Oracle Berkeley DB

Getting Started with
Berkeley DB
for Java

Release 4.8

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United States and other
countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumiD=271

Published 8/14/2009

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o 1 =T ol N \%
Conventions Used in this BOOKveveeiiriietiiiiereiiriiteeeiereenterennrereneeeaaneenns \%
For More INfOrmation ...o..eeereeiiiiiiiii it e e reaereaeerenaeeranneranees \%

1. Introduction t0 Berkeley DB ...cciiiiiiieiiiiiiiiiiitetieeiieteeeeeeineeeesessnnneesessennnnsaeens 1
7Yoo 101 I) S = 1 T | 2
Berkeley DB CONCEPES tuuueeeeereiiueeeeeeenrneeeeeressneeeeeesesnnsessesssnnnsesesssssnseseseanns 2
o Yo 0 0 0= 2
KEY-Data Pairs c.uuuueetiiiiiiitttiiiiiieeeteraieeeeeeeennneeeeesessnassesesennnsessesanns 3

N el gl L= D | - R PP PP 4
Storing Data in the DPL ...eiiiiiiiiiiiiiiiiiiiii it eeeiiieeeeeeennaaaeens 4

Storing Data using the Base APl ...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiineeeeeans 4

[D]U]o] Aot (=0 D -1 - E P PP P 5
Replacing and Deleting ENtries c.o..uueeeiiiiiieeeeieiiiieeeeeeeiineeeeeeennnnseeeesennnnes 5
SECONAANY KBYS tiiettttieeiieeteereenineeeeeesenaneeseessnnesesesssnnnssssesssnnnnssenns 6
Using Secondaries With the DPL ...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeenannns 6

Using Secondaries with the Base APL.ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeaees 6

Which APl Should YOU USE? ...neneiiiiiiiiieiiiieei e reee et ereneeeeeeerenneananns 6
ACCESS METNOAS . neeetiiti ittt e et e e r e e e e eenaeeaanaan 7
Selecting ACCESS MEthOdS ..ot e et eeeiieeeeeeeennaeaees 8
Choosing between BTree and Hashcoviiieiiiiiiiiiiiiiiiiiiiiiiii i eeaennnns 8
Choosing between Queue and RECNO ...iviiiiiiieiiiiiiiiieteeeiiieeeereeennaneeeaeanns 8
Database Limits and Portability ...coeeeiieeiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeiieneeeaennnnes 9
[Cel=] oY o] T F=T a e | [T~ S PP PP 9
o 2 0] o3 Y 10
Getting and UsiNG DBuuiiiiiiiiiiitiiiiiiieeeeerineeeeeeeernaneeeessnnnseeeesennnnnneens 10
2. Database ENVIFONMENTS ..ciuuuetriitiieitiiiaeetererteeerenaeerenaesraneeranarerenacssennesennnes 11
Opening Database ENVIrONMENTES ..viiiiueetiiiiiiiieeeeeeeeirneeeeeeeeinneeeeeeessnnsaeeesannes 11
Closing Database ENVIrONMENTSuueeeiiiiiiieetieeeiieeeeeeeerrneeeeeesnrnneeeesesennnneess 12
ENVIrONmMENt PrOpPerties .uuuieeiieeiiiiiiiiiiieiiieiennennnneenenneeneeneeneesaeseesessessenees 13
The EnvironmentConfig Class ..ueeeieeiiieeeeereiiieeeeeeeeirneeeeeeesrnneeeesesennnneees 13
EnvironmentMutableContfig ..uuieieiiiiiiiiiiiiiiii it ieeiiieeeeeeeninneaeananns 14

I. Programming with the Direct Persistence Layercciviiiiiiiiiiiiiiiiiiiiiiiieeeerennnnnnes 16
3. Direct Persistence Layer First STEPS «ivvvieeeiiiiiiiieeeieeiiieeeeeeenineeeeresennnneens 17
o 10 LV o] = PP PPN 17
Opening and Closing Environments and StOrescceeeeveiiineeeeeennnnenesns 18

PersiStENt ODJEOCES tiunrretiiiiiiiii ittt eeeeiieeeeeeeennaeaeeeeennnneesesennnnnnes 19
Saving @ RetrieViNg Data cuvvveeiiiiiiiitieieiiiieeeeeeeiieeeeeeeernneeeeesennnneeeenns 20

4. Working With INAiCES ..uuuueiiiiiiiiiiiiiiiiiiiiiiieeiiiteeeeeeiineeeeeeessnneesssesennnnes 22
ACCESSING INAEXES uuueeetiiiiiiiitetieeiiieeeeteeenrneeeeeeessnaseeeesssnnneesesssnnnnneens 22
Accessing Primary INAiCeS c...uueeiiiiiiiiiiiiiiiiieeeeiiieeeeeeeennaneeeacnnns 22

Accessing Secondary INAICES ...vveiiiiiiireiiiiiiiieeeereiiieeeeeeneineeeeeaennns 22

Creating INAEXES «uviiiiiitttiiiiiieteeeeeirneeeeeeesrnneeeseessnnssesesssnnnnssessesnnns 23
Declaring @ Primary INAeXEeSuuueeeiiiiiiitiiieiiiieeeeeeeeinnneeeeeennnneneens 23

Declaring Secondary INAEXESeiiieiiieteiireiieeeeeeeeirneeeeresennaneesananns 24

Foreign Key CoNStraints ..vuvevieeeeieiiiieeeeeeeeiieeeeeeeenrneeeeessnrnneeeeeenns 25

5. Saving and RetrieVving ObjJeCtS .uuuiiiiiiiiiiiiiiiiiiiteieiiieeeeeeeeineeeeesennnneseesanns 27

8/14/2009 Getting Started with DB Page ii

A SIMPle ENtity Class «veeeereereieeerieeeerieeeeseeeenneeesneeeesneeessneeecnnseesnaesanns 27
SIMPLEDA.CLASS +etnttiieitteeiitteeiteeeiteeeieeeeereeeesneeessneeessassesnaesssnseesnnees 28
Placing Objects in an Entity STOrecocvvviiiiiiiiiiiiiiiiiiiiiiiieiiienieeneneae.. 29
Retrieving Objects from an Entity Storec.cccvviiiiiiiiiiiiiiiiiiiiiiinneennn.. 32
Retrieving Multiple ObJeCtSevveiiieiiiiiiiiiiiiiiiiiiiiiiieiiecnieenieeeene.. 34
Cursor INitializationoovveiiiiiiiiiiiiiiiiiieiii it ee it eeneeeneees 3D
Working with Duplicate Keysccevveiiieiiiiiiiiiiiieiieiiieiiieinieeneeennss 35

LS A 2= T T PG 1

0} O Yo - ¥ 4
Deleting Entity ODJECLS ..vvuuiieiiiiiiiiiiiiiiiiiiiii i i eenieenteeneeeneeeaess 39
Replacing Entity ObJECS c.eevveiiiiiiiiiiiiiiiiiiiiiiieeieiiieniieeieeenneenneene.. 40
6. A DPL EXAMPLE tinnuiiiiiitiiiitiiiietieeeeeenneereneeeeseeeenneerenasessnsesesnessanneeeeness 41
= 3 Te (o] o - 17 E PP X
INVENTOIY.JAVA tuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeiiiaeeiineesinneesenass 43
DataACCESSOr.JAVA .uviiruiiiiiniiiiiniiiiiiiiiiieiiiieiiiieiiieesisneesesnsessnnceseneess 47
ExampleDatabasePut.javaceeeeiieiiieiiiiiiiiiiiiiiiiiiieiiieiiiiiniienereaerenin.. 48
ExamplelnventoryRead.java ...ceeeveeiiiiiiiiiiiiiiiiiiiiiiiiiiiiitineiieenieeanees. D2

[I. Programming with the Base APlccciiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiii e et eeneeeaeeeaess D7

R D L= = L= PP 1 |
Opening Databasescevueieiiiiriiiiiiiitereiteeiieeeaiieeeenneeesiaeeesneeessneeeannes I8
CloSING Databasesceeuuiereeiienietiniitieeieeeeieeeeaieeessneeessaeeesnasessnassannees 29
Database Propertiescvvviieeiiiiiiiiiiiiiiiiiieiieiieiienienieenneesneenneeene.. 60
Administrative Methodscceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicicieeieeeeeae.. O
Error Reporting FUNCLIONS ..ovuiiciiieiciaienne. 62
Managing Databases in ENVIronmMentscoeveviiiiiiiiiiiniineineineernnennee.. 63
Database EXamPlecceiiieiiieiiieiiiiiiiiieiieiieiiieeiteenteenteenteeneeensses 0D

8. Database RECOIdScoevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieineeneene.. 08
Using Database RECOIAS ...cvvuiiiiiuiiiiieiiniittiiiteeeieteeeneeeeneeeesneeesnaeeaaneess 08
Reading and Writing Database Recordsccveeiiiiiiiiiiiiiiiiieiieenneennee.. 69

Writing Records to the Databasecccvvviiiiiiiiiiiiiiiiiiiiiiiiiiennnne.. 70
Getting Records from the Databaseceevviiiiiiiiiiiiiiiiiiiiiiniinnnnen.. 71
Deleting RECOrdScviieiiieiiiiiiiiiiiiiiieiiieiieiieiienneenneennnennees 12
Data Persistenceoccvviiiiiiiiiiiiiiiiiiiiiiiiiiicici e 13
Using the BIND APIS ..uuiuuiiiiiiiiiiiiiiiiiiiiciinieeei e eneeneenees 13
Numerical and String ObJECtS ...ccceviiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiinennenne. 74
Serializable Complex ObJeCtSccevveiiieiiieiiiiiiiiiiiiiiieiiieiiieineeeeeens 76
UsSage Caveats .ivvvieeieiiiiieiieeereeennaneeessennnneeessecssansessscnnannes 17
Serializing ObJeCtS «uvvvveiiiiieiiiiiiiiieiieeieieerenneeenneeeanneeeannees 17
Deserializing ObJects ...ccvveviiiiiiiiiiiiiiiiiiiiiiieiiaiiieiieineeneesn.. 80

Custom Tuple Bindingsceveveiiriieiiiiietieitereieeeenneerenneerenneeesneeeanns 81
Database Usage EXamplecoceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieaeieniieneen... 84

9. USING CUIMSOIS tettiuteetrranrnaeeeeseensaneeessesssnnsessesssansessssssssnsssssssssansasssees 90
Opening and CloSING CUISOTS ..e.uiieutiintiintrintietietrenereaereasrenessnessacsnecses 96
Getting Records Using the CUrsorccevveiiiiiiiiiiiieiiiiiiiiiniiiiiieniieneinnennees 97

Searching for RECOIASuvieeeiieiieiiiiieieeieeeeieeeeeneeeesecesnneeesnaeenens 99
Working with Duplicate Recordsccvvevvieeiiieiiiiiiieiiieiniecniennennn... 102
Putting Records UsiNg CUISOIS v.veeueeeerueeeeneeeeeieeeenneeesnnecessaeeasneeensneeeanss 104
Deleting Records UsiNg CUISOISvevuteiuieireenieeniernieeneeeneeenssenesoncsnaesees 106

8/14/2009

Getting Started with DB Page iii

Replacing Records USING CUISOIS ..uuieeueeiereerereeereeeeesneerenaeerenneeenneesannes 107

CUISOr EXAMIPLE tietttiiitiiiieii i eit ettt eeieeeeaneeeenaeeeanaeeeaneesenneesonneen 108
10. Secondary Databases ...ceeuueeeeeeieruteeeieteerneeeerneeeerneeeeneeeessesesneeesnneeenns 113
Opening and Closing Secondary Databasesccceeeieiieiuiiriieiinnieeeenneeennns 113
Implementing KeY Creators ..iccveieeieeeereeeeieeeeeieeeesneeessneeesneeesonnseanneees 116
Working with MULtiple KeYS ...iieeiiiiieiiiiiiiiiiieiiieiieeeneeennaeeannas 119
Secondary Database Propertiescceieieiiiiiiiiiiiiiiiiiniieieiiieeeenaeennneens 120
Reading Secondary Databasesceeeiiiieiiiiiiiiiiiiiiiiiiiieieeeeneeeanneens 120
Deleting Secondary Database REeCOrdsvivieiiiiiiiiieieiieeennieeenneeennnees 121
UsiNG SECONAArY CUMSOIS wiinueteerneeranneeraneeeesneesenneeeenaseesneesesneesennseenes 122
(D L= oF= T N Lo | 3 - N 123
USING JOTN CUISOIS «uueieetttiieeiineeeereeninteeseeannneeesseesnaneesssessnnnnesss 124
JOINCUISOr ProPertis «uueueiiiiiiiiittiiieiiieteeeeernaneeereenranneessessnnnnes 126
Secondary Database EXampPle ...ueeeeeeirieiiiieeeeiueeesneeeesneeesnneeesnaeeesnnees 127
Opening Secondary Databases with MyDbsccccviiiiiiiiiiiiiiiieennnnenn. 128
Using Secondary Databases with ExampleDatabaseRead 132

11. Database Configurationicveeiiietiriietiiiieeieiteerieereneereneeeesneeeenneeeanns 135
Setting the Page SiZe ...uiiiiiiiiiiiiiiii i e eeee e eeraeeeenaeeanaees 135
OVEITlOW PageS «viinnutiiettieitteeiteeeieteeeeereaneeeenneeesnneeesnsesennneenns 135
LOCKING uttiiittiiiitt i iiiteeeieteeeeereraeeeeeeeanneeeenneeeenneeesneeeennees 136

[O EffiCiENCY tiinrtiiiit i i e ie e e et ee et eeenaeeeeaeeaaneeeannnennn 136
Page Sizing AdVICE .iiiuuiiiiiiiiiiiiii i eiieereieerenaeeeeeeeenaeeeannens 137
Selecting the Cache SizZe ..iiiuiiiiiiiiiiii i it eere e eraeeeenaeeanes 138
BTree Configuration ..c..eeieieeeriietieiietieitereneeeeneeeenneerenaeeesneeeenneerannes 138
Allowing Duplicate ReCOrdScceveiieiueiiiintiriietienieeieineereneeeenneeeanns 139
Sorted DUPLICAES .uvvieineiiiitiiiitieiieeeeeieeeenteeanneeennaeeenneeenns 139

Unsorted DUPlICALES .uvviieeiiiiietiiiietieiteeiieteeneeeenneeeenneeannes 139
Configuring a Database to Support Duplicatescccceeeevuveennnnnn. 140

Setting Comparison FUNCLIONSoiviiiiiniiiiiiiiiiiiiiiiiiiiiieneeenaeneens 141
Creating Java Comparators ...ccccceveiiiiiiieeiieeinnnneereeennanecennns 142

8/14/2009

Getting Started with DB Page iv

Preface

Welcome to Berkeley DB (DB). This document introduces DB, version 4.8. It is intended to
provide a rapid introduction to the DB API set and related concepts. The goal of this document
is to provide you with an efficient mechanism with which you can evaluate DB against your
project's technical requirements. As such, this document is intended for Java developers and
senior software architects who are looking for an in-process data management solution. No
prior experience with Berkeley DB is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are met hod nanes. For example: "The
Dat abase() constructor returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."
Program examples are displayed in a nonospaced font on a shaded background. For example:

i nport com sl eepycat . db. Dat abaseConfi g;

Il Al'low the database to be created.
Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myDbConfi g. set Al l owCreate(true);

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bol d font. For example:

i nport com sl eepycat . db. Dat abase;
i nport com sl eepycat . db. Dat abaseConfi g;

[/ Alow the database to be created.

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myDbConfi g. set Al | owCreate(true);

Dat abase nyDb = new Dat abase("nydb. db", null, nyDbConfig);

|:| Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when building
a DB application:

8/14/2009 Getting Started with DB Page v

Getting Started with Transaction Processing for Java [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf]

Berkeley DB Getting Started with Replicated Applications for Java [http://www.oracle.com/
technology/documentation/berkeley-db/db/gsg_db_rep/JAVA/Replication_JAVA_GSG. pdf]

Berkeley DB Programmer's Reference Guide [http://www.oracle.com/technology/
documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf]

Berkeley DB Javadoc [http://www.oracle.com/technology/documentation/berkeley-db/
db/java/index.html]

Berkeley DB Collections Tutorial [http://www.oracle.com/technology/documentation/
berkeley-db/db/collections/tutorial/BerkeleyDB-Java-Collections.pdf]

8/14/2009

Getting Started with DB Page vi

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/JAVA/Replication_JAVA_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/JAVA/Replication_JAVA_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/JAVA/Replication_JAVA_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/db/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/db/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/db/collections/tutorial/BerkeleyDB-Java-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/collections/tutorial/BerkeleyDB-Java-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/collections/tutorial/BerkeleyDB-Java-Collections.pdf

Chapter 1. Introduction to Berkeley DB

Welcome to Berkeley DB (DB). DB is a general-purpose embedded database engine that is
capable of providing a wealth of data management services. It is designed from the ground up
for high-throughput applications requiring in-process, bullet-proof management of
mission-critical data. DB can gracefully scale from managing a few bytes to terabytes of data.
For the most part, DB is limited only by your system's available physical resources.

You use DB through a series of programming APIs which give you the ability to read and write
your data, manage your database(s), and perform other more advanced activities such as
managing transactions. The Java APIs that you use to interact with DB come in two basic flavors.
The first is a high-level API that allows you to make Java classes persistent. The second is a
lower-level APl which provides additional flexibility when interacting with DB databases.

|:| For long-time users of DB, the lower-level API is the traditional API that you are probably
accustomed to using.

Because DB is an embedded database engine, it is extremely fast. You compile and link it into
your application in the same way as you would any third-party library. This means that DB runs
in the same process space as does your application, allowing you to avoid the high cost of
interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent. It
requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways of
organizing your data in its databases. Known as access methods, each such data organization
mechanism provides different characteristics that are appropriate for different data management
profiles. (Note that this manual focuses almost entirely on the BTree access method as this is
the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which can
be used to extend DB's capabilities. For example, many applications require write-protection
of their data so as to ensure that data is never left in an inconsistent state for any reason (such
as software bugs or hardware failures). For those applications, a transaction subsystem can be
enabled and used to transactional-protect database writes.

The list of operating systems on which DB is available is too long to detail here. Suffice to say
that it is available on all major commercial operating systems, as well as on many embedded
platforms.

Finally, DB is available in a wealth of programming languages. DB is officially supported in C,
C++, and Java, but the library is also available in many other languages, especially scripting
languages such as Perl and Python.

|:| Before going any further, it is important to mention that DB is not a relational database
(although you could use it to build a relational database). Out of the box, DB does not
provide higher-level features such as triggers, or a high-level query language such as SQL.
Instead, DB provides just those minimal APIs required to store and retrieve your data as
efficiently as possible.

8/14/2009

Getting Started with DB Page 1

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual provides
a step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces the high-level Java API (the DPL), as well as the "base”
Java API that the DPL relies upon. Regardless of the API set that you choose to use, there are
a series of concepts and APIs that are common across the product. This manual starts by
providing a high-level examination of DB. It then describes the APIs you use regardless of the
API set that you choose to use. It then provides information on using the Direct Persistence
Layer (DPL) API, followed by information on using the more extensive "base” API.

Examples are given throughout this book that are designed to illustrate APl usage. At the end
of each chapter or section in this book, a complete example is given that is designed to reinforce
the concepts covered in that chapter or section. In addition to being presented in this book,
these final programs are also available in the DB software distribution. You can find them in

DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted
where DB | NSTALL is the location where you placed your DB distribution.

This book uses the Java programming languages for its examples. Note that versions of this
book exist for the C and C++ languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the concepts you will encounter when building
a DB application.

