem and Related Methods
	Db::get_transactional()
	Class
	See Also

	DbEnv::cdsgroup_begin()
	Errors
	ENOMEM

	Class
	See Also

	DbEnv::get_tx_max()
	Parameters
	tx_maxp

	Class
	See Also

	DbEnv::get_tx_timestamp()
	Parameters
	timestampp

	Class
	See Also

	DbEnv::set_tx_max()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_tx_timestamp()
	Parameters
	timestamp

	Errors
	EINVAL

	Class
	See Also

	DbTxn::abort()
	Class
	See Also

	DbEnv::txn_begin()
	Parameters
	flags
	parent

	Errors
	DbMemoryException or ENOMEM

	Class
	See Also

	DbEnv::txn_checkpoint()
	Parameters
	flags
	kbyte
	min

	Errors
	EINVAL

	Class
	See Also

	DbTxn::commit()
	Parameters
	flags

	Class
	See Also

	DbTxn::discard()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbTxn::get_name()
	Parameters
	namep

	Class
	See Also

	DbTxn::id()
	Class
	See Also

	DbTxn::prepare()
	Parameters
	gid

	Class
	See Also

	DbEnv::txn_recover()
	Parameters
	count
	flags
	preplist

	Class
	See Also

	DbTxn::set_name()
	Parameters
	name

	Class
	See Also

	DbTxn::set_timeout()
	Parameters
	flags
	timeout

	Errors
	EINVAL

	Class
	See Also

	DbEnv::txn_stat()
	Parameters
	flags
	statp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::txn_stat_print()
	Parameters
	flags

	Class
	See Also

	Appendix A. Berkeley DB Command Line Utilities
	Utilities
	db_archive
	Environment Variables
	DB_HOME

	db_checkpoint
	Environment Variables
	DB_HOME

	db_deadlock
	Environment Variables
	DB_HOME

	db_dump
	Environment Variables
	DB_HOME

	db_hotbackup
	Environment Variables
	DB_HOME

	db_load
	Examples
	Environment Variables
	DB_HOME

	Supported Keywords

	db_printlog
	Environment Variables
	DB_HOME

	db_recover
	Environment Variables
	DB_HOME

	db_sql
	Input Syntax
	Hint Comments
	Type Mapping
	Output
	Test output

	db_stat
	Environment Variables
	DB_HOME

	db_upgrade
	Environment Variables
	DB_HOME

	db_verify
	Environment Variables
	DB_HOME