The concepts that you will encounter depend upon the actual API that you are using. Some of
these concepts are common to both APIs, and so we present those first. Others are only
interesting if you use the DPL, while others apply only to the base APIl. We present each of
these in turn.

Environments

Environments are required for applications built using the DPL. They are optional, but very
commonly used, for applications built using the base API. Therefore, it is worthwhile to begin
with them.

An environment is essentially an encapsulation of one or more databases. You open an
environment and then you open databases in that environment. When you do so, the databases
are created/located in a location relative to the environment's home directory.

Environments offer a great many features that a stand-alone DB database cannot offer:

e Multi-database files.

8/14/2009

Getting Started with DB Page 2

It is possible in DB to contain multiple databases in a single physical file on disk. This is
desirable for those application that open more than a few handful of databases. However,
in order to have more than one database contained in a single physical file, your application
must use an environment.

o Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can be
shared by all of the databases opened in the environment. The environment allows you to
enable subsystems that are designed to allow multiple threads and/or processes to access
DB databases. For example, you use an environment to enable the concurrent data store
(CDS), the locking subsystem, and/or the shared memory buffer pool.

« Transactional processing

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then subsequently
to obtain transaction IDs.

« High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and then
manage this subsystem.

» Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal” and
"catastrophic”) through the use of the information contained in the log files.

For more information on these topics, see the Berkeley DB Getting Started with Transaction
Processing guide and the Berkeley DB Getting Started with Replicated Applications guide.

Key-Data Pairs

DB stores and retrieves data using key-data pairs. The data portion of this is the data that you
have decided to store in DB for future retrieval. The key is the information that you want to
use to look up your stored data once it has been placed inside a DB database.

For example, if you were building a database that contained employee information, then the
data portion is all of the information that you want to store about the employees: name,
address, phone numbers, physical location, their manager, and so forth.

The key, however, is the way that you look up any given employee. You can have more than
one key if you wish, but every record in your database must have a primary key. If you are
using the DPL, then this key must be unique; that is, it must not be used multiple times in the
database. However, if you are using the base API, then this requirement is relaxed. See Duplicate
Data (page 5) for more information.

8/14/2009

Getting Started with DB Page 3

For example, in the case of an employee database, you would probably use something like the
employee identification number as the primary key as this uniquely identifies a given employee.

You can optionally also have secondary keys that represent indexes into your database. These
keys do not have to be unique to a given record; in fact, they often are not. For example, you
might set up the employee’'s manager's name as a secondary key so that it is easy to locate all
the employee's that work for a given manager.

Storing Data

How you manage your stored information differs significantly, depending on which API you are
using. Both APIs ultimately are doing the same thing, but the DPL hides a lot of the details
from you.

Storing Data in the DPL

The DPL is used to store Java objects in an underlying series of databases. These databases
are accessed using an EntityStore class object.

To use the DPL, you must decorate the classes you want to store with Java annotations that
identify them as either an entity class or a persistent class.

Entity classes are classes that have a primary key, and optionally one or more secondary keys.
That is, these are the classes that you will save and retrieve directly using the DPL. You identify
an entity class using the @ntity java annotation.

Persistent classes are classes used by entity classes. They do not have primary or secondary
indices used for object retrieval. Rather, they are stored or retrieved when an entity class
makes direct use of them. You identify an persistent class using the @er si st ent java annotation.

The primary key for an object is obtained from one of the class’ data members. You identify
which data member to use as the primary key using the @i mar yKey java annotation.

Note that all non-transient instance fields of a persistent class, as well as its superclasses and
subclasses, are persistent. Static and transient fields are not persistent. The persistent fields
of a class may be private, package-private (default access), protected or public.

Also, simple Java types, such as java.lang. String and java. util.Dat e, are automatically
handled as a persistent class when you use them in an entity class; you do not have to do
anything special to cause these simple Java objects to be stored in the EntityStore.

Storing Data using the Base API

When you are not using the DPL, both record keys and record data must be byte arrays and
are passed to and returned from DB using Dat abaseEnt ry instances. Dat abaseEnt ry only supports
storage of Java byte arrays. Complex objects must be marshaled using either Java serialization,
or more efficiently with the bind APIs provided with DB

Database records and byt e array conversion are described in Database Records (page 68).

8/14/2009

Getting Started with DB Page 4

You store records in a Dat abase by calling one of the put methods on a Dat abase handle. DB
automatically determines the record's proper placement in the database's internal B-Tree using
whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Dat abase handle. Gets are performed by providing
the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism by
which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cur sor class.

Databases are described in Databases (page 58). Cursors are described in Using Cursors (page 96).

Duplicate Data

If you are using the base API, then at creation time databases can be configured to allow
duplicate data. Remember that DB database records consist of a key/data pair. Duplicate data,
then, occurs when two or more records have identical keys, but different data. By default, a
Dat abase does not allow duplicate data.

If your Dat abase contains duplicate data, then a simple database get based only on a key
returns just the first record that uses that key. To access all duplicate records for that key,
you must use a cursor.

If you are using the DPL, then you can duplicate date using secondary keys, but not by using
the primary key. For more information, see Retrieving Multiple Objects (page 34).

Replacing and Deleting Entries

If you are using the DPL, then replacing a stored entity object simply consists of retrieving it,
updating it, then storing it again. To delete the object, use the del et e() method that is
available on either its primary or secondary keys. If you use the del et () method available on
the secondary key, then all objects referenced by that key are also deleted. See Deleting Entity
Objects (page 39) for more information.

If you are using the base API, then how you replace database records depends on whether
duplicate data is allowed in the database.

If duplicate data is not allowed in the database, then simply calling Dat abase. put () with the
appropriate key will cause any existing record to be updated with the new data. Similarly, you
can delete a record by providing the appropriate key to the Dat abase. del et e() method.

If duplicate data is allowed in the database, then you must position a cursor to the record that
you want to update, and then perform the put operation using the cursor.

To delete records using the base API, you can use either Dat abase. del et e() or Cursor. del ete().
If duplicate data is not allowed in your database, then these two method behave identically.
However, if duplicates are allowed in the database, then Dat abase. del ete() deletes every
record that uses the provided key, while Cursor. del et e() deletes just the record at which the
cursor is currently positioned.

8/14/2009

Getting Started with DB Page 5

Secondary Keys

Secondary keys provide an alternative way to locate information stored in DB, beyond that
which is provided by the primary key. Frequently secondary keys refer to more than one record
in the database. In this way, you can find all the cars that are green (if you are maintaining
an automotive database) or all the people with brown eyes (if you are maintaining a database
about people). In other words, secondary keys represent a index into your data.

How you create and maintain secondary keys differs significantly, depending on whether you
are using the DPL or the base API.

Using Secondaries with the DPL

Under the DPL, you declare a particular field to be a secondary key by using the @econdar yKey
annotation. When you do this, you must declare what kind of an index you are creating. For
example, you can declare a secondary key to be part of a ONE_TO ONE index, in which case the
key is unique to the object. Or you could declare the key to be MANY_TO ONE, in which case the
key can be used for multiple objects in the data store.

Once you have identified secondary keys for a class, you can access those keys by using the
EntityStore. get Secondaryl ndex() method.

For more information, see Declaring Secondary Indexes (page 24).
Using Secondaries with the Base API.

When you are using the base API, you create and maintain secondary keys using a special type
of a database, called a secondary database. When you are using secondary databases, the
database that holds the data you are indexing is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary’s keys (that is, the index)
from primary records. Whenever a record in the primary database is added or changed, DB
uses this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, DB automatically updates the secondary
database(s) for you as is appropriate for the operation performed on the primary.

You manage secondary databases using the Secondar yDat abase class. You identify how to create
keys for your secondary databases by supplying an instance of a class that implements the
Secondar yKeyCreat or interface.

Secondary databases are described in Secondary Databases (page 113).

Which API Should You Use?

Of the two APIs that DB makes available to you, we recommend that you use the DPL if all you
want to do is make classes with a relatively static schema to be persistent. However, the DPL
requires Java 1.5, so if you want to use Java 1.4 then you cannot use the DPL.

8/14/2009 Getting Started with DB Page 6

Further, if you are porting an application between the C or C++ versions of DB and the Java
version of this API, then you should not use the DPL as the base API is a much closer match to
the other languages available for use with DB.

Additionally, if your application uses a highly dynamic schema, then the DPL is probably a poor
choice for your application, although the use of Java annotations can make the DPL work a
little better for you in this situation.

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to briefly
describe all of the access methods that DB makes available.

|:| If you are using the DPL, be aware that it only supports the BTree access method. For that
reason, you can skip this section.

Note that an access method can be selected only when the database is created. Once selected,
actual APl usage is generally identical across all access methods. That is, while some exceptions
exist, mechanically you interact with the library in the same way regardless of which access
method you have selected.

The access method that you should choose is gated first by what you want to use as a key, and
then secondly by the performance that you see for a given access method.

The following are the available access methods:

Access Method Description

BTree Data is stored in a sorted, balanced tree structure. Both the key
and the data for BTree records can be arbitrarily complex. That is,
they can contain single values such as an integer or a string, or
complex types such as a structure. Also, although not the default
behavior, it is possible for two records to use keys that compare
as equals. When this occurs, the records are considered to be
duplicates of one another.

Hash Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily complex
data. Also, like BTree, duplicate records are optionally supported.

Queue Data is stored in a queue as fixed-length records. Each record uses
a logical record number as its key. This access method is designed
for fast inserts at the tail of the queue, and it has a special
operation that deletes and returns a record from the head of the
queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements in
applications requiring concurrent access to the queue.

Recno Data is stored in either fixed or variable-length records. Like Queue,
Recno records use logical record numbers as keys.

8/14/2009

Getting Started with DB Page 7

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for you
database records. If you want to use arbitrary data (even strings), then you should use either
BTree or Hash. If you want to use logical record numbers (essentially integers) then you should
use Queue or Recno.

Once you have made this decision, you must choose between either BTree or Hash, or Queue
or Recno. This decision is described next.

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between BTree
and Hash. Both will perform just as well as the other. In this situation, you might just as well
use BTree, if for no other reason than the majority of DB applications use BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small portion
of that data with any frequency. So what you want to consider is the data that you will routinely
use, not the sum total of all the data managed by your application.

However, as your working dataset grows to the point where you cannot fit it all into memory,
then you need to take more care when choosing your access method. Specifically, choose:

» BTree if your keys have some locality of reference. That is, if they sort well and you can
expect that a query for a given key will likely be followed by a query for one of its neighbors.

« Hash if your dataset is extremely large. For any given access method, DB must maintain a
certain amount of internal information. However, the amount of information that DB must
maintain for BTree is much greater than for Hash. The result is that as your dataset grows,
this internal information can dominate the cache to the point where there is relatively little
space left for application data. As a result, BTree can be forced to perform disk 1/0 much
more frequently than would Hash given the same amount of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to perform
disk 1/0 to satisfy a random request, then Hash will definitely out perform BTree because it
has fewer internal records to search through than does BTree.

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for the
primary database key. Logical record numbers are essentially integers that uniquely identify
the database record. They can be either mutable or fixed, where a mutable record number is
one that might change as database records are stored or deleted. Fixed logical record humbers
never change regardless of what database operations are performed.

When deciding between Queue and Recno, choose:

8/14/2009

Getting Started with DB Page 8

» Queue if your application requires high degrees of concurrency. Queue provides record-level
locking (as opposed to the page-level locking that the other access methods use), and this
can result in significantly faster throughput for highly concurrent applications.

Note, however, that Queue provides support only for fixed length records. So if the size of
the data that you want to store varies widely from record to record, you should probably
choose an access method other than Queue.

« Recno if you want mutable record numbers. Queue is only capable of providing fixed record
numbers. Also, Recno provides support for databases whose permanent storage is a flat text
file. This is useful for applications looking for fast, temporary storage while the data is being
read or modified.

Database Limits and Portability

Berkeley DB provides support for managing everything from very small databases that fit entirely
in memory, to extremely large databases holding millions of records and terabytes of data. DB
databases can store up to 256 terabytes of data. Individual record keys or record data can store
up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of differing
endian-ness. Be aware, however, that portability aside, some performance issues can crop up
in the event that you are using little endian architecture. See Setting Comparison

Functions (page 141) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are
thread-safe, and they share well across multiple processes. That said, in order to allow multiple
processes to share databases and the cache, DB makes use of mechanisms that do not work
well on network-shared drives (NFS or Windows networks shares, for example). For this reason,
you cannot place your DB databases and environments on network-mounted drives.

Exception Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with the
java.

Most DB methods throw Dat abaseExcepti on in the event of a serious error. So your DB code
must either catch this exception or declare it to be throwable. Be aware that Dat abaseExcepti on
extends j ava. | ang. Except i on. For example:

i nport com sl eepycat . db. Dat abaseExcepti on;

try

{
/] DB and other code goes here
}
cat ch(Dat abaseException e)
{

8/14/2009 Getting Started with DB Page 9

/1 DB error handling goes here

}

You can obtain the DB error number for a Dat abaseExcepti on by using
Dat abaseExcepti on. get Errno() . You can also obtain any error message associated with that
error using Dat abaseExcepti on. get Message() .

Error Returns

In addition to exceptions, the DB interfaces always return a value of 0 on success. If the
operation does not succeed for any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access a
file was denied, or an illegal argument was specified to one of the interfaces), DB returns an
errno value. All of the possible values of errno are greater than 0.

If the operation did not fail due to a system error, but was not successful either, DB returns a
special error value. For example, if you tried to retrieve data from the database and the record
for which you are searching does not exist, DB would return DB_NOTFOUND, a special error value
that means the requested key does not appear in the database. All of the possible special error
values are less than 0.

Getting and Using DB

You can obtain DB by visiting the Berkeley DB download page: http://www.oracle.com/
technology/software/products/berkeley-db/db/index.html.

To install DB, untar or unzip the distribution to the directory of your choice. You will then need
to build the product binaries. For information on building DB, see DB_INSTALL/ docs/ i ndex. htni |
where DB_INSTALL is the directory where you unpacked DB. On that page, you will find links

to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find links
for the Berkeley DB Programmer’s Reference Guide as well as the APl reference documentation.

8/14/2009 Getting Started with DB Page 10

http://www.oracle.com/technology/software/products/berkeley-db/db/index.html
http://www.oracle.com/technology/software/products/berkeley-db/db/index.html

Chapter 2. Database Environments

Environments are optional, but very commonly used, for Berkeley DB applications built using
the base API. If you are using the DPL, then environments are required.

Database environments encapsulate one or more databases. This encapsulation provides your
threads with efficient access to your databases by allowing a single in-memory cache to be
used for each of the databases contained in the environment. This encapsulation also allows
you to group operations performed against multiple databases inside a single transactions (see
the Berkeley DB Java Edition Getting Started with Transaction Processing guide for more
information).

Most commonly you use database environments to create and open databases (you close
individual databases using the individual database handles). You can also use environments to
delete and rename databases. For transactional applications, you use the environment to start
transactions. For non-transactional applications, you use the environment to sync your in-memory
cache to disk.

Opening Database Environments

You open a database environment by instantiating an Envi r onment object. You must provide
to the constructor the name of the on-disk directory where the environment is to reside. This
directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation property
to true if you want the environment to be created. For example:

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

import java.io.File;

/1 Open the environnment. Allow it to be created if it does not already exist.
Envi ronment nyDbEnvironment = nul | ;

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set All owCreate(true);

myDbEnvi ronment = new Envi ronnent (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {

/| Exception handling goes here
}

8/14/2009

Getting Started with DB Page 11

package db. gettingStarted;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnment Confi g;

inport java.io.File;
inport java.io.FileNot FoundExcepti on;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment nyDbEnvironment = nul | ;

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set Al l owCreate(true);

myDbEnvi ronment = new Environment (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {

/] Exception handling goes here
} catch (FileNot FoundException fnfe) {
/'l Exception handling goes here

}

Your application can open and use as many environments as you have disk and memory to
manage, although most applications will use just one environment. Also, you can instantiate
multiple Envi ronment objects for the same physical environment.

Closing Database Environments

You close your environment by calling the Envi ronnent . cl ose() method. This method performs
a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly before calling
it. For information on checkpoints, see the Berkeley DB Java Edition Getting Started with
Transaction Processing guide. For information on syncs, see the Getting Started with Transaction
Processing for Java guide.

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Envi ronment ;

try {
if (nyDoEnvironnment != null) {

myDbEnvi ronnent . cl ose() ;

}
} catch (DatabaseException dbe) {
/| Exception handling goes here

}

8/14/2009

Getting Started with DB Page 12

You should close your environment(s) only after all other database activities have completed
and you have closed any databases currently opened in the environment.

Closing the last environment handle in your application causes all internal data structures to
be released. If there are any opened databases or stores, then DB will complain before closing
them as well. At this time, any open cursors are also closed, and any on-going transactions are
aborted.

Environment Properties

You set properties for the Envi ronment using the Envi r onment Conf i g class. You can also set
properties for a specific Envi ronnent instance using Envi r onment Mit abl eConfi g.

The EnvironmentConfig Class

The Envi ronnent Confi g class makes a large number of fields and methods available to you.
Describing all of these tuning parameters is beyond the scope of this manual. However, there
are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding getter
method. Also, you can always retrieve the Envi r onnent Conf i g object used by your environment
using the Envi ronment . get Confi g() method.

You set environment configuration parameters using the following methods on the
Envi ronnent Confi g class:

e Environnent Confi g. set Al | owCreat e()

If true, the database environment is created when it is opened. If f al se, environment open
fails if the environment does not exist. This property has no meaning if the database
environment already exists. Default is f al se.

e Environment Confi g. set ReadOnl y()

If true, then all databases opened in this environment must be opened as read-only. If you
are writing a multi-process application, then all but one of your processes must set this value
to true. Default is fal se.

« Environment Confi g. set Transacti onal ()
If true, configures the database environment to support transactions. Default is f al se.

For example:

package db. gettingStarted;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnent Confi g;

inport java.io.File;

8/14/2009

Getting Started with DB Page 13

inport java.io.FileNot FoundExcepti on;

Envi ronment nyDat abaseEnvi ronment = nul | ;
try {
Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Al l owCreate(true);
envConfig. set Transactional (true);
myDat abaseEnvi ronment =
new Environnent (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
Systemerr.println(dbe.toString());
Systemexit(1);
} catch (FileNot FoundException fnfe) {
Systemerr.printin(fnfe.toString());
Systemexit(-1);
}

EnvironmentMutableConfig

Envi r onment Mut abl eConf i g manages properties that can be reset after the Envi ronnent object
has been constructed. In addition, Envi ronnent Conf i g extends Envi r onment Mut abl eConfi g, so
you can set these mutable properties at Envi ronment construction time if necessary.

The Envi ronnent Mut abl eConfi g class allows you to set the following properties:

set CachePercent ()

Determines the percentage of JVM memory available to the DB cache. See Selecting the
Cache Size (page 138) for more information.

set CacheSi ze()

Determines the total amount of memory available to the database cache. See Selecting the
Cache Size (page 138) for more information.

set TxnNoSync()

Determines whether change records created due to a transaction commit are written to the
backing log files on disk. A value of true causes the data to not be flushed to disk. See the
Getting Started with Transaction Processing for Java guide for more information.

set TxnW it eNoSync()

Determines whether logs are flushed on transaction commit (the logs are still written,
however). By setting this value to true, you potentially gain better performance than if you
flush the logs on commit, but you do so by losing some of your transaction durability
guarantees. See the Getting Started with Transaction Processing for Java guide for more
information.

8/14/2009

Getting Started with DB Page 14

There is also a corresponding getter method (get TxnNoSync()). Moreover, you can always
retrieve your environment's Envi r onment Mut abl eConf i g object by using the
Envi ronment . get Mut abl eConfi g() method.

For example:

package db. gettingStarted,;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi r onment Mut abl eConfi g;

inmport java.io.File;
i nport java.io.FileNot FoundExcepti on;

try {
Environment nyEnv = new Environment (new File("/export/dbEnv"), null);

Envi ronment Mit abl eConfi g envMit abl eConfig =
new Envi ronment Mut abl eConfi g();
envMit abl eConfi g. set TxnNoSync(true);
myEnv. set Mut abl eConf i g(envMit abl eConfi g) ;
} catch (DatabaseException dbe) {
/| Exception handling goes here
} catch (FileNotFoundException fnfe) {
/| Exception handling goes here

}

8/14/2009 Getting Started with DB Page 15

Part I. Programming with the
Direct Persistence Layer

This section discusses how to build an application using the DPL. The DPL is ideally suited for those
applications that want a mechanism for storing and managing Java class objects in a DB database. Note
that the DPL is best suited for applications that work with classes with a relatively static schema.

Also, the DPL requires Java 1.5.

If you want to use Java 1.4 for your DB application, or if you are porting an application from the Berkeley
DB API, then you probably want to use the base API instead of the DPL. For information on using the base
API, see Programming with the Base API (page 57).

Chapter 3. Direct Persistence Layer First Steps

This chapter guides you through the first few steps required to use the DPL with your application.
These steps include:

1. Opening your environment as was described in Opening Database Environments (page 11).
2. Opening your entity store.
3. Identifying the classes that you want to store in DB as either a persi stent classoranentity.

Once you have done these things, you can write your classes to the DB databases, read them
back from the databases, delete them from the databases, and so forth. These activities are
described in the chapters that follow in this part of this manual.

Entity Stores

Entity stores are the basic unit of storage that you use with the DPL. That is, it is a unit of
encapsulation for the classes that you want to store in DB. Under the hood it actually interacts
with DB databases, but the DPL provides a layer of abstraction from the underlying DB APlIs.
The store, therefore, provides a simplified mechanism by which you read and write your stored
classes. By using a store, you have access to your classes that is more simplified than if you
were interacting with databases directly, but this simplified access comes at the cost of reduced
flexibility.

Entity stores have configurations in the same way that environments have configurations. You
can use a St oreConfi g object to identify store properties. Among these are methods that allow
you to declare whether:

« the store can be created if it does not exist at the time it is opened. Use the
StoreConfig. set Al l owCreat e() method to set this.

« the store is read-only. Use the StoreConfi g. set ReadOnl y() method to set this.

« the store supports transactions. Use the St oreConfi g. set Transacti onal () method to set
this.

Writing DB transactional applications is described in the Berkeley DB Java Edition Getting
Started with Transaction Processing guide.

EntitySt ore objects also provide methods for retrieving information about the store, such as:
« the store's name. Use the EntitySt ore. get St oreNane() method to retrieve this.

« a handle to the environment in which the store is opened. Use the
EntityStore. get Environnent method to retrieve this handle.

You can also use the EntityStore to retrieve all the primary and secondary indexes related to
a given type of entity object contained in the store. See Working with Indices (page 22) for
more information.

8/14/2009

Getting Started with DB Page 17

Opening and Closing Environments and Stores

As described in Database Environments (page 11), an environment is a unit of encapsulation
for DB databases. It also provides a handle by which activities common across the databases

can be managed.

To use an entity store, you must first open an environment and then provide that environment
handle to the EntitySt ore constructor.

For example, the following code fragment configures both the environment and the entity
store such that they can be created if they do not exist. Both the environment and the entity

store are then opened.

package persist.gettingStarted;

inmport java.io.File;

i nport java.io.FileNot FoundExcepti on;

i mport com sl eepycat .
i mport com sl eepycat .
i mport com sl eepycat .

i mport com sl eepycat .
i mport com sl eepycat .

db. Dat abaseExcept i on;
db. Envi ronment ;
db. Envi ronnment Confi g;

persist.EntityStore;
persist. StoreConfig;

private Environment nyEnv;
private EntityStore store;

try {

Envi ronnment Confi g nyEnvConfig = new Environnent Config();
StoreConfig storeConfig = new StoreConfig();

myEnvConfi g. set Al | owCreat e(!readOnl y);
storeConfig.set Al l owCreate(!readOnly);

try {

/1 Open the environment and entity store

myEnv = new Envi ronnent (envHone, nyEnvConfi g);

store = new EntityStore(nyEnv, "EntityStore", storeConfig);
} catch (FileNot FoundException fnfe) {

Systemerr.printin(fnfe.toString());

Systemexit (-

1);

}
} catch(Dat abaseException dbe) {
Systemerr.println("Error opening environnent and store: " +

dbe.toString());

8/14/2009

Getting Started with DB Page 18

Systemexit(-1);
}

As always, before you exit your program you should close both your store and your environment.
Be sure to close your store before you close your environment.

if (store !=null) {
try {
store.close();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing store: " +
dbe.toString());
Systemexit(-1);

}

if (myEnv !'=null) {

try {
Il Finally, close environnent.
myEnv. cl ose();

} catch(DatabaseException dbe) {
Systemerr.printin("Error closing MDbEnv: " +

dbe.toString());

Systemexit(-1);

}
Persistent Objects
When using the DPL, you store data in the underlying DB databases by making objects persistent.

You do this using Java annotations that both identify the type of persistent object you are
declaring, as well as the primary and secondary indices.

The following are the annotations you will use with your DPL persistent classes:

Annotation Description

@Entity Declares an entity class; that is, a class with a
primary index and optionally one or more
indices.

®@Persistent Declares a persistent class; that is, a class used

by an entity class. They do not have indices
but instead are are stored or retrieved when
an entity class makes direct use of them.

@PrimaryKey Declares a specific data member in an entity
class to be the primary key for that object.
This annotation must be used one and only one
time for every entity class.

8/14/2009 Getting Started with DB Page 19

Annotation Description

@SecondaryKey Declares a specific data member in an entity
class to be a secondary key for that object.
This annotation is optional, and can be used
multiple times for an entity class.

For example, the following is declared to be an entity class:

package persist.gettingStarted;

i nport com sl eepycat . persist. model . Entity;
i mport com sl eepycat . persi st. model . Pri mar yKey;

@ntity
public class ExanpleEntity {

[/ The primry key nust be unique in the database.
@ri mar yKey
private String aPrimaryKey;

@secondar yKey(rel at e=MANY_TO_ONE)
private String aSecondaryKey;

[/ The remainder of the class' inplenmentation is purposefully
[/ omitted in the interest of brevity.

}

We discuss primary and secondary keys in more detail in Working with Indices (page 22).

Saving a Retrieving Data

All data stored using the DPL has one primary index and zero or more secondary indices
associated with it. (Sometimes these are referred to as the primary and secondary keys.) So
to store data under the DPL, you must:

1. Declare a class to be an entity class.
2. ldentify the features on the class which represent indexed material.

3. Retrieve the store's primary index for a given class using the Ent i t ySt or e. get Pri maryl ndex()
method.

4. Put class objects to the store using the Pri maryl ndex. put () method.

8/14/2009 Getting Started with DB Page 20

In order to retrieve an object from the store, you use the index that is most convenient for
your purpose. This may be the primary index, or it may be some other secondary index that
you declared on your entity class.

You obtain a primary index in the same was as when you put the object to the store: using
EntityStore. getPrinarylndex(). You can get a secondary index for the store using the
EntityStore. get Secondaryl ndex() method. Note that get Secondaryl ndex() requires you to
provide a Pri maryl ndex class instance when you call it, so a class's primary index is always
required when retrieving objects from an entity store.

Usually all of the activity surrounding saving and retrieving data is organized within a class or
classes specialized to that purpose. We describe the construction of these data accessor classes
in SimpleDA.class (page 28). But before you perform any entity store activity, you need to
understand indexes. We therefore describe them in the next chapter.

8/14/2009

Getting Started with DB Page 21

Chapter 4. Working with Indices

All entity classes stored in DB using the DPL must have a primary index, or key, identified for
them. All such classes may also have one or more secondary keys declared for them. This
chapter describes primary and secondary indexes in detail, and shows how to access the indexes
created for a given entity class.

One way to organize access to your primary and secondary indexes is to create a data accessor
class. We show an implementation of a data accessor class in SimpleDA.class (page 28).

Accessing Indexes

In order to retrieve any object from an entity store, you must access at least the primary index
for that object. Different entity classes stored in an entity store can have different primary
indexes, but all entity classes must have a primary index declared for it. The primary index is
just the default index used for the class. (That is, it is the data’s primary key for the underlying
database.)

Entity classes can optionally have secondary indexes declared for them. In order to access
these secondary indexes, you must first access the primary index.

Accessing Primary Indices

You retrieve a primary index using the EntityStore. get Pri naryl ndex() method. To do this,
you indicate the index key type (that is, whether it is a String, Integer, and so forth) and the
class of the entities stored in the index.

For example, the following retrieves the primary index for an I nvent ory class (we provide an
implementation of this class in Inventory.java (page 43)). These index keys are of type Stri ng.

Primaryl ndex<String, I nventory> inventoryBySku =
store. get Primaryl ndex(String.class, Inventory.class);

Accessing Secondary Indices

You retrieve a secondary index using the EntitySt ore. get Secondaryl ndex() method. Because
secondary indices actually refer to a primary index somewhere in your data store, to access a
secondary index you:

1. Provide the primary index as returned by EntityStore. get Prinmaryl ndex().
2. ldentify the key data type used by the secondary index (String, Long, and so forth).

3. Identify the name of the secondary key field. When you declare the Secondar yl ndex object,
you identify the entity class to which the secondary index must refer.

For example, the following first retrieves the primary index, and then uses that to retrieve a
secondary index. The secondary key is held by the i t emNane field of the | nventory class.

8/14/2009

Getting Started with DB Page 22

Primaryl ndex<String, I nventory> invent oryBySku =
store.get Primaryl ndex(String.class, Inventory.class);

Secondaryl ndex<String, String, I nventory> invent oryByName =
store. get Secondaryl ndex(i nventoryBySku, String.class, "itemName");

Creating Indexes

To create an index using the DPL, you use Java annotations to declare which feature on the
class is used for the primary index, and which features (if any) are to be used as secondary
indexes.

All entity classes stored in the DPL must have a primary index declared for it.

Entity classes can have zero or more secondary indexes declared for them. There is no limit
on the number of secondary indexes that you can declare.

Declaring a Primary Indexes

You declare a primary key for an entity class by using the @ri mar yKey annotation. This
annotation must appear immediately before the data member which represents the class's
primary key. For example:

package persist.gettingStarted;

i nport com sl eepycat . persist.model . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Vendor {

private String address;
private String bi zPhoneNunber;
private String city;

private String repName;
private String repPhoneNunber;
private String state;

[/ Primary key is the vendor's name

[/ This assunes that the vendor's nane is
[/ unique in the database.

@r i mar yKey

private String vendor;

For this class, the vendor value is set for an individual Vendor class object by the set Vendor Nang()
method. If our example code fails to set this value before storing the object, the data member
used to store the primary key is set to a null value. This would result in a runtime error.

8/14/2009 Getting Started with DB Page 23

You can avoid the need to explicitly set a value for a class's primary index by specifying a
sequence to be used for the primary key. This results in an unique integer value being used as
the primary key for each stored object.

You declare a sequence is to be used by specifying the sequence keyword to the @ri nar yKey
annotation. You must also provide a name for the sequence. For example: For example:

@r i mar yKey(sequence="Sequence_Nanespace")
| ong nyPri maryKey;

Declaring Secondary Indexes

To declare a secondary index, we use the @econdar yKey annotation. Note that when we do
this, we must declare what sort of an index it is; that is, what is its relationship to other data
in the data store.

The kind of indices that we can declare are:
« ONE_TO ONE

This relationship indicates that the secondary key is unique to the object. If an object is
stored with a secondary key that already exists in the data store, a run time error is raised.

For example, a person object might be stored with a primary key of a social security number
(in the US), with a secondary key of the person's employee nhumber. Both values are expected
to be unique in the data store.

« MANY_TO ONE

Indicates that the secondary key may be used for multiple objects in the data store. That
is, the key appears more than once, but for each stored object it can be used only once.

Consider a data store that relates managers to employees. A given manager will have multiple
employees, but each employee is assumed to have just one manager. In this case, the
manager's employee number might be a secondary key, so that you can quickly locate all
the objects related to that manager's employees.

« ONE_TO MANY

Indicates that the secondary key might be used more than once for a given object. Index
keys themselves are assumed to be unique, but multiple instances of the index can be used
per object.

For example, employees might have multiple unique email addresses. In this case, any given
object can be access by one or more email addresses. Each such address is unique in the
data store, but each such address will relate to a single employee object.

« MANY_TO MANY

There can be multiple keys for any given object, and for any given key there can be many
related objects.

8/14/2009

Getting Started with DB Page 24

For example, suppose your organization has a shared resource, such as printers. You might
want to track which printers a given employee can use (there might be more than one). You
might also want to track which employees can use a specific printer. This represents a
many-to-many relationship.

Note that for ONE_TO ONE and MANY_TO ONE relationships, you need a simple data member (not
an array or collection) to hold the key. For ONE_TO MANY and MANY_TO MANY relationships, you
need an array or collection to hold the keys:

@econdar yKey(rel at e=ONE_TO _ONE)
private String primaryEmail Address

new String();

@econdar yKey(rel at e=ONE_TO_MANY)
private Set<String> email Addresses

new HashSet <String>();

Foreign Key Constraints

Sometimes a secondary index is related in some way to another entity class that is also contained
in the data store. That is, the secondary key might be the primary key for another entity class.
If this is the case, you can declare the foreign key constraint to make data integrity easier to
accomplish.

For example, you might have one class that is used to represent employees. You might have
another that is used to represent corporate divisions. When you add or modify an employee
record, you might want to ensure that the division to which the employee belongs is known to
the data store. You do this by specifying a foreign key constraint.

When a foreign key constraint is declared:

* When a new secondary key for the object is stored, it is checked to make sure it exists as a
primary key for the related entity object. If it does not, a runtime error occurs.

« When a related entity is deleted (that is, a corporate division is removed from the data
store), some action is automatically taken for the entities that refer to this object (that is,
the employee objects). Exactly what that action is, is definable by you. See below.

When a related entity is deleted from the data store, one of the following actions are taken:
o ABORT

The delete operation is not allowed. A runtime error is raised as a result of the operation.
This is the default behavior.

» CASCADE

All entities related to this one are deleted as well. For example, if you deleted a Di vi si on
object, then all Enpl oyee objects that belonged to the division are also deleted.

e NULLIFY

8/14/2009

Getting Started with DB Page 25

All entities related to the deleted entity are updated so that the pertinent data member is
nullified. That is, if you deleted a division, then all employee objects related to that division
would have their division key automatically set to null.

You declare a foreign key constraint by using the rel at edEnt ity keyword. You declare the
foreign key constraint deletion policy using the onRel at edEnt i t yDel et e keyword. For example,
the following declares a foreign key constraint to Di vi si on class objects, and it causes related
objects to be deleted if the Di vi si on class is deleted:

@econdar yKey(rel at e=ONE_TO ONE, rel atedEntity=Division.class,
onRel at edEnt i t yDel et e=CASCADE)
private String division = new String();

8/14/2009 Getting Started with DB Page 26

Chapter 5. Saving and Retrieving Objects

To store an object in an Ent i t ySt or e you must annotate the class appropriately and then store
it using Pri maryl ndex. put () .

To retrieve and object from an Enti t ySt ore you use the get () method from either the
Pri maryl ndex or Secondaryl ndex, whichever is most appropriate for your application.

In both cases, it simplifies things greatly if you create a data accessor class to organize your
indexes.

In the next few sections we:

1. Create an entity class that is ready to be stored in an entity store. This class will have both
a primary index (required) declared for it, as well as a secondary index (which is optional).

See the next section for this implementation.
2. Create a data accessor class which is used to organize our data.

See SimpleDA.class (page 28) for this implementation.
3. Create a simple class that is used to put objects to our entity store.

See Placing Objects in an Entity Store (page 29) for this implementation.
4. Create another class that retrieves objects from our entity store.

See Retrieving Objects from an Entity Store (page 32) for this implementation.

A Simple Entity Class

For clarity's sake, this entity class is a simple a class as we can write. It contains only two data
members, both of which are set and retrieved by simple setter and getter methods. Beyond
that, by design this class does not do anything or particular interest.

Its implementation is as follows:

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;

i nport com sl eepycat . persi st. nodel . Pri mar yKey;

inport static com sl eepycat. persist.nodel . Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity
public class SinpleEntityCass {

[l Primary key is pKey
@r i mar yKey

8/14/2009 Getting Started with DB Page 27

private String pKey;

/] Secondary key is the sKey
@econdar yKey(rel at e=MANY_TO_ONE)
private String sKey;

public void setPKey(String data) {

pKey = dat a;

}

public void setSKey(String data) {
sKey = dat a;

}

public String getPKey() {
return pKey;

}

public String get SKey() {
return skey;
}
}

SimpleDA.class

As mentioned above, we organize our primary and secondary indexes using a specialize data
accessor class. The main reason for this class to exist is to provide convenient access to all the
indexes in use for our entity class (see the previous section, A Simple Entity Class (page 27),
for that implementation).

For a description on retrieving primary and secondary indexes under the DPL, see Working with
Indices (page 22)

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat. persist.EntityStore;

i nport com sl eepycat . persist. Primaryl ndex;

i nport com sl eepycat . persi st. Secondaryl ndex;

public class SinpleDA {
[/ Open the indices
public SinpleDA(EntityStore store)
t hrows Dat abaseException {

Il Primary key for SinpleEntityd ass classes
pl dx = store.getPrimaryl ndex(

8/14/2009 Getting Started with DB Page 28

String.class, SinpleEntityd ass.class);

Il Secondary key for SinpleEntityC ass classes
Il Last field in the getSecondarylndex() nethod nust be

[l the name of a class nenber;

inthis case, an

Il SinmpleEntityd ass.class data nenber.
sldx = store. get Secondaryl ndex(
pldx, String.class, "sKey");

}

/1 1ndex Accessors
Pri maryl ndex<String, Si npl eEntityC ass> pl dx;
Secondaryl ndex<String, String, Si npl eEntityC ass> sl dx;

}

Placing Objects in an Entity Store

In order to place an object in a DPL entity store, you must:

1. Open the environment and store.

2. Instantiate the object.

3. Put the object to the store using the put () method for the object's primary index.

The following example uses the Si npl eDA class that we show in SimpleDA.class (page 28) to
put a Si npl eEntityd ass object (see A Simple Entity Class (page 27)) to the entity store.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

import java.io.File;

i nport java.io.FileNot FoundExcepti on;

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.

i nport com sl eepycat.
i nport com sl eepycat.

db. Dat abaseExcepti on;
db. Envi ronnent ;
db. Envi ronnent Confi g;

persist.EntityStore;
persi st. StoreConfig;

public class SinpleStorePut {

private static File envHome = new File("

private Environment envimt;
private EntityStore store;
private SinpleDA sda;

./ JEDB'");

8/14/2009

Getting Started with DB

Page 29

Next we create a method that simply opens our database environment and entity store for us.

Il The setup() method opens the environment and store
[/ for us.
public void setup()

throws Dat abaseException {

Envi ronment Confi g envConfig = new Environment Config();
StoreConfig storeConfig = new StoreConfig();

envConfig.set All owCreate(true);
storeConfig.set Al l owCreate(true);

try {
/1 Open the environnent and entity store

envit = new Envi ronnent (envHone, envConfig);

store = new EntityStore(envimt, "EntityStore", storeConfig);
} catch (FileNot FoundException fnfe) {

Systemerr.printIn("setup(): " + fnfe.toString());

Systemexit(-1);

}

We also need a method to close our environment and store.

/1 Close our environment and store.
public voi d shutdown()
throws Dat abaseException {

store.close();
envmt . cl ose();

}

Now we need to create a method to actually write objects to our store. This method creates
a Si npl eDA object (see SimpleDA.class (page 28) that we will use to access our indexes. Then
we instantiate a serious of Si npl eEntityCd ass (see A Simple Entity Class (page 27)) instances
that we will place in our store. Finally, we use our primary index (obtained from the Si npl eDA
class instance) to actually place these objects in our store.

In Retrieving Objects from an Entity Store (page 32) we show a class that is used to retrieve
these objects.

/1 Populate the entity store
private void run()
throws Dat abaseException {

setup();
/1 Qpen the data accessor. This is used to store

Il persistent objects.
sda = new Sinpl eDA(store);

8/14/2009

Getting Started with DB Page 30

Il Instantiate and store some entity classes
Sinpl eEntityC ass secl = new Sinpl eEntityC ass()
Sinpl eEntityC ass sec2 = new Sinpl eEntityd ass();
Sinpl eEntityC ass sec3 = new Sinpl eEntityd ass();
()
()

Sinpl eEntityC ass sec4 = new Sinpl eEntityC ass
Sinpl eEntityC ass sec5 = new Sinpl eEntityC ass

secl. set PKey("keyone");
secl. set SKey("skeyone");

sec2. set PKey("keytwo");
sec2. set SKey("skeyone");

sec3. set PKey("keythree");
sec3. set SKey("skeytwo");

sec4. set PKey("keyfour");
sec4d. set SKey("skeyt hree");

secb. set PKey("keyfive");
secb. set SKey("skeyfour™");

sda. pl dx. put (secl)

sda. pl dx. put (sec2);

sda. pl dx. put (sec3);
(secd);
(secd)

sda. pl dx. put (sec4
sda. pl dx. put (sec5

shut down() ;

}

Finally, to complete our class, we need a mai n() method, which simply calls our run() method.

[/ main
public static void main(String args[]) {

Si npl eSt orePut ssp = new Sinpl eSt orePut () ;

try {
ssp.run();

} catch (DatabaseException dbe) {
Systemerr.printIn("SinmpleStorePut: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {

Systemout. println("Exception: " + e.toString());
e.printStackTrace();

}
Systemout.printin("Al done.");

8/14/2009 Getting Started with DB Page 31

}

Retrieving Objects from an Entity Store

You retrieve objects placed in an entity store by using either the object’'s primary index, or
the appropriate secondary index if it exists. The following application illustrates this by
retrieving some of the objects that we placed in an entity store in the previous section.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

i mport
i mport

i mport
i mport
i mport

i mport
i mport

public

java.io.File;
java.io. Fi | eNot FoundExcepti on;

com sl eepycat . db. Dat abaseExcepti on;
com sl eepycat . db. Envi r onment ;
com sl eepycat . db. Envi r onnment Confi g;

com sl eepycat . persist. EntityStore;
com sl eepycat . persist. StoreConfi g;

class SinpleStoreGet {

private static File envHome = new File("./JEDB");

private Environment envmt;
private EntityStore store;
private SinpleDA sda;

Next we create a method that simply opens our database environment and entity store for us.

Il The setup() nmethod opens the environment and store

I

for us.

public void setup()

throws Dat abaseException {

Envi ronment Confi g envConfig = new Environment Config();
StoreConfig storeConfig = new StoreConfig();

envConfig.set All owCreate(true);
storeConfig.set Al l owCreat e(true);

try {
/1 Open the environnent and entity store

envimt = new Envi ronnent (envHone, envConfig);
store = new EntityStore(envimt, "EntityStore", storeConfig);
} catch (FileNot FoundException fnfe) {

8/14/2009

Getting Started with DB

Page 32

Systemerr.printIn("setup(): " + fnfe.toString());
Systemexit(-1);

}

We also need a method to close our environment and store.

/1 Close our environment and store.
publi ¢ voi d shutdown()
throws Dat abaseException {

store.close();
envmt . cl ose();

}

Now we retrieve a few objects. To do this, we instantiate a Si npl eDA (see

SimpleDA.class (page 28)) class that we use to access our primary and secondary indexes. Then
we retrieve objects based on a primary or secondary index value. And finally, we display the
retrieved objects.

/'l Retrieve some SinpleEntityC ass objects fromthe store.
private void run()
throws Dat abaseException {

setup();

Il Qpen the data accessor. This is used to store
Il persistent objects.
sda = new Sinpl eDA(store);

Il Instantiate and store some entity classes
Sinpl eEntityC ass secl = sda. pl dx. get ("keyone");
Sinpl eEntityC ass sec2 = sda. pl dx. get ("keytwo");

Sinpl eEntityC ass sec4 = sda. sl dx. get("skeythree");

Systemout.printin("secl: " + secl.getPKey());
Systemout. println("sec2: " + sec2.getPKey());
Systemout. printin("sec4: " + secd.getPKey());

shut down() ;

}

Finally, to complete our class, we need a mai n() method, which simply calls our run() method.

/1 main
public static void main(String args[]) {
Sinpl eSt oreGet ssg = new SinpleStoreGet();

try {
ssg.run();

8/14/2009 Getting Started with DB Page 33

} catch (DatabaseException dbe) {
Systemerr.printIn("SinpleStoreGet: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {

Systemout. println("Exception: " + e.toString());
e.print StackTrace();

}
Systemout.printin("Al done.");

}

Retrieving Multiple Objects

It is possible to iterate over every object referenced by a specific index. You may want to do
this if, for example, you want to examine or modify every object accessible by a specific

primary index.

In addition, some indexes result in the retrieval of multiple objects. For example, MANY_TO ONE
secondary indexes can result in more than one object for any given key (also known as duplicate
keys). When this is the case, you must iterate over the resulting set of objects in order to

examine each object in turn.

There are two ways to iterate over a collection of objects as returned by an index. One is to
use a standard Java | t erat or, which you obtain using an Ent it yCur sor, which in turn you can

obtain from a Pri maryl ndex:

Pri maryl ndex<String, Si npl eEntityd ass> pi =

store. get Primaryl ndex(String.class, SinpleEntityd ass.class);
EntityCursor<Sinpl eEntityCd ass> pi _cursor = pi.entities();
try {

Iterator<SinpleEntityCass> i = pi_cursor.iterator();

while (i.hasNext()) {

/1 Do sonething here
}

} finally {
[/ Always cl ose the cursor

pi _cursor.close();

}

Alternatively, you can use a Java "foreach” statement to iterate over object set:

Primaryl ndex<String, Si npl eEntityC ass> pi =
store.get Primaryl ndex(String.class, SinpleEntityd ass.class);
EntityCursor<Sinpl eEntityCd ass> pi _cursor = pi.entities();
try {
for (SinpleEntitydass seci : pi_cursor) {
/1 do something with each object "seci"

}

/1 Always make sure the cursor is closed when we are done with it.

8/14/2009

Getting Started with DB

Page 34

} finally {
sec_cursor. cl ose();
}

Cursor Initialization

When a cursor is first opened, it is not positioned to any value; that is, it is not initialized.
Most of the Enti t yCur sor methods that move a cursor will initialize it to either the first or last
object, depending on whether the operation is moving the cursor forward (all next ... methods)
or backwards (all prev. ..) methods.

You can also force a cursor, whether it is initialized or not, to return the first object by calling
EntityCursor.first(). Similarly, you can force a return of the last object using
EntityCursor.last().

Operations that do not move the cursor (such as EntityCursor. current() or
EntityCursor.del ete() will throw an |11 egal St at eExcepti on when used on an uninitialized
cursor.

Working with Duplicate Keys

If you have duplicate secondary keys, you can return an Entityl ndex class object for them
using Secondar yl ndex. subl ndex() Then, use that object's entities() method to obtain an
EntityCursor instance.

For example:

Primaryl ndex<String, Si npl eEntityd ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);

Secondar yl ndex<String, String, Si npl eEntityd ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityC ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {
for (SinpleEntityC ass seci : sec_cursor) {

/1 do something with each object "seci"

}
Il Aways make sure the cursor is closed when we are done with it.
} finally {

sec_cursor.close(); }

Note that if you are working with duplicate keys, you can control how cursor iteration works
by using the following Ent it yCur sor methods:

e next Dup()

8/14/2009 Getting Started with DB Page 35

Moves the cursor to the next object with the same key as the cursor is currently referencing.
That is, this method returns the next duplicate object. If no such object exists, this method
returns nul I .

e prevDup()

Moves the cursor to the previous object with the same key as the cursor is currently
referencing. That is, this method returns the previous duplicate object in the cursor's set of
objects. If no such object exists, this method returns nul | .

« next NoDup()

Moves the cursor to the next object in the cursor's set that has a key which is different than
the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the next non-duplicate object in the cursor's set of objects. If no such
object exists, this method returns nul | .

o prevNoDup()

Moves the cursor to the previous object in the cursor's set that has a key which is different
than the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the previous non-duplicate object in the cursor's set of objects. If no
such object exists, this method returns nul | .

For example:

Pri maryl ndex<String, Si npl eEntityd ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);

Secondaryl ndex<String, String, Si npl eEntityd ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityC ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {
Si npl eEnti tyd ass sec;

Iterator<SinpleEntityCass> i = sec_cursor.iterator();
while (sec = i.nextNoDup() != null) {
/1 Do sonething here

}
/1 Al'ways make sure the cursor is closed when we are done with it.
} finally {

sec_cursor.close(); }
Key Ranges

You can restrict the scope of a cursor's movement by specifying a range when you create the
cursor. The cursor can then never be positioned outside of the specified range.

8/14/2009 Getting Started with DB Page 36

When specifying a range, you indicate whether a range bound is inclusive or exclusive by
providing a boolean value for each range. t rue indicates that the provided bound is inclusive,
while f al se indicates that it is exclusive.

You provide this information when you call Pri maryl ndex. entities() or

Secondaryl ndex. entities(). For example, suppose you had a class indexed by numerical
information. Suppose further that you wanted to examine only those objects with indexed
values of 100 - 199. Then (assuming the numerical information is the primary index), you can
bound your cursor as follows:

EntityCursor<SoneEntityC ass> cursor =
primarylndex. entities(100, true, 200, false);

try {
for (SoneEntityC ass sec : cursor {

/1 Do something here to objects ranged from 100 to 199

}
/1 Always make sure the cursor is closed when we are done with it.
} finally {

cursor.close(); }

Join Cursors

If you have two or more secondary indexes set for an entity object, then you can retrieve sets
of objects based on the intersection of multiple secondary index values. You do this using an
EntityJoin class.

For example, suppose you had an entity class that represented automobiles. In that case, you
might be storing information about automobiles such as color, number of doors, fuel mileage,
automobile type, number of passengers, make, model, and year, to name just a few.

If you created a secondary index based this information, then you could use an EntityJoin to
return all those objects representing cars with, say, two doors, that were built in 2002, and
which are green in color.

To create a join cursor, you:

1. Open the primary index for the entity class on which you want to perform the join.
2. Open the secondary indexes that you want to use for the join.

3. Instantiate an Enti tyJoi n object (you use the primary index to do this).

4. Use two or more calls to Enti tyJoi n. addCondi tion() to identify the secondary indexes and
their values that you want to use for the equality match.

5. Call EntityJoin.entities() toobtain a cursor that you can use to iterate over the join
results.

For example, suppose we had an entity class that included the following features:

8/14/2009

Getting Started with DB Page 37

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;

i nport com sl eepycat . persi st. nodel . Pri mar yKey;

inport static com sl eepycat. persist.nodel . Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity
public class Autonobiles {

/] Primary key is the vehicle identification nunber
@r i mar yKey
private String vin;

/] Secondary key is the vehicle's make
@econdar yKey(rel at e=MANY_TO_ONE)
private String make;

/] Secondary key is the vehicle's color

@econdar yKey(rel at e=MANY_TO_ONE)
private String col or;

public String getVIN) {

return vin;

}

public String getMke() {
return make;

}

public String getColor() {
return color;

}

Then we could perform an entity join that searches for all the red automobiles made by Toyota
as follows:

Primaryl ndex<String, Aut onobi | es> vi n_pi dx;
Secondaryl ndex<String, String, Aut onobi | es> nmake_si dx;
Secondaryl ndex<String, String, Aut onobi | es> col or _si dx;

EntityJoi n<String, Aut onobil es> join = new EntityJoin(vin_pidx);
join.addCondi ti on(nmake_si dx, " Toyota");
join.addCondition(col or_sidx,"Red");

8/14/2009

Getting Started with DB Page 38

/1 Now iterate over the results of the join operation
For war dCur sor <Aut onobi | es> join_cursor = join.entities();

try {
for (Automobiles autoi : join_cursor) {
Il do something with each object "autoi”
}
/1 Al'ways make sure the cursor is closed when we are done with it.
} finally {

join_cursor.close();

}

Deleting Entity Objects

The simplest way to remove an object from your entity store is to delete it by its primary index.
For example, using the Si mpl eDA class that we created earlier in this document (see
SimpleDA.class (page 28)), you can delete the Si npl eEntityCd ass object with a primary key
of keyone as follows:

sda. pl dx. del et e("keyone");

You can also delete objects by their secondary keys. When you do this, all objects related to
the secondary key are deleted, unless the key is a foreign object.

For example, the following deletes all Si npl eEntityd ass with a secondary key of skeyone:

sda. sl dx. del et e("skeyone");

You can delete any single object by positioning a cursor to that object and then calling the
cursor's del et e() method.

Primaryl ndex<String, Si npl eEntityd ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);

Secondaryl ndex<String, String, Si npl eEntityd ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityC ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {

Si npl eEntityd ass sec;
Iterator<SinpleEntityCass> i = sec_cursor.iterator();
while (sec = i.nextDup() !'= null) {

if (sec.getSKey() == "sone value") {

i.delete();

}

}

/1 Al'ways make sure the cursor is closed when we are done with it.

8/14/2009

Getting Started with DB Page 39

} finally {
sec_cursor.close(); }

Finally, if you are indexing by foreign key, then the results of deleting the key is determined
by the foreign key constraint that you have set for the index. See Foreign Key
Constraints (page 25) for more information.

Replacing Entity Objects

To modify a stored entity object, retrieve it, update it, then put it back to the entity store:

Sinpl eEntityC ass sec = sda. pl dx. get ("keyone");
sec. set SKey("skeyoneupdat ed") ;
sda. pl dx. put (sec);

Note that because we updated a field on the object that is a secondary key, this object will
now be accessible by the secondary key of skeyoneupdat ed instead of the previous value, which
was skeyone

Be aware that if you modify the object's primary key, the behavior is somewhat different. In
this case, you cause a new instance of the object to be created in the store, instead of replacing
an existing instance:

Il Results in two objects in the store. One with a

[l primary index of "keyfive" and the other with primary index of
/1" keyfivenew .

Sinpl eEntityC ass sec = sda. pldx. get ("keyfive");

sec. set PKey("keyfivenew');

sda. pl dx. put (sec);

Finally, if you are iterating over a collection of objects using an Enti t yCur sor, you can update
each object in turn using Enti t yCur sor. updat e() . Note, however, that you must be iterating
using a Pri maryl ndex; this operation is not allowed if you are using a Secondar yl ndex.

For example, the following iterates over every Si npl eEnti t yC ass object in the entity store,
and it changes them all so that they have a secondary index of updat edskey:

EntityCursor<Sinpl eEntityC ass> sec_pcursor = sda.pldx.entities();
for (SinpleEntityCass sec : sec_pcursor) {

sec. set SKey(" updat edskey");

sec_pcursor. update(item;

}

sec_pcursor.close();

8/14/2009

Getting Started with DB Page 40

Chapter 6. A DPL Example

In order to illustrate DPL usage, we provide a complete working example in this chapter. This
example reads and writes inventory and vendor information for a mythical business. The
application consists of the following classes:

 Several classes used to encapsulate our application's data. See Vendor.java (page 41) and
Inventory.java (page 43).

» A convenience class used to open and close our environment and entity store. See
MyDbEnv (page 45).

A class that loads data into the store. See ExampleDatabasePut.java (page 48).

« Finally, a class that reads data from the store. See ExamplelnventoryRead.java (page 52).

Vendor.java

The simplest class that our example wants to store contains vendor contact information. This
class contains no secondary indices so all we have to do is identify it as an entity class and
identify the field in the class used for the primary key.

In the following example, we identify the vendor data member as containing the primary key.
This data member is meant to contain a vendor's name. Because of the way we will use our
EntityStore, the value provided for this data member must be unique within the store or
runtime errors will result.

When used with the DPL, our Vendor class appears as follows. Notice that the @nti ty annotation
appears immediately before the class declaration, and the @ri mar yKey annotation appears
immediately before the vendor data member declaration.

package persist.gettingStarted;

i nport com sl eepycat . persist. model . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Vendor {

private String address;
private String bi zPhoneNunber;
private String city;

private String repNane;
private String repPhoneNunber;
private String state;

[/ Primary key is the vendor's name
[/ This assunes that the vendor's name is
[/ unique in the database.

8/14/2009

Getting Started with DB Page 41

@r i mar yKey
private String vendor;

private String zipcode;

public void setRepName(String data) {
repNane = dat a;

}

public void setAddress(String data) {
address = data;

}

public void setCity(String data) {
city = data;

}

public void setState(String data) {
state = data;

}

public void setZ pcode(String data) {
zi pcode = dat a;

}

public void setBusinessPhoneNunber (String data) {
bi zPhoneNunber = dat a;

}

public void setRepPhoneNunber (String data) {
repPhoneNunber = dat a;

}

public void setVendorNane(String data) {
vendor = data;

}

public String getRepNane() {
return repNane;

}

public String getAddress() {
return address;

}

public String getGity() {
return city;

}

8/14/2009 Getting Started with DB Page 42

public String getState() {
return state;

}

public String getZpcode() {
return zipcode;

}

public String getBusi nessPhoneNumber () {
return bi zPhoneNunber;

}

public String get RepPhoneNunber () {
return repPhoneNunber;

}
}

For this class, the vendor value is set for an individual Vendor class object by the set Vendor Narrg()
method. If our example code fails to set this value before storing the object, the data member
used to store the primary key is set to a null value. This would result in a runtime error.

Inventory.java

Our example's | nvent ory class is much like our Vendor class in that it is simply used to
encapsulate data. However, in this case we want to be able to access objects two different
ways: by product SKU and by product name.

In our data set, the product SKU is required to be unique, so we use that as the primary key.
The product name, however, is not a unique value so we set this up as a secondary key.

The class appears as follows in our example:

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;

i nport com sl eepycat . persi st. nodel . Pri mar yKey;

inport static com sl eepycat. persist.nodel.Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity
public class Inventory {

[l Primary key is sku
@ri mar yKey
private String sku;

/'l Secondary key is the itenNane
@secondar yKey(rel at e=MANY_TO_ONE)
private String itenmNang;

8/14/2009

Getting Started with DB Page 43

private String category;
private String vendor;
private int vendorlnventory;
private float vendorPrice;

public void setSku(String data) {
sku = dat a;

}

public void setltenmName(String data) {
itenName = data;
}

public void setCategory(String data) {
category = data;

}

public void setVendorlnventory(int data) {
vendor I nventory = dat a;

}

public void setVendor(String data) {
vendor = data;

}

public void setVendorPrice(float data) {
vendor Price = data;

}

public String getSku() {
return sku;

}

public String getltemNane() {
return itenName;

}

public String getCategory() {
return category;

}

public int getVendorlnventory() {
return vendor | nventory;

}

public String getVendor() {
return vendor;

}

8/14/2009 Getting Started with DB Page 44

public float getVendorPrice() {
return vendorPrice;

}
}
MyDbEnv
The applications that we are building for our example both must open and close environments
and entity stores. One of our applications is writing to the entity store, so this application
needs to open the store as read-write. It also wants to be able to create the store if it does
not exist.
Our second application only reads from the store. In this case, the store should be opened as
read-only.
We perform these activities by creating a single class that is responsible for opening and closing
our store and environment. This class is shared by both our applications. To use it, callers need
to only provide the path to the environment home directory, and to indicate whether the
object is meant to be read-only. The class implementation is as follows:
package persist.gettingStarted;
inport java.io.File;
i nport java.io.FileNot FoundExcepti on;
i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnment Confi g;
i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persist. StoreConfig;
public class MyDbEnv {
private Environnent nyEnv;
private EntityStore store;
/1 Qur constructor does nothing
public MyDbEnv() {}
/1 The setup() nethod opens the environment and store
/1 for us.
public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {
Envi ronment Confi g myEnvConfig = new Environnent Config();
StoreConfig storeConfig = new StoreConfig();
myEnvConfi g. set ReadOnl y(readOnl y);
8/14/2009 Getting Started with DB Page 45

storeConfig. set ReadOnl y(readOnl y);

[l 1f the environment is opened for wite, then we want to be
I/ able to create the environment and entity store if

Il they do not exist.

myEnvConfi g. set Al | owCr eat e(! readOnly);

storeConfig.setAll owCreate(!readOnly);

try {
/1 Open the environnent and entity store

myEnv = new Environment (envHone, nyEnvConfig);

store = new EntityStore(nyEnv, "EntityStore", storeConfig);
} catch (FileNot FoundException fnfe) {

Systemerr.printIn("setup(): " + fnfe.toString());

Systemexit(-1);

}

/] Return a handle to the entity store
public EntityStore getEntityStore() {
return store;

}

/] Return a handle to the environment
publ i ¢ Environnment getEnv() {
return myEnv;

}

[/ Close the store and environnent.
public void close() {
if (store !=null) {
try {
store.close();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing store: " +
dbe.toString());
Systemexit(-1);

}

if (nyEnv !=null) {

try {
/1 Finally, close the environnment.
myEnv. cl ose();

} catch(DatabaseException dbe) {
Systemerr.println("Error closing MDbEnv: " +

dbe.toString());

Systemexit(-1);

8/14/2009 Getting Started with DB Page 46

}

DataAccessor.java

Now that we have implemented our data classes, we can write a class that will provide
convenient access to our primary and secondary indexes. Note that like our data classes, this
class is shared by both our example programs.

If you compare this class against our Vendor and | nvent ory class implementations, you will see
that the primary and secondary indices declared there are referenced by this class.

See Vendor.java (page 41) and Inventory.java (page 43) for those implementations.

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . persist.EntityStore;

i nport com sl eepycat . persist. Primaryl ndex;

i nport com sl eepycat . persi st. Secondar yl ndex;

public class DataAccessor {
/1 Qpen the indices
publ i ¢ DataAccessor(EntityStore store)
throws Dat abaseException {

Il Primary key for Inventory classes
i nvent oryBySku = store. get Pri maryl ndex(
String.class, Inventory.class);

Il Secondary key for Inventory classes
Il Last field in the getSecondarylndex() nethod nust be
/'l the nane of a class nmenber; in this case, an Inventory.class
Il data menber.
i nvent or yByName = store. get Secondar yl ndex(
i nventoryBySku, String.class, "itemNane");

Il Primary key for Vendor class
vendor ByNane = store. getPrimaryl ndex(
String.class, Vendor.class);

}

/'l I'nventory Accessors
Primaryl ndex<String, | nventory> i nvent or yBySku;
Secondaryl ndex<String, String, | nvent ory> invent or yByNane;

8/14/2009

Getting Started with DB Page 47

/1 Vendor Accessors
Pri maryl ndex<String, Vendor > vendor ByNane;

}
ExampleDatabasePut.java

Our example reads inventory and vendor information from flat text files, encapsulates this
data in objects of the appropriate type, and then writes each object to an EntityStore.

To begin, we import the Java classes that our example needs. Most of the imports are related
to reading the raw data from flat text files and breaking them apart for usage with our data
classes. We also import classes from the DB package, but we do not actually import any classes
from the DPL. The reason why is because we have placed almost all of our DPL work off into
other classes, so there is no need for direct usage of those APIs here.

package persist.gettingStarted;

i nport java.io.BufferedReader;

inmport java.io.File;

inmport java.io.FilelnputStream

i nport java.io.FileNot FoundExcepti on;
i nport java.io.lOException;

import java.io.lnputStreanReader;
inmport java.util.ArrayList;

import java.util.List;

i nport com sl eepycat . db. Dat abaseExcepti on;

Now we can begin the class itself. Here we set default paths for the on-disk resources that we
require (the environment home, and the location of the text files containing our sample data).
We also declare Dat aAccessor and MyDbEnv members. We describe these classes and show their
implementation in DataAccessor.java (page 47) and MyDbEnv (page 45).

public class Exanpl eDat abasePut {
private static File nyDbEnvPath = new File("/tnp/JEDB");

private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

private DataAccessor da;

/] Encapsul ates the environment and data store.
private static MyDbEnv nyDbEnv = new MyDbEnv();

Next, we provide our usage() method. The command line options provided there are necessary
only if the default values to the on-disk resources are not sufficient.

private static void usage() {
System out. print| n("Exanpl eDat abasePut [-h <env directory>]");
System out. println(" [-i <inventory file> [-v <vendors file>]");

8/14/2009 Getting Started with DB Page 48

Systemexit(-1);
}

Our mai n() method is also reasonably self-explanatory. We simply instantiate an
Exanpl eDat abasePut object there and then call its run() method. We also provide a top-level
try block there for any exceptions that might be thrown during runtime.

Notice that the fi nal | y statement in the top-level t ry block calls MyDbEnv. cl ose() . This method
closes our EntityStore and Environment objects. By placing it here in the final | y statement,
we can make sure that our store and environment are always cleanly closed.

public static void main(String args[]) {

Exanpl eDat abasePut edp = new Exanpl eDat abasePut () ;

try {
edp. run(args);

} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abasePut: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {
Systemout. println("Exception: " + e.toString());
e.printStackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout. printin("Al done.");
}

Our run() method does four things. It calls MyDbEnv. set up() , which opens our Envi ronnent and
EntityStore. It then instantiates a Dat aAccessor object, which we will use to write data to
the store. It calls | oadVendor sDb() which loads all of the vendor information. And then it calls
| oadl nvent oryDb() which loads all of the inventory information.

Notice that the MyDbEnv object is being setup as read-write. This results in the EntityStore
being opened for transactional support. (See MyDbEnv (page 45) for implementation details.)

private void run(String args[])
throws Dat abaseException {
I/ Parse the argunents |ist
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // Path to the environment hone
fal se); [/ Environnent read-only?

Il Open the data accessor. This is used to store
Il persistent objects.
da = new Dat aAccessor (nyDbEnv. get EntityStore());

Systemout. println("loadi ng vendors db....");
| oadVendor sDb() ;

8/14/2009

Getting Started with DB Page 49

Systemout. println("loading inventory db....");
| oadl nvent oryDb();

}

We can now implement the | oadVendor sDb() method. This method is responsible for reading
the vendor contact information from the appropriate flat-text file, populating Vendor class
objects with the data and then writing it to the Enti t ySt or e. As explained above, each individual
object is written with transactional support. However, because a transaction handle is not
explicitly used, the write is performed using auto-commit. This happens because the EntityStore
was opened to support transactions.

To actually write each class to the Enti t ySt or e, we simply call the Pri maryl ndex. put () method
for the Vendor entity instance. We obtain this method from our Dat aAccessor class.

private void | oadVendorsDb()
throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data
I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the

I file.

Li st vendors = | oadFile(vendorsFile, 8);

/1 Now | oad the data into the store.

for (int i =0; i < vendors.size(); i++) {
String[] sArray = (String[])vendors. get(i);
Vendor theVendor = new Vendor ();

t heVendor .
.set Address(sArray[1]);
t heVendor .
t heVendor .

t heVendor

t heVendor

t heVendor

Il Put it

set Vendor Name(sArray[0]);

setCity(sArray[2]);
set State(sArray[3]);

.set Zi pcode(sArray[4]);
t heVendor .
t heVendor .
. set RepPhoneNunber (sArray[7]);

set Busi nessPhoneNumber (sArray[5]);
set RepNanme(sArray[6]);

in the store.

da. vendor ByNane. put (t heVendor) ;

}

Now we can implement our | oadl nvent oryDb() method. This does exactly the same thing as
the | oadVendor sDb() method.

private void | oadl nventoryDb()
t hrows Dat abaseException {

Il loadFile opens a flat-text file that contains our data
I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the

8/14/2009

Getting Started with DB Page 50

Il file.
List inventoryArray = |oadFile(inventoryFile, 6);

/1 Now | oad the data into the store. The itenmis sku is the
Il key, and the data is an Inventory class object.

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);
String sku = sArray[1];

Inventory thelnventory = new Inventory();
thel nventory. set|temNane(sArray[0]);
t hel nvent ory. set Sku(sArray[1]);
t hel nvent ory. set Vendor Pri ce(

(new Fl oat (sArray[2])).fl oatVal ue());
t hel nvent ory. set Vendor I nvent or y(

(new Integer(sArray[3])).intValue());
t hel nvent ory. set Cat egory(sArray[4]);
t hel nvent ory. set Vendor (sArray[5]);

[/ Put it in the store. Note that this causes our secondary key
/1 to be automatically updated for us.
da. i nvent oryBySku. put (t hel nventory);

}

The remainder of this example simple parses the command line and loads data from a flat-text
file. There is nothing here that is of specific interest to the DPL, but we show this part of the
example anyway in the interest of completeness.

private static void parseArgs(String args[]) {
for(int i =0; i <args.length; ++) {
if (args[i].startsWth("-")) {
switch(args[i].charAt(1)) {
case 'h':
myDbEnvPath = new Fil e(args[++i]);
br eak;
case 'i
inventoryFile = new File(args[++i]);
br eak;
case 'V':
vendorsFile = new File(args[++i]);
br eak;
defaul t:
usage();

[

8/14/2009 Getting Started with DB Page 51

private List loadFile(File theFile, int nunFields) {
List<String[]> records = new ArrayList<String[]>();
try {
String theLine = null;
FilelnputStreamfis = new FilelnputStrean(theFile);
Buf f eredReader br =
new Buf f er edReader (new | nput St r eanReader (fis));
whi | e((theLine=br.readLine()) !'=null) {
String[] theLineArray = theLine.split("#");
if (theLineArray.length I'= nunFields) {
Systemout. printin("Mlforrmed line found in " +
theFile.getPath());
Systemout. println("Line was: '" + theLine);
Systemout. printin("length found was: " +
t heLi neArray. | ength);
Systemexit(-1);

records. add(t heLi neArray);

}
/1 dose the input stream handl e
fis.close();

} catch (FileNot FoundException e) {
Systemerr.println(theFile.getPath() +
e.print StackTrace();
usage();

} catch (1OException e) {
Systemerr.printIn("l10 Exception: " + e.toString());
e.print StackTrace();

Systemexit(-1);

does not exist.");

}

return records;

}

protected Exanpl eDat abasePut () {}
}

ExampleInventoryRead.java

Exanpl el nvent or yRead retrieves inventory information from our entity store and displays it.
When it displays each inventory item, it also displays the related vendor contact information.

Exanpl el nvent or yRead can do one of two things. If you provide no search criteria, it displays
all of the inventory items in the store. If you provide an item name (using the -s command
line switch), then just those inventory items using that name are displayed.

The beginning of our example is almost identical to our Exanpl eDat abasePut example program.
We repeat that example code here for the sake of completeness. For a complete walk-through
of it, see the previous section (ExampleDatabasePut.java (page 48)).

8/14/2009 Getting Started with DB Page 52

package persist.gettingStarted;

inport java.io.File;
inport java.io.lOException;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . persist. EntityCursor;

public class Exanpl el nventoryRead {

private static File nyDobEnvPath =
new File("/tnp/JEDB");

private DataAccessor da;

/] Encapsul ates the database environnent.
private static MyDbEnv nyDbEnv = new MyDbEnv();

/] The itemto locate if the -s switch is used
private static String |ocateltem

private static void usage() {
System out. println("Exanpl el nventoryRead [-h <env directory>]" +
"[-s <itemto locate>]");
Systemexit(-1);
}

public static void main(String args[]) {
Exanpl el nvent oryRead eir = new Exanpl el nvent or yRead();
try {
eir.run(args);
} catch (DatabaseException dbe) {
Systemerr. println("Exanpl el nventoryRead: " + dbe.toString());
dbe. print StackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout.printin("Al done.");
}

private void run(String args[])
throws Dat abaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // path to the environnent home
true); [l is this environnment read-only?

Il Open the data accessor. This is used to retrieve

8/14/2009

Getting Started with DB

Page 53

Il persistent objects.
da = new Dat aAccessor (myDbEnv. get EntityStore());

Il 1f aitemto locate is provided on the command |ine,
Il show just the inventory items using the provided nane.
Il Qtherw se, show everything in the inventory.
if (locateltem!= null) {

showl ten();
} else {

showAl | I nvent ory();
}

}

The first method that we provide is used to show inventory items related to a given inventory
name. This method is called only if an inventory name is passed to Exanpl el nvent or yRead via
the - s option. Given the sample data that we provide with this example, each matching
inventory name will result in the display of three inventory objects.

To display these objects we use the | nvent ory class' i nvent or yByNane secondary index to
retrieve an Enti tyCursor, and then we iterate over the resulting objects using the cursor.

Notice that this method calls di spl ayl nvent oryRecor d() to display each individual object. We
show this method a little later in the example.

/] Shows all the inventory items that exist for a given
[/ inventory nane.
private void showl ten() throws DatabaseException {

I/ Use the inventory name secondary key to retrieve
Il these objects.
EntityCursor<inventory> itens =

da. i nvent or yByNane. subl ndex(| ocateltem.entities();
try {

for (Inventory item: itens) {

di spl ayl nvent oryRecord(itemn;

}
} finally {

itens.close();
}

}

Next we implement showAl | | nvent ory(), which shows all of the | nvent ory objects in the store.
To do this, we obtain an Enti t yCursor from the | nvent ory class' primary index and, again, we
iterate using that cursor.

/] Displays all the inventory itenms in the store
private void showAl | I nventory()
throws Dat abaseException {

[/ Get a cursor that will walk every

8/14/2009 Getting Started with DB Page 54

Il inventory object in the store.
EntityCursor<inventory> itens =
da. i nventoryBySku.entities();

try {
for (Inventory item: itens) {

di spl ayl nvent or yRecord(item;
}

} finally {
items.close();
}

}

Now we implement di spl ayl nvent or yRecor d() . This uses the getter methods on the I nvent ory
class to obtain the information that we want to display. The only thing interesting about this
method is that we obtain Vendor objects within. The vendor objects are retrieved Vendor
objects using their primary index. We get the key for the retrieval from the I nvent ory object
that we are displaying at the time.

private void displaylnventoryRecord(lnventory thelnventory)
throws Dat abaseException {

Systemout. println(thelnventory.getSku() + ":");
Systemout.printin("\t " + thelnventory.getltemame())
System out. println(" + thelnventory. get Cat egory())
System out . printl n(+ thelnventory. get Vendor ());
Systemout. println("\t\tNunber in stock: " +

t hel nvent ory. get Vendor I nventory());
Systemout.printIn("\t\tPrice per unit: " +

t hel nvent ory. get Vendor Price());
Systemout.println("\t\tContact: ");

n .

’
n .
’

\t
I|\t "

Vendor theVendor =
da. vendor ByNane. get (t hel nvent ory. get Vendor ()) ;
assert theVendor != null;

Systemout.printIn("\t\t " + theVendor. get Address());
Systemout.printIn("\t\t " + theVendor.getCity() + ", " +

theVendor. get State() + " " + theVendor. getZi pcode());
Systemout.println("\t\t Business Phone: " +

t heVendor . get Busi nessPhoneNunber ());
Systemout.printIn("\t\t Sales Rep: " +

t heVendor . get RepNanme()) ;

Systemout. printIn("\t\t "+

t heVendor . get RepPhoneNunber ()) ;

}

The last remaining parts of the example are used to parse the command line. This is not very
interesting for our purposes here, but we show it anyway for the sake of completeness.

8/14/2009 Getting Started with DB Page 55

protected Exanpl el nventoryRead() {}

private static void parseArgs(String args[]) {
for(int i =0; i <args.length; ++) {
if (args[i].startsWth("-")) {
switch(args[i].charAt(1)) {
case 'h':

myDbEnvPath = new File(args[++i]);

br eak;
case 's':
[ocateltem = args[++i];
br eak;
defaul t:
usage();

8/14/2009

Getting Started with DB

Page 56

Part II. Programming with the
Base API

This section discusses application that are built using the DB base API. Note that most DB applications
can probably be written using the DPL (see Programming with the Direct Persistence Layer (page 16) for
more information). However, if you want to use Java 1.4 for your DB application, or if you are porting an
application from the Berkeley DB API, then the base API is right for you.

Chapter 7. Databases

In Berkeley DB, a database is a collection of records. Records, in turn, consist of key/data
pairings.

Conceptually, you can think of a Dat abase as containing a two-column table where column 1

contains a key and column 2 contains data. Both the key and the data are managed using

Dat abaseEnt ry class instances (see Database Records (page 68) for details on this class). So,

fundamentally, using a DB Dat abase involves putting, getting, and deleting database records,
which in turns involves efficiently managing information encapsulated by Dat abaseEnt ry objects.
The next several chapters of this book are dedicated to those activities.

Also, note that in the previous section of this book, Programming with the Direct Persistence
Layer (page 16), we described the DPL The DPL handles all database management for you,
including creating all primary and secondary databases as is required by your application. That
said, if you are using the DPL you can access the underlying database for a given index if
necessary. See the Javadoc for the DPL for more information.

Opening Databases

You open a database by instantiating a Dat abase object.

Note that by default, DB does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

The following code fragment illustrates a database open:

package db. GettingStart ed;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abase;
i nport com sl eepycat . db. Dat abaseConfi g;

inport java.io.FileNot FoundExcepti on;

Dat abase myDat abase = nul | ;

try {
/'l Open the database. Create it if it does not already exist.

Dat abaseConfi g dbConfig = new DatabaseConfig();
dbConfig.set Al l owCreate(true);
nmyDat abase = new Dat abase ("sanpl eDat abase. db",
nul I,
dbConfig);
} catch (DatabaseException dbe) {
/'l Exception handling goes here

8/14/2009

Getting Started with DB Page 58

} catch (FileNot FoundException fnfe) {
/] Exception handling goes here

}

Closing Databases

Once you are done using the database, you must close it. You use the method to do this.

Closing a database causes it to become unusable until it is opened again. Note that you should
make sure that any open cursors are closed before closing your database. Active cursors during
a database close can cause unexpected results, especially if any of those cursors are writing
to the database. You should always make sure that all your database accesses have completed
before closing your database.

Cursors are described in Using Cursors (page 96) later in this manual.

Be aware that when you close the last open handle for a database, then by default its cache
is flushed to disk. This means that any information that has been modified in the cache is
guaranteed to be written to disk when the last handle is closed. You can manually perform this
operation using the Dat abase. sync() method, but for normal shutdown operations it is not
necessary. For more information about syncing your cache, see Data Persistence (page 73).

The following code fragment illustrates a database close:

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abase;

try {
if (nyDatabase != null) {

nyDat abase. cl ose();
}

} catch (DatabaseException dbe) {
/| Exception handling goes here
}

8/14/2009

Getting Started with DB Page 59

Database Properties

You can set database properties using the Dat abaseConfi g class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve the
Dat abaseConfi g object used by your database using the Dat abase. get Confi g() method.

There are a large number of properties that you can set using this class (see the javadoc for a
complete listing). From the perspective of this manual, some of the more interesting properties
are:

o Dat abaseConfig. set Al | owCreat e()

If true, the database is created when it is opened. If false, the database open fails if the
database does not exist. This property has no meaning if the database currently exists.
Default is f al se.

 Dat abaseConfi g. set Bt r eeConpar at or ()

Sets the class that is used to compare the keys found on two database records. This class is
used to determine the sort order for two records in the database. By default, byte for byte
comparison is used. For more information, see Setting Comparison Functions (page 141).

- Dat abaseConfi g. set Dupl i cat eConpar at or ()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Setting Comparison Functions (page 141).

« Dat abaseConfi g. set Sort edDupl i cat es()

If true, duplicate records are allowed in the database. If this value is f al se, then putting a
duplicate record into the database results in an error return from the put call. Note that
this property can be set only at database creation time. Default is f al se.

Note that your database must not support duplicates if it is to be associated with one or
more secondary indices. Secondaries are described in Secondary Databases (page 113).

» Dat abaseConfi g. set Excl usi veCreat ()

If true, the database open fails if the database currently exists. That is, the open must result
in the creation of a new database. Default is f al se.

« Dat abaseConfi g. set ReadOnl y()

If true, the database is opened for read activities only. Default is f al se.
 Dat abaseConfig. set Truncate()

If true, the database is truncated; that is, it is emptied of all content.

« Dat abaseConfi g. set Type()

8/14/2009

Getting Started with DB Page 60

Identifies the type of database that you want to create. This manual will exclusively use
Dat abaseType. BTREE.

In addition to these, there are also methods that allow you to control the 10 stream used for
error reporting purposes. These are described later in this manual.

For example:
package db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

i mport java.io.FileNot FoundExcepti on;

Dat abase nyDat abase = nul | ;
try {
Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Al l owCreat e(true);
dbConfi g. set Sort edDupl i cates(true);
dbConfi g. set Type(Dat abaseType. BTREE) ;
nyDat abase = new Dat abase(" sanpl eDat abase. db",
nul |,
dbConfig);
} catch (DatabaseException dbe) {
/| Exception handling goes here.
} catch (FileNot FoundException fnfe) {
/| Exception handling goes here

}

Administrative Methods

Both the Envi ronnment and Dat abase classes provide methods that are useful for manipulating
databases. These methods are:

« Dat abase. get Dat abaseNane()

Returns the database's name.

String dbName = nyDat abase. get Dat abaseNaneg() ;

« Dat abase. rename()

Renames the specified database. If no value is given for the dat abase parameter, then the
entire file referenced by this method is renamed.

8/14/2009

Getting Started with DB Page 61

Never rename a database that has handles opened for it. Never rename a file that contains
databases with opened handles.

i nport java.io.FileNot FoundExcepti on;

nyDat abase. cl ose() ;

try {
myDat abase. renanme(" nmydb. db", /| Database file to renane
nul |, /| Database to renane. Not used so
/1 the entire file is renaned.
"newdb. db", /1 New name to use.
null); /| DatabaseConfig object.

/1 None provided.
} catch (FileNot FoundException fnfe) {
/1 Exception handling goes here

}

» Environnent. truncat eDat abase()

Deletes every record in the database and optionally returns the number of records that were
deleted. Note that it is much less expensive to truncate a database without counting the
number of records deleted than it is to truncate and count.

int nunDi scarded =

nmyEnv. truncate(nul |, /1 txn handl e
nyDat abase. get Dat abaseNane(), // database nane
true); [l If true, then the

/'l nunmber of records
[l deleted are counted.
Systemout. println("Discarded " + nunDiscarded +
" records from database " +
nmyDat abase. get Dat abaseNange()) ;

Error Reporting Functions
To simplify error reporting and handling, the Dat abaseConf i g class offers several useful methods.
o Dat abaseConfi g. setError Strean()
Sets the Java Qut put St reamto be used for displaying error messages issued by the DB library.

» Dat abaseConfi g. set MessageHand!l er ()

Defines the message handler that is called when an error message is issued by DB. The error
prefix and message are passed to this callback. It is up to the application to display this
information correctly.

Note that the message handler must be an implementation of the
com sl eepycat . db. MessageHandl er interface.

8/14/2009 Getting Started with DB Page 62

« Dat abaseConfig.setErrorPrefix()
Sets the prefix used for any error messages issued by the DB library.

For example, to send all your error messages to a particular message handler, first implement
the handler:

package db. GettingStarted;

i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. MessageHand| er;

public class M/MessageHandl er inplements MessageHandl er {

/] Qur constructor does not hing
public M/MessageHandl er() {}

publi ¢ voi d message(Environnent dbenv, String nessage)

{
}

/1 Put your special message handling code here

}

And then set up your database to use the message handler by identifying it on the database's
Dat abaseConfi g object:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseConfi g;

Dat abaseConfi g myDbConfig = new DatabaseConfi g();
M/MessageHandl er mmh = new MyMessageHandl er ();
myDbConfi g. set MessageHandl er (mm) ;

Managing Databases in Environments

In Database Environments (page 11), we introduced environments. While environments are not
used in the example built in this book, they are so commonly used for a wide class of DB
applications that it is necessary to show their basic usage, if only from a completeness
perspective.

To use an environment, you must first open it. At open time, you must identify the directory
in which it resides. This directory must exist prior to the open attempt. You can also identify
open properties, such as whether the environment can be created if it does not already exist.

You will also need to initialize the in-memory cache when you open your environment.

For example, to create an environment handle and open an environment:

8/14/2009

Getting Started with DB Page 63

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnment Confi g;

inport java.io.File;
inport java.io.FileNot FoundExcepti on;

Environment nyEnv = nul | ;
File envHome = new File("/exportl/testEnv");

try {
Envi ronment Confi g envConf = new Environnment Config();
envConf. set Al | owCreate(true); Il 1f the environment does not
[l exist, create it.
envConf.setlnitializeCache(true); Il Initialize the in-nmenory
Il cache.

nmyEnv = new Envi ronnment (envHome, envConf);
} catch (DatabaseException de) {

/] Exception handling goes here
} catch (FileNot FoundException fnfe) {

/] Exception handling goes here

}

Once an environment is opened, you can open databases in it. Note that by default databases
are stored in the environment's home directory, or relative to that directory if you provide any

sort of a path in the database's file name:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;

i nport com sl eepycat . db. Envi ronnent Confi g;

inport java.io.File;
i nport java.io.FileNot FoundExcepti on;

Environment nyEnv = nul | ;

Dat abase nyDb = nul | ;

File envHome = new File("/exportl/testEnv");

String dbFileName = new String("nmydb.db", "UTF-8");

8/14/2009

Getting Started with DB

Page 64

try {
Envi ronment Confi g envConf = new Environnment Config();

envConf. set Al | owCreate(true);

Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Al l owCreat e(true);

dbConfi g. set Type(Dat abaseType. BTREE) ;

nmyEnv = new Envi ronnment (envHome, envConf);

myDb = nmyEnv. openDat abase(nul |, dbFileNane, null, dbConfig);
} catch (DatabaseException de) {

/] Exception handling goes here
} catch (FileNot FoundException fnfe) {

/] Exception handling goes here

}

When you are done with an environment, you must close it. Before you close an environment,
make sure you close any opened databases.

finally {
try {
if (myDo !'=null) {
myDb. cl ose() ;
}

if (myEnv !'= null) {
myEnv. cl ose();
}

} catch (DatabaseException de) {
/1 Exception handling goes here
}

}
Database Example

Throughout this book we will build a couple of applications that load and retrieve inventory
data from DB databases. While we are not yet ready to begin reading from or writing to our
databases, we can at least create the class that we will use to manage our databases.

Note that subsequent examples in this book will build on this code to perform the more
interesting work of writing to and reading from the databases.

Note that you can find the complete implementation of these functions in:
DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

8/14/2009 Getting Started with DB Page 65

Example 7.1. MyDbs Class

To manage our database open and close activities, we encapsulate them in the MyDbs class.
There are several good reasons to do this, the most important being that we can ensure our
databases are closed by putting that activity in the MyDbs class destructor.

To begin, we import some needed classes:

[l File: MyDbs.java
package db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

i nport java.io.FileNot FoundExcepti on;

And then we write our class declaration and provided some necessary private data members:
public class MDbs {

/1 The databases that our application uses
private Database vendorDb = null;
private Database inventoryDb = null;

private String vendordb = "VendorDB. db";
private String inventorydb = "InventoryDB. db";

/] Qur constructor does not hing
public MDbs() {}

Next we need a set up() method. This is where we configure and open our databases.

/1 The setup() nethod opens all our databases

/1 for us.

public void setup(String databasesHone)
throws Dat abaseException {

Dat abaseConfi g myDbConfig = new DatabaseConfig();

myDbConfi g. set Error Strean(Systemerr);
myDbConfi g. set ErrorPrefix("MDbs");
myDbConfi g. set Type(Dat abaseType. BTREE) ;
myDbConfi g. set Al | owCreat e(true);

Il Now open, or create and open, our databases
Il Open the vendors and inventory databases

try {
vendordb = dat abasesHome + “/" + vendordb;
vendor Db = new Dat abase(vendor db,

8/14/2009

Getting Started with DB Page 66

null,
myDbConfi g) ;

i nvent orydb
i nvent oryDb

new Dat abase(i nvent orydb,
null,
myDbConfi g) ;
} catch(FileNot FoundException fnfe) {

Systemerr.println("MDbs: " + fnfe.toString());

Systemexit(-1);

}

Finally, we provide some getter methods, and our cl ose() method.

Il getter nethods

publ i c Dat abase get Vendor DB() {
return vendor Db;

}

publ i c Database getlnventoryDB() {
return inventoryDb;
}

[/ Cose the databases
public void close() {
try {
if (vendorDb !'= null) {
vendor Db. cl ose();
1

if (inventoryDb !'= null) {
i nvent oryDb. cl ose();
1

} catch(DatabaseException dbe) {
Systemerr.println("Error closing MDbs: " +
dbe.toString());
Systemexit(-1);

dat abasesHone + "/" + inventorydb;

8/14/2009

Getting Started with DB

Page 67

Chapter 8. Database Records

DB records contain two parts — a key and some data. Both the key and its corresponding data
are encapsulated in Dat abaseEnt ry class objects. Therefore, to access a DB record, you need
two such objects, one for the key and one for the data.

Dat abaseEnt ry can hold any kind of data from simple Java primitive types to complex Java
objects so long as that data can be represented as a Java byt e array. Note that due to
performance considerations, you should not use Java serialization to convert a Java object to
a byt e array. Instead, use the Bind APIs to perform this conversion (see Using the BIND

APIs (page 73) for more information).

This chapter describes how you can convert both Java primitives and Java class objects into
and out of byt e arrays. It also introduces storing and retrieving key/value pairs from a database.
In addition, this chapter describes how you can use comparators to influence how DB sorts its
database records.

Using Database Records

Each database record is comprised of two Dat abaseEnt ry objects — one for the key and another
for the data. The key and data information are passed to- and returned from DB using

Dat abaseEnt ry objects as byt e arrays. Using Dat abaseEnt r ys allows DB to change the underlying
byte array as well as return multiple values (that is, key and data). Therefore, using

Dat abaseEnt ry instances is mostly an exercise in efficiently moving your keys and your data in
and out of byt e arrays.

For example, to store a database record where both the key and the data are Java String
objects, you instantiate a pair of Dat abaseEnt ry objects:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

String akey = "key";
String aData = "data";

try {
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UTF-8"));

} catch (Exception e) {
/'l Exception handling goes here
}
/] Storing the record is described later in this chapter

|:| Notice that we specify UTF- 8 when we retrieve the byt e array from our Stri ng object.
Without parameters, String. get Byt es() uses the Java system's default encoding. You

8/14/2009 Getting Started with DB Page 68

should never use a system's default encoding when storing data in a database because the
encoding can change.

When the record is retrieved from the database, the method that you use to perform this
operation populates two Dat abaseEnt ry instances for you, one for the key and another for the
data. Assuming Java St ri ng objects, you retrieve your data from the Dat abaseEnt ry as follows:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

/] theKey and theData are DatabaseEntry objects. Database
[l retrieval is described later in this chapter. For now,
/1 we assume sonme database get nethod has popul ated these
/] objects for us.

/1 Use DatabaseEntry.getData() to retrieve the encapsul ated Java
/'l byte array.

byte[] nyKey = theKey.getData();
byte[] nyData = theData. getData();

String key = new String(nyKey, "UTF-8");
String data = new String(nyData, "UTF-8");

There are a large number of mechanisms that you can use to move data in and out of byte
arrays. To help you with this activity, DB provides the bind APIs. These APIs allow you to
efficiently store both primitive data types and complex objects in byt e arrays.

The next section describes basic database put and get operations. A basic understanding of
database access is useful when describing database storage of more complex data such as is
supported by the bind APIs. Basic bind API usage is then described in Using the BIND

APIs (page 73).

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight differences
in behavior depending on whether your database supports duplicate records. Two or more
database records are considered to be duplicates of one another if they share the same key.
The collection of records sharing the same key are called a duplicates set. In DB, a given key
is stored only once for a single duplicates set.

By default, DB databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are typically used to access all of the records in the duplicates
set.

DB provides two basic mechanisms for the storage and retrieval of database key/data pairs:

8/14/2009

Getting Started with DB Page 69

The Dat abase. put () and Dat abase. get () methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

Cursors provide several methods for putting and getting database records. Cursors and their
database access methods are described in Using Cursors (page 96).

Writing Records to the Database

Records are stored in the database using whatever organization is required by the access method
that you have selected. In some cases (such as BTree), records are stored in a sort order that
you may want to define (see Setting Comparison Functions (page 141) for more information).

In any case, the mechanics of putting and getting database records do not change once you
have selected your access method, configured your sorting routines (if any), and opened your
database. From your code's perspective, a simple database put and get is largely the same no
matter what access method you are using.

You can use the following methods to put database records:

Dat abase. put ()

Puts a database record into the database. If your database does not support duplicate records,
and if the provided key already exists in the database, then the currently existing record is
replaced with the new data.

Dat abase. put NoOverwrite()

Disallows overwriting (replacing) an existing record in the database. If the provided key
already exists in the database, then this method returns Oper ati onSt at us. KEYEXI ST even if
the database supports duplicates.

Dat abase. put NoDupDat a()

Puts a database record into the database. If the provided key and data already exists in the
database (that is, if you are attempting to put a record that compares equally to an existing
record), then this returns Qperati onSt at us. KEYEXI ST.

When you put database records, you provide both the key and the data as Dat abaseEntry
objects. This means you must convert your key and data into a Java byt e array. For example:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;
i nport com sl eepycat . db. Dat abase;

/| Database opens onitted for clarity.
/| Databases nust NOT be opened read-only.

String aKey = "nyFirstKey";

8/14/2009

Getting Started with DB Page 70

String aData = "nyFirstData";

try {
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es(" UTF- 8"
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UTF-
nyDat abase. put (nul |, theKey, theData);

} catch (Exception e) {
/] Exception handling goes here

}

)
"))

Getting Records from the Database

The Dat abase class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever return
the first record in a duplicate set. For this reason, if your database supports duplicates, you
should use a cursor to retrieve records from it. Cursors are described in Using Cursors (page 96).

You can use either of the following methods to retrieve records from the database:

« Dat abase. get ()

Retrieves the record whose key matches the key provided to the method. If no records exists
that uses the provided key, then Qper ati onSt at us. NOTFOUND is returned.

 Dat abase. get Sear chBot h()

Retrieve the record whose key matches both the key and the data provided to the method.
If no record exists that uses the provided key and data, then Operati onSt at us. NOTFOUND is
returned.

Both the key and data for a database record are returned as byte arrays in Dat abaseEntry
objects. These objects are passed as parameter values to the Dat abase. get () method.

In order to retrieve your data once Dat abase. get () has completed, you must retrieve the byt e
array stored in the Dat abaseEntry and then convert that byt e array back to the appropriate
datatype. For example:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. LockMode;

i mport com sl eepycat . db. Operati onSt at us;

Dat abase nyDat abase = nul | ;
/| Database opens onitted for clarity.
/| Database may be opened read-only.

8/14/2009

Getting Started with DB Page 71

String aKey = "nyFirstKey";

try {
/] Create a pair of DatabaseEntry objects. theKey

/] is used to performthe search. theData is used

/] to store the data returned by the get() operation.

Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Performthe get.
i f (nyDatabase.get(null, theKey, theData, LockMbde.DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

Il Recreate the data String.
byte[] retData = theData.getData();
String foundData = new String(retData, "UTF-8");

Systemout.println("For key: '" + aKey + "' found data: '" +
foundData + "'.");
} else {
Systemout.printin("No record found for key '" + aKey + "".");

}
} catch (Exception e) {

/] Exception handling goes here
}

Deleting Records

You can use the Dat abase. del et e() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key are
deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are described
in Using Cursors (page 96).

You can also delete every record in the database by using Envi ronnent . t runcat eDat abase() .

For example:
package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;
i nport com sl eepycat . db. Dat abase;

Dat abase nyDat abase = nul | ;
/| Database opens onitted for clarity.
/| Database can NOT be opened read-only.

try {
String aKey = "nyFirstKey";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

8/14/2009

Getting Started with DB Page 72

[/ Performthe deletion. Al records that use this key are
[/ del eted.
myDat abase. del ete(nul |, theKey);
} catch (Exception e) {
/] Exception handling goes here

}

Data Persistence

When you perform a database modification, your modification is made in the in-memory cache.
This means that your data modifications are not necessarily flushed to disk, and so your data
may not appear in the database after an application restart.

Note that as a normal part of closing a database, its cache is written to disk. However, in the
event of an application or system failure, there is no guarantee that your databases will close
cleanly. In this event, it is possible for you to lose data. Under extremely rare circumstances,
it is also possible for you to experience database corruption.

Therefore, if you care if your data is durable across system failures, and to guard against the
rare possibility of database corruption, you should use transactions to protect your database

modifications. Every time you commit a transaction, DB ensures that the data will not be lost
due to application or system failure. Transaction usage is described in the Berkeley DB Getting
Started with Transaction Processing guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for example,
you are using DB to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some guarantee
that your database modifications are persistent, then you should periodically run environment
syncs. Syncs cause any dirty entries in the in-memory cache and the operating system'’s file

cache to be written to disk. As such, they are quite expensive and you should use them sparingly.

Remember that by default a sync is performed any time a non-transactional database is closed
cleanly. (You can override this behavior by specifying t rue on the call to Dat abase. cl ose() .)
That said, you can manually run a sync by calling Dat abase. sync().

|:| If your application or system crashes and you are not using transactions, then you should
either discard and recreate your databases, or verify them. You can verify a database
using Database.verify(). If your databases do not verify cleanly, use the db_dump command
to salvage as much of the database as is possible. Use either the -Ror -r command line
options to control how aggressive db_dump should be when salvaging your databases.

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte arrays
for storage in a database can be a nontrivial operation. To help you with this problem, DB
provides the Bind APIs. While these APIs are described in detail in the Berkeley DB Collections
Tutorial, this section provides a brief introduction to using the Bind APIs with:

8/14/2009

Getting Started with DB Page 73

« Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Doubl e, or
String.

» Complex objects that implement Java serialization.

Use this if you are storing objects that implement Seri al i zabl e and if you do not need to
sort them.

» Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your own
custom tuple bindings. Note that you should use custom tuple bindings even if your objects
are serializable if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a Dat abaseEnt ry object. That is, you can
store a single field containing one of the following types:

e String
e Character

Bool ean

e Byte

 Short

e I nteger

e Long

 Float

» Doubl e

To store primitive data using the Bind APIs:
1. Create an Ent ryBi ndi ng object.

When you do this, you use Tupl eBi ndi ng. get Prini tiveBinding() to return an appropriate
binding for the conversion.

2. Use the Ent ryBi ndi ng object to place the numerical object on the Dat abaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever manner
you wish. For example:

8/14/2009

Getting Started with DB Page 74

package db. GettingStarted;

i mport
i mport
i mport
i mport

com sl eepycat
com sl eepycat
com sl eepycat
com sl eepycat

. bi nd. Ent ryBi ndi ng;

. bind. tupl e. Tupl eBi ndi ng;
. db. Dat abase;

. db. Dat abaseEnt ry;

Dat abase nyDat abase = nul | ;
/| Database open onmitted for clarity.

/1 Need a key for the put.

try {

String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/1 Now build the DatabaseEntry using a Tupl eBi ndi ng

Long nyLong = new Long(123456789l);

Dat abaseEntry theData = new Dat abaseEntry();

Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);
nyBi ndi ng. obj ect ToEnt ry(nyLong, theData);

I

Now store it

myDat abase. put (nul |, theKey, theData);
} catch (Exception e) {
/] Exception handling goes here

}

Retrieval from the Dat abaseEnt ry object is performed in much the same way:

package db. GettingStarted;

i nport
i nport
i nport
i nport
i nport
i nport

com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .

bi nd. Ent ryBi ndi ng;

bi nd. t upl e. Tupl eBi ndi ng;
db. Dat abase;

db. Dat abaseEntry;

db. LockMbde;

db. Qper ati onSt at us;

Dat abase nyDat abase = nul | ;
/| Database open onitted for clarity

try {

/'l Need a key for the get
String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

8/14/2009

Getting Started with DB Page 75

/] Need a DatabaseEntry to hold the associated data.
Dat abaseEntry theData = new Dat abaseEntry();

[/ Bindings need only be created once for a given scope
Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);

Il Get it
OperationStatus retVal = nyDatabase. get(null, theKey, theData,
LockMvde. DEFAULT) ;
String retkKey = null;
if (retVal == QperationStatus. SUCCESS) {
Il Recreate the data.
Il Use the binding to convert the byte array contained in theData
Il to a Long type.
Long theLong = (Long) nyBinding.entryTohj ect (theData);
retKey = new String(theKey.getData(), "UTF-8");
Systemout. printin("For key: '" + retKey + found Long: '" +
theLong + "'.");

} else {
Systemout.printin("No record found for key

T

+retKey + "'.");
}

} catch (Exception e) {
/] Exception handling goes here

}

Serializable Complex Objects

Frequently your application requires you to store and manage objects for your record data
and/or keys. You may need to do this if you are caching objects created by another process.
You may also want to do this if you want to store multiple data values on a record. When used
with just primitive data, or with objects containing a single data member, DB database records
effectively represent a single row in a two-column table. By storing a complex object in the
record, you can turn each record into a single row in an n-column table, where n is the number
of data members contained by the stored object(s).

In order to store objects in a DB database, you must convert them to and from a byt e array.
The first instinct for many Java programmers is to do this using Java serialization. While this
is functionally a correct solution, the result is poor space-performance because this causes the
class information to be stored on every such database record. This information can be quite
large and it is redundant — the class information does not vary for serialized objects of the
same type.

In other words, directly using serialization to place your objects into byte arrays means that
you will be storing a great deal of unnecessary information in your database, which ultimately
leads to larger databases and more expensive disk 1/0.

The easiest way for you to solve this problem is to use the Bind APIs to perform the serialization
for you. Doing so causes the extra object information to be saved off to a unique Dat abase

8/14/2009

Getting Started with DB Page 76

Usage Caveats

dedicated for that purpose. This means that you do not have to duplicate that information on
each record in the Dat abase that your application is using to store its information.

Note that when you use the Bind APIs to perform serialization, you still receive all the benefits
of serialization. You can still use arbitrarily complex object graphs, and you still receive built-in
class evolution through the serialVersionUID (SUID) scheme. All of the Java serialization rules
apply without modification. For example, you can implement Externalizable instead of
Serializable.

Before using the Bind APIs to perform serialization, you may want to consider writing your own
custom tuple bindings. Specifically, avoid serialization if:

« If you need to sort based on the objects your are storing. The sort order is meaningless for
the byte arrays that you obtain through serialization. Consequently, you should not use
serialization for keys if you care about their sort order. You should also not use serialization
for record data if your Dat abase supports duplicate records and you care about sort order.

» You want to minimize the size of your byte arrays. Even when using the Bind APIs to perform
the serialization the resulting byt e array may be larger than necessary. You can achieve
more compact results by building your own custom tuple binding.

» You want to optimize for speed. In general, custom tuple bindings are faster than serialization
at moving data in and out of byt e arrays.

For information on building your own custom tuple binding, see Custom Tuple Bindings (page 81).

Serializing Objects

To store a serializable complex object using the Bind APIs:
1. Implement java.io.Serializable in the class whose instances that you want to store.

2. Open (create) your databases. You need two. The first is the database that you use to store
your data. The second is used to store the class information.

3. Instantiate a class catalog. You do this with com sl eepycat . bi nd. seri al . St oredd assCat al og,
and at that time you must provide a handle to an open database that is used to store the
class information.

4. Create an entry binding that uses com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

5. Instantiate an instance of the object that you want to store, and place it in a Dat abaseEntry
using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data. Then
you might create a class that looks something like this:

package db. GettingStarted;

inport java.io.Serializable;

8/14/2009

Getting Started with DB Page 77

public class MData inplements Serializable {
private |long | ongDat a;
private doubl e doubl eDat a;
private String description;

MDat a() {
| ongData = 0;
doubl eData = 0. 0;
description = null;

}

public void setLong(long data) {
| ongDat a = dat a;

}

public void setDoubl e(doubl e data) {
doubl eData = dat a;

}

public void setDescription(String data) {
description = data;

}

public long getLong() {
return | ongDat a;

}

public doubl e get Doubl e() {
return doubl eDat a;

}

public String getDescription() {
return description;

}
}

You can then store instances of this class as follows:

package db. GettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseType;

8/14/2009 Getting Started with DB Page 78

/1 The key data.
String akey = "nyData";

[l The data data

MyDat a data2Store = new MyData();

dat a2St or e. set Long(123456789I) ;

dat a2St or e. set Doubl e(1234. 9876543) ;

dat a2St ore. set Description("A test instance of this class");

try {
/] Open the database that you will use to store your data

Dat abaseConfi g nyDbConfi g = new Dat abaseConfi g();

myDbConfig. set Al | owCreat e(true);

myDbConf i g. set Sort edDupl i cates(true);

myDbConf i g. set Type(Dat abaseType. BTREE) ;

Dat abase nyDat abase = new Dat abase("nyDb", null, nyDbConfig);

/] Open the database that you use to store your class information.

/] The db used to store class information does not require duplicates
/] support.

myDbConf i g. set Sort edDupl i cat es(fal se);

Dat abase nmyd assDb = new Dat abase("cl assDb", null, myDbConfig);

/] Instantiate the class catal og
St oredCl assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/] Create the binding
Ent ryBi ndi ng dat aBi ndi ng = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/] Create the DatabaseEntry for the key
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Bytes("UTF-8"));

/| Create the DatabaseEntry for the data. Use the EntryBinding object
/] that was just created to popul ate the DatabaseEntry

Dat abaseEntry theData = new Dat abaseEntry();

dat aBi ndi ng. obj ect ToEnt ry(dat a2St ore, theData);

{/ Put it as normal
myDat abase. put (nul |, theKey, theData);

/| Database and environment close omtted for brevity
} catch (Exception e) {
/] Exception handling goes here

}

8/14/2009 Getting Started with DB

Page 79

Deserializing Objects

Once an object is stored in the database, you can retrieve the MyDat a objects from the retrieved
Dat abaseEnt ry using the Bind APIs in much the same way as is described above. For example:

package db. GettingStarted,;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. LockMode;

/1 The key data.
String akey = "nyData";

try {
/] Open the database that stores your data

Dat abaseConfi g nyDbConfi g = new Dat abaseConfi g();

myDbConfi g. set Al | owCreat e(f al se);

myDbConf i g. set Type(Dat abaseType. BTREE) ;

Dat abase myDat abase = new Dat abase("nyDb", null, nyDbConfig);

/1 Open the database that stores your class information.
Dat abase myCd assDb = new Dat abase("cl assDb", null, myDbConfig);

/] Instantiate the class catal og
St oredCl assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/] Create the binding
Ent ryBi ndi ng dat aBi ndi ng = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/] Create DatabaseEntry objects for the key and data
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Bytes("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Do the get as normal
myDat abase. get (nul |, theKey, theData, LockMbde. DEFAULT);

/] Recreate the MyData object fromthe retrieved DatabaseEntry using
[/ the EntryBinding created above
M/Data retrievedData = (My/Data) dataBinding. entryToQbj ect (theData);

8/14/2009

Getting Started with DB Page 80

/| Database and environment close omtted for brevity
} catch (Exception e) {
/] Exception handling goes here

}

Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings to do
this. While they are more work to write and maintain than if you were to use serialization, the
byt e array conversion is faster. In addition, custom tuple bindings should allow you to create
byt e arrays that are smaller than those created by serialization. Custom tuple bindings also
allow you to optimize your BTree comparisons, whereas serialization does not.

For information on using serialization to store complex objects, see Serializable Complex
Objects (page 76).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not have to
implement the Serializable interface.

2. Write a tuple binding using the com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng class.
3. Open (create) your database. Unlike serialization, you only need one.
4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a Dat abaseEnt ry
using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

package db. GettingStarted;

public class MyData2 {
private |ong | ongDat a;
private Doubl e doubl eDat a;
private String description;

public MyData2() {
 ongData = 0;
doubl eData = new Doubl e(0.0);

description = "";

}

public void setlLong(long data) {
| ongDat a = dat a;

}

publ i ¢ voi d setDoubl e(Doubl e data) {
doubl eData = dat a;

8/14/2009

Getting Started with DB Page 81

}

public void setString(String data) {
description = data;

}

public long getLong() {
return | ongDat a;

}

publ i ¢ Doubl e get Double() {
return doubl eDat a;

}

public String getString() {
return description;

}

}

In this case, you need to write a tuple binding for the MyDat a2 class. When you do this, you
must implement the Tupl eBi ndi ng. obj ect ToEnt ry() and Tupl eBi ndi ng. ent ryToObj ect () abstract
methods. Remember the following as you implement these methods:

You use Tupl eBi ndi ng. obj ect ToEnt ry() to convert objects to byt e arrays. You use

com sl eepycat . bi nd. t upl e. Tupl eQut put to write primitive data types to the byt e array. Note
that Tupl eQut put provides methods that allows you to work with numerical types (I ong,
doubl e, i nt, and so forth) and not the corresponding j ava. | ang numerical classes.

The order that you write data to the byt e array in Tupl eBi ndi ng. obj ect ToEnt ry() is the
order that it appears in the array. So given the MyDat a2 class as an example, if you write
description, doubl eDat a, and then | ongDat a, then the resulting byte array will contain these
data elements in that order. This means that your records will sort based on the value of
the descri pti on data member and then the doubl eDat a member, and so forth. If you prefer
to sort based on, say, the | ongDat a data member, write it to the byte array first.

You use Tupl eBi ndi ng. entryToChj ect () to convert the byt e array back into an instance of
your original class. You use com sl eepycat . bi nd. t upl e. Tupl el nput to get data from the byt e
array.

The order that you read data from the byt e array must be exactly the same as the order in
which it was written.

For example:

package db. GettingStarted;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

8/14/2009

Getting Started with DB Page 82

public class M/Tupl eBi ndi ng extends Tupl eBindi ng {

[/ Wite a MData2 object to a Tupl eQut put
publ i c voi d object ToEntry(Cbj ect object, TupleQutput to) {

M/Dat a2 nyData = (MyDat a2)obj ect;

Il Wite the data to the Tupl eQutput (a DatabaseEntry).

Il Order is inportant. The first data witten will be

Il the first bytes used by the default conparison routines.
to.witeDoubl e(nyDat a. get Doubl e() . doubl eVal ue());
to.witelLong(nyData.getLong());
to.witeString(nyData.getString());

}

[/ Convert a Tuplelnput to a MyData2 obj ect
publ ic Object entryToCbject(Tuplelnput ti) {

[/ Data must be read in the sane order that it was
Il originally witten.

Doubl e theDoubl e = new Doubl e(ti.readDoubl e());
long theLong = ti.readLong();

String theString = ti.readString();

M/Dat a2 nyData = new MyData2();
myDat a. set Doubl e(t heDoubl e) ;
myDat a. set Long(t heLong) ;

myDat a. set String(theString);

return myDat a;
}
In order to use the tuple binding, instantiate the binding and then use:
o MyTupl eBi ndi ng. obj ect ToEntry() to convert a MyData2 object to a Dat abaseEntry.
o MyTupl eBi ndi ng. entryToQbj ect () to convert a Dat abaseEntry to a MyDat a2 object.

For example:

package db. GettingStarted;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Dat abaseEnt ry;

Tupl eBi ndi ng keyBi ndi ng = new MyTupl eBi ndi ng();

8/14/2009

Getting Started with DB

Page 83

MyDat a2 t heKeyData = new MyDat a2();

t heKeyDat a. set Long(123456789I) ;

t heKeyDat a. set Doubl e(new Doubl e(12345. 6789)) ;
t heKeyDat a. set String("M/ key data");

Dat abaseEntry nyKey = new Dat abaseEntry();

try {
/] Store theKeyData in the DatabaseEntry

keyBi ndi ng. obj ect ToEnt ry(t heKeyData, nyKey);
/| Database put and get activity omtted for clarity

/] Retrieve the key data

t heKeyData = (MyDat a2) keyBi ndi ng. entryToQbj ect (myKey);
} catch (Exception e) {

/] Exception handling goes here

}

Database Usage Example

In MyDbs Class (page 66) we created a class that opens and closes databases for us. We now
make use of that class to load inventory data into two databases that we will use for our
inventory system.

Again, remember that you can find the complete implementation for these functions in:
DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

Note that in this example, we are going to save two types of information. First there are a

series of inventory records that identify information about some food items (fruits, vegetables,
and desserts). These records identify particulars about each item such as the vendor that the
item can be obtained from, how much the vendor has in stock, the price per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and phone
number, the sales representative’'s name and his phone number, and so forth.

Example 8.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because this
class is not serializable, we need a custom tuple binding in order to place it on a Dat abaseEnt ry
object. Because the Tupl el nput and Tupl eQut put classes used by custom tuple bindings support
Java numerical types and not Java numerical classes, we use i nt and f| oat here instead of
the corresponding | nt eger and Fl oat classes.

8/14/2009

Getting Started with DB Page 84

[l File Inventory.java
package db. GettingStarted;

public class Inventory {

private String sku;

private String itenNane;
private String category;
private String vendor;
private int vendorlnventory;
private float vendorPrice;

public void setSku(String data) {
sku = dat a;

}

public void setltenName(String data) {
itemName = data;

public void setCategory(String data) {
category = data;

public void setVendorInventory(int data) {
vendor | nventory = dat a;

public void setVendor(String data) {
vendor = data;

public void setVendorPrice(float data) {
vendor Price = data;

public String getSku() { return sku; }

public String getltenNane() { return itenmNane; }

public String getCategory() { return category; }

public int getVendorlnventory() { return vendorlnventory; }
public String getVendor() { return vendor; }

public float getVendorPrice() { return vendorPrice; }

8/14/2009 Getting Started with DB Page 85

Example 8.2. Vendor.java

The data for vendor records are stored in instances of the following class. Notice that we are
using serialization with this class for no other reason than to demonstrate serializing a class
instance.

/1 File Vendor.java
package db. GettingStarted;

inport java.io.Serializable;
public class Vendor inplements Serializable {

private String repNane;
private String address;
private String city;

private String state;

private String zipcode;
private String bizPhoneNunber;
private String repPhoneNunber;
private String vendor;

publ i c void setRepNane(String data) {
repNane = dat a;
}

public void setAddress(String data) {
address = data;
}

public void setCity(String data) {
city = data;
}

public void setState(String data) {
state = data;
}

publ i c void setZipcode(String data) {
zi pcode = data;
}

publi ¢ voi d set Busi nessPhoneNunber (String data) {
bi zPhoneNunber = dat a;
}

publ i ¢ voi d set RepPhoneNunber (String data) {
repPhoneNunber = dat a;
}

8/14/2009 Getting Started with DB Page 86

public void setVendorName(String data) {
vendor = data;

}

/] Corresponding getter methods omtted for brevity.
/] See exanples/jel/gettingStarted/ Vendor.java
/] for a conplete inplementation of this class.

}

Because we will not be using serialization to convert our | nvent ory objects to a Dat abaseEntry
object, we need a custom tuple binding:

Example 8.3. InventoryBinding.java

[l File InventoryBinding.java
package db. GettingStarted;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class InventoryBinding extends Tupl eBinding {

[l I'nplement this abstract nmethod. Used to convert
/1 a DatabaseEntry to an Inventory object.
public Onbject entryToChject (Tuplelnput ti) {

String sku = ti.readString();
String itemNane = ti.readString();
String category = ti.readString();
String vendor = ti.readString();
int vendorlnventory = ti.readlnt();
float vendorPrice = ti.readFloat();

Inventory inventory = new I nventory();

i nvent ory. set Sku(sku);

i nventory. setltemName(itenNane);

i nvent ory. set Cat egory(cat egory);

i nvent ory. set Vendor (vendor) ;

i nvent ory. set Vendor I nvent ory(vendor | nventory);
i nvent ory. set Vendor Pri ce(vendorPrice);

return inventory;

}

/1 I'nplement this abstract nethod. Used to convert a

8/14/2009 Getting Started with DB Page 87

/] Inventory object to a DatabaseEntry object.
publ i c voi d object ToEntry(Cbj ect object, TupleQutput to) {

Inventory inventory = (Inventory)object;

to.witeString(inventory.getSku());
to.witeString(inventory.getltemane())
to.witeString(inventory.getCategory())
to.witeString(inventory.getVendor());
to.witelnt(inventory.getVendorlnventory());
to.witeFl oat (inventory.getVendorPrice());

}

In order to store the data identified above, we write the Exanpl eDat abaselLoad application.
This application loads the inventory and vendor databases for you.

Inventory information is stored in a Dat abase dedicated for that purpose. The key for each such
record is a product SKU. The inventory data stored in this database are objects of the | nvent ory
class (see Inventory.java (page 84) for more information). Exanpl eDat abaseLoad loads the
inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.
2. Usesjava.lang. String to create a key based on the item's SKU.

3. Uses an | nvent ory class instance for the record data. This object is stored on a Dat abaseEntry
object using | nvent or yBi ndi ng, a custom tuple binding that we implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Dat abase dedicated for that purpose. The vendor data
stored in this database are objects of the Vendor class (see Vendor.java (page 86) for more
information). To load this Dat abase, Exanpl eDat abaseLoad does the following:

1. Reads the vendor data from a flat text file prepared in advance for this purpose.
2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a Dat abaseEntry
object using com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

Example 8.4. Stored Class Catalog Management with MyDbs

Before we can write Exanpl eDat abaseLoad, we need to update MyDbs. j ava to support the class
catalogs that we need for this application.
To do this, we start by importing an additional class to support stored class catalogs:

/] File: MyDbs.java
package db. GettingStarted;

8/14/2009

Getting Started with DB Page 88

i nport com sl eepycat. bind. serial . Storedd assCat al og;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

inport java.io.FileNot FoundExcepti on;

We also need to add two additional private data members to this class. One supports the
database used for the class catalog, and the other is used as a handle for the class catalog
itself.

public class MDbs {

/1 The databases that our application uses
private Database vendorDb = null;

private Database inventoryDb = null;
private Database classCatal ogDb = null;

/'l Needed for object serialization
private Storedd assCatal og cl assCatal og;

private String vendordb = "VendorDB. db";
private String inventorydb = "l nventoryDB. db";
private String classcatal ogdb = "C assCat al ogDB. db";

/1 Qur constructor does nothing
public M/Dbs() {}

Next we need to update the MyDbs. set up() method to open the class catalog database and
create the class catalog.

/I The setup() nethod opens all our databases

/] for us.

public void setup(String databasesHone)
throws Dat abaseException {

Dat abaseConfi g myDbConfig = new DatabaseConfig();

/| Database configuration omtted for brevity

Il Now open, or create and open, our databases
Il Cpen the vendors and inventory databases

try {
vendordb = dat abasesHome + “/" + vendordb;
vendor Db = new Dat abase(vendor db,

8/14/2009

Getting Started with DB Page 89

null,
myDbConfi g) ;

i nvent orydb
i nvent oryDb

dat abasesHone + "/" + inventorydb;
new Dat abase(i nvent orydb,

null,

myDbConfi g) ;

/1 Open the class catalog db. This is used to
/1 optimze class serialization.
cl asscat al ogdb = dat abasesHome + "/" + cl asscat al ogdb;
cl assCat al ogDb = new Dat abase(cl asscat al ogdb,
null,
myDbConfi g) ;

} catch(FileNot FoundException fnfe) {
Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

}

Finally we need a getter method to return the class catalog. Note that we do not provide a
getter for the catalog database itself - our application has no need for that.

We also update our cl ose() to close our class catalog.

Il getter nethods

publ i ¢ Database get VendorDB() {
return vendor Db;

}

publ i ¢ Database getlnventoryDB() {
return inventoryDb;
}

public StoredC assCatal og get ClassCatal og() {
return classCatal og;
}

Finally, we need our cl ose() method:

/1 Cose the databases
public void close() {
try {
if (vendorDb !'= null) {
vendor Db. cl ose();
1

8/14/2009

Getting Started with DB Page 90

if (inventoryDb !'= null) {
i nvent oryDb. cl ose();

}

if (classCatalogDb != null) {
cl assCat al ogDb. cl ose();
}
} catch(DatabaseException dbe) {
Systemerr.println("Error closing MDbs: " +
dbe.toString());
Systemexit(-1);

}

So far we have identified the data that we want to store in our databases and how we will
convert that data in and out of Dat abaseEnt ry objects for database storage. We have also
updated MyDbs to manage our databases for us. Now we write Exanpl eDat abaseLoad to actually
put the inventory and vendor data into their respective databases. Because of the work that
we have done so far, this application is actually fairly simple to write.

Example 8.5. ExampleDatabaselLoad.java

First we need the usual series of import statements:

/'l File: Exanpl eDat abaselLoad. ava
package db. GettingStarted;

i nport java.io.BufferedReader;

inport java.io.File;

inport java.io.FilelnputStream

i nport java.io.FileNot FoundExcepti on;
i nport java.io.lOException;

i nport java.io.lnputStreanReader;
inport java.util.ArraylList;

inport java.util.List;

i nport com sl eepycat . bi nd. Ent ryBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

Next comes the class declaration and the private data members that we need for this class.
Most of these are setting up default values for the program.

Note that two Dat abaseEnt ry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a M\yDbEnv object is instantiated here. We
can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbs (page 88) for its implementation details.

8/14/2009

Getting Started with DB Page 91

Finally, the i nventory.txt and vendors.txt file can be found in the GettingStarted examples
directory along with the classes described in this extended example.

public class Exanpl eDat abaselLoad {

private static String myDbsPath ="./";
private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

/| DatabaseEntries used for |oading records
private static DatabaseEntry theKey = new DatabaseEntry();
private static DatabaseEntry theData = new Dat abaseEntry();

/1 Encapsul ates the databases.
private static MyDbs nyDbs = new MyDbs();

Next comes the usage() and mai n() methods. Notice the exception handling in the mai n()
method. This is the only place in the application where we catch exceptions. For this reason,
we must catch Dat abaseExcepti on which is thrown by the com sl eepycat . db. * classes.

Also notice the call to MyDbs. cl ose() in the final | y block. This is the only place in the
application where MyDbs. cl ose() is called. MyDbs. cl ose() is responsible for closing all open
Dat abase handles for you.

private static void usage() {
System out. printl n("Exanpl eDat abaseLoad [-h <dat abase home>]");
System out. println(" [-s <selections file> [-v <vendors file>]");
Systemexit(-1);

}

public static void main(String args[]) {

Exanpl eDat abaseLoad edl = new Exanpl eDat abaselLoad();

try {
edl . run(args);

} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abaseLoad: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {
Systemout. println("Exception: " + e.toString());
e.printStackTrace();

} finally {
myDbs. cl ose();
}

Systemout.printin("Al done.");
}

Next we write the Exanpl eDat abaseLoad. r un() method. This method is responsible for initializing
all objects. Because our environment and databases are all opened using the MyDbs. set up()
method, Exanpl eDat abaseLoad. run() method is only responsible for calling MyDbs. set up() and
then calling the Exanpl eDat abaseLoad methods that actually load the databases.

8/14/2009

Getting Started with DB Page 92

private void run(String args[]) throws DatabaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbs. set up(nyDbsPath); // path to the environnent honme

Systemout. println("loading vendors db.");

| oadVendor sDb() ;

Systemout. println("loading inventory db.");
| oadl nvent oryDb();

}

This next method loads the vendor database. This method uses serialization to convert the
Vendor object to a Dat abaseEnt ry object.

private void | oadVendor sDb()
throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the
Il file.

Li st vendors = | oadFile(vendorsFile, 8);

/1 Now |load the data into the database. The vendor's nanme is the
Il key, and the data is a Vendor class object.

Il Need a serial bhinding for the data
Ent ryBi ndi ng dataBi nding =
new Seri al Bi ndi ng(myDbs. get O assCatal og(), Vendor.class);

for (int i =0; i < vendors.size(); i++) {
String[] sArray = (String[])vendors. get(i);
Vendor theVendor = new Vendor ();
t heVendor . set Vendor Nanme(sArray[0]) ;
t heVendor . set Address(sArray[1]);
t heVendor.setGity(sArray[2]);
t heVendor . set Stat e(sArray[3]);
t heVendor . set Zi pcode(sArray[4]);
t heVendor . set Busi nessPhoneNunber (sArray[5]);
t heVendor . set RepNane(sArray[6]);
t heVendor . set RepPhoneNunber (sArray[7]);

/1 The key is the vendor's nane.
/1 ASSUMES THE VENDOR S NAME | S UNI QUE!
String vendor Nane = t heVendor. get Vendor Name() ;
try {
t heKey = new Dat abaseEntry(vendor Nane. get Byt es(" UTF-8"));
} catch (1 OException willNeverCccur) {}

8/14/2009 Getting Started with DB Page 93

/1 Convert the Vendor object to a DatabaseEntry object
/1 using our Serial Binding
dat aBi ndi ng. obj ect ToEnt ry(t heVendor, theData);

[/ Put it in the database.
myDbs. get Vendor DB() . put (nul |, theKey, theData);

}

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 87)) to convert the | nvent ory object to a Dat abaseEnt ry object.

private void | oadl nventoryDb()
throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the
Il file.

List inventoryArray = |oadFile(inventoryFile, 6);

I/ Now | oad the data into the database. The itenmls sku is the
Il key, and the data is an Inventory class object.

Il Need a tuple binding for the Inventory class.
Tupl eBi ndi ng i nvent or yBi ndi ng = new | nvent or yBi ndi ng() ;

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);
String sku = sArray[1];
try {
t heKey = new Dat abaseEnt ry(sku. get Byt es("UTF-8"));
} catch (1 OException willNeverCccur) {}

Inventory thelnventory = new Inventory();

thel nventory. set |t enNane(sArray[0]);

thel nventory. set Sku(sArray[1]);

Fl oat price = new Float(sArray[2]);

t hel nvent ory. set Vendor Pri ce(price. fl oatVal ue());
Integer vinventory = new Integer(sArray[3]);

t hel nvent ory. set Vendor | nvent ory(vl nventory.intVal ue());
t hel nvent ory. set Cat egory(sArray[4]);

t hel nvent ory. set Vendor (sArray[5]);

/1 Place the Vendor object on the DatabaseEntry object using
/1 our the tuple binding we inplenmented in

/'l I'nventoryBindi ng.java

i nvent oryBi ndi ng. obj ect ToEnt ry(t hel nventory, theData);

8/14/2009

Getting Started with DB Page 94

[/ Put it in the database. Note that this causes our
/'l secondary database to be automatically updated for us.
myDbs. get I nvent oryDB() . put (nul |, theKey, theData);

}

The remainder of this application provides utility methods to read a flat text file into an array
of strings and parse the command line options:

private static void parseArgs(String args[]) {
/1 Inplementation onitted for brevity.
}

private List loadFile(File theFile, int nunFields) {
List records = new ArrayList();
/1 Inplementation onitted for brevity.
return records;

}

protected Exanpl eDat abaseLoad() {}
1

From the perspective of this document, these things are relatively uninteresting. You can see
how they are implemented by looking at Exanpl eDat abaselLoad. j ava in:

DB I NSTALL/ exanpl es_j aval/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

8/14/2009

Getting Started with DB Page 95

Chapter 9. Using Cursors

Cursors provide a mechanism by which you can iterate over the records in a database. Using
cursors, you can get, put, and delete database records. If a database allows duplicate records,
then cursors are the easiest way that you can access anything other than the first record for
a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them to
modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Dat abase. openCur sor () method. When you open a
cursor, you can optionally pass it a Cur sor Confi g object to set cursor properties. The cursor

properties that you can set allows you to control the isolation level that the cursor will obey.
See the Berkeley DB Getting Started with Transaction Processing guide for more information.

For example:

package db. GettingStarted;

i nport com sl eepycat . db. Cursor;
i nport com sl eepycat . db. Dat abase;
i nport com sl eepycat . db. Dat abaseExcepti on;

i nport java.io.FileNot FoundExcepti on;

Dat abase nyDat abase = nul | ;
Cursor nyCursor = null;

try {
nyDat abase = new Dat abase("nyDB", null, null);

myCur sor = nyDat abase. openCursor(null, null);
} catch (FileNot FoundException fnfe) {

/'] Exception handling goes here ...
} catch (DatabaseException dbe) {

/'] Exception handling goes here ...
}

To close the cursor, call the Cursor. cl ose() method. Note that if you close a database that
has cursors open in it, then it will throw an exception and close any open cursors for you. For
best results, close your cursors from within a final | y block.

package db. GettingStarted;

i nport com sl eepycat . db. Cursor;
i nport com sl eepycat . db. Dat abase;

8/14/2009 Getting Started with DB Page 96

try {
} cai;:lh o]
} finally {

try {
if (myCursor !'=null) {

myCur sor . cl ose();
}

if (nmyDatabase !'= null) {
myDat abase. cl ose() ;
}
} catch(DatabaseException dbe) {
Systemerr.printin("Error in close: " + dbe.toString());

}
}

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor and
then use the Cursor. get Next () method. For example:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Gperati onSt at us;

Cursor cursor = null;
try {

Dat abase nyDat abase = nul | ;
/| Database open onitted for brevity

/1 Open the cursor.
cursor = nyDat abase. openCursor (null, null);

/] Cursors need a pair of DatabaseEntry objects to operate. These hold
/1 the key and data found at any given position in the database.

Dat abaseEntry foundKey = new Dat abaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

8/14/2009

Getting Started with DB Page 97

/] To iterate, just call getNext() until the |ast database record has been
/] read. Al'l cursor operations return an OperationStatus, so just read
[/ until we no |onger see QperationStatus. SUCCESS
whil e (cursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {
Il getData() on the DatabaseEntry objects returns the byte array
Il held by that object. W use this to get a String value. If the
/| DatabaseEntry held a byte array representation of some other data
Il type (such as a conpl ex object) then this operation woul d | ook
Il considerably different.
String keyString = new String(foundKey.getData(), "UTF-
String dataString = new String(foundData.getData(), "UTl
Systemout.printin("Key | Data : " + keyString +" | "
dataString + "");

8");
F-8");
+

}
} catch (DatabaseException de) {

Systemerr.printIn("Error accessing database." + de);
} finally {

[/ Cursors nust be closed.

cursor.close();

}

To iterate over the database from the last record to the first, instantiate the cursor, and then
use Cursor. get Prev() until you read the first record in the database. For example:

package db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. LockMbde;

i nport com sl eepycat . db. Qperati onSt at us;

Cursor cursor = null;
Dat abase nyDat abase = nul | ;

try {

/| Database open onitted for brevity
/] Qpen the cursor.
cursor = nyDat abase. openCursor(null, null);

/] Get the DatabaseEntry objects that the cursor will use.
Dat abaseEntry foundKey = new DatabaseEntry();

8/14/2009 Getting Started with DB Page 98

Dat abaseEntry foundData = new Dat abaseEntry();

/] Iterate fromthe last record to the first in the database
whil e (cursor.getPrev(foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {
String theKey = new String(foundKey.getData(), "UTF-8");
String theData = new String(foundData.getData(), "UTF-8");
Systemout.printin("Key | Data : " + theKey +" | " + theData + "");
}
} catch (DatabaseException de) {
Systemerr.printIn("Error accessing database." + de);
} finally {
[/ Cursors nmust be cl osed.
cursor.close();

}

Searching for Records

You can use cursors to search for database records. You can search based on just a key, or you
can search based on both the key and the data. You can also perform partial matches if your
database supports sorted duplicate sets. In all cases, the key and data parameters of these
methods are filled with the key and data values of the database record to which the cursor is
positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and Oper at i onSt at us. NOTFOUND
is returned.

The following Cur sor methods allow you to perform database searches:
« Cursor. get Sear chKey()

Moves the cursor to the first record in the database with the specified key.
« Cursor. get Sear chKeyRange()

Identical to Cursor. get Sear chKey() unless you are using the BTree access. In this case, the
cursor moves to the first record in the database whose key is greater than or equal to the
specified key. This comparison is determined by the comparator that you provide for the
database. If no comparator is provided, then the default lexicographical sorting is used.

For example, suppose you have database records that use the following Strings as keys:

Al abama
Al aska
Arizona

Then providing a search key of Al aska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Al abama), providing a search key of

8/14/2009

Getting Started with DB Page 99

Al as moves the cursor to the second key (Al aska), and providing a key of Ar moves the cursor
to the last key (Ari zona).

Cursor. get Sear chBot h()

Moves the cursor to the first record in the database that uses the specified key and data.

Cur sor . get Sear chBot hRange()

Moves the cursor to the first record in the database whose key matches the specified key
and whose data is greater than or equal to the specified data. If the database supports
duplicate records, then on matching the key, the cursor is moved to the duplicate record
with the smallest data that is greater than or equal to the specified data.

For example, suppose your database uses BTree and it has database records that use the
following key/data pairs:

Al abama/ At hens

Al abana/ Fl orence
Al askal Anchor age
Al aska/ Fai r banks
Ari zona/ Avondal e
Ari zonal Fl orence

then providing:

a search key of ... and a search data of ... moves the cursor to ...
Alaska Fa Alaska/Fairbanks
Arizona Fl Arizona/Florence
Alaska An Alaska/Anchorage

For example, assuming a database containing sorted duplicate records of U.S. States/U.S Cities
key/data pairs (both as Strings), then the following code fragment can be used to position the
cursor to any record in the database and print its key/data values:

package db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Operati onSt at us;

/1 For this exanple, hard code the search key and data
String searchKey = "Al aska";
String searchData = "Fa";

8/14/2009

Getting Started with DB Page 100

Cursor cursor = null;
Dat abase nyDat abase = nul | ;

try {

/| Database open onmtted for brevity

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

Dat abaseEntry theKey =

new Dat abaseEnt ry(sear chKey. get Byt es("UTF-8"));
Dat abaseEntry theData =

new Dat abaseEnt ry(searchDat a. get Byt es(" UTF-8"));

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

/| Performthe search
OperationStatus retVal = cursor. get Sear chBot hRange(t heKey, theData,
LockMde. DEFAULT) ;
[/ NOTFOUND is returned if a record cannot be found whose key
/1 matches the search key AND whose data begins with the search data.
if (retVal == QperationStatus. NOTFOUND) {
Systemout. println(searchKey + "/" + searchData +
" not matched in database " +
myDat abase. get Dat abaseNange()) ;
} else {
Il Upon conpleting a search, the key and data DatabaseEntry
Il paranmeters for getSearchBot hRange() are populated with the
Il key/data val ues of the found record.
String foundKey = new String(theKey.getData(), "UTF-8");
String foundData = new String(theData.getData(), "UTF-8");
Systemout. println("Found record " + foundkey + "/" + foundData +
“for search key/data: " + searchKey +
"/" + searchData);

}

} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

8/14/2009 Getting Started with DB Page 101

Working with Duplicate Records

A record is a duplicate of another record if the two records share the same key. For duplicate
records, only the data portion of the record is unique.

Duplicate records are supported only for the BTree or Hash access methods. For information
on configuring your database to use duplicate records, see Allowing Duplicate Records (page 139).

If your database supports duplicate records, then it can potentially contain multiple records
that share the same key. By default, normal database get operations will only return the first
such record in a set of duplicate records. Typically, subsequent duplicate records are accessed
using a cursor. The following Cur sor methods are interesting when working with databases that
support duplicate records:

e Cursor.getNext (), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate of
the current record. For an example of using these methods, see Getting Records Using the
Cursor (page 97).

» Cursor. get Sear chBot hRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 99) for more information.

e Cursor. get Next NoDup(), Cursor. get PrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip over
all the duplicates in a set of duplicate records. If you call Cursor. get PrevNoDup(), then the
cursor is positioned to the last record for the previous key in the database. For example, if
you have the following records in your database:

Al abama/ At hens

Al abama/ Fl orence
Al askal Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

and your cursor is positioned to Al aska/ Fai r banks, and you then call Cur sor. get PrevNoDup(),
then the cursor is positioned to Alabama/Florence. Similarly, if you call

Cur sor. get Next NoDup() , then the cursor is positioned to the first record corresponding to
the next key in the database.

If there is no next/previous key in the database, then Oper ati onSt at us. NOTFOUND is returned,
and the cursor is left unchanged.

» Gets the next record that shares the current key. If the cursor is positioned at the last record
in the duplicate set and you call Cursor. get Next Dup(), then Cper ati onSt at us. NOTFOUND is
returned and the cursor is left unchanged. Likewise, if you call get PrevDup() and the cursor

8/14/2009

Getting Started with DB Page 102

is positioned at the first record in the duplicate set, then Cperati onSt at us. NOTFOUND is
returned and the cursor is left unchanged.

e Cursor.count()
Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and displays it and all its
duplicates. Note that the following code fragment assumes that the database contains only
String objects for the keys and data.

package db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Cperati onSt at us;

Cursor cursor = null;
Dat abase myDat abase = nul | ;
try {

/| Database open onitted for brevity

/] Create DatabaseEntry objects

/| searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEnt ry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/] Position the cursor

/] lgnoring the return value for clarity

OperationStatus retVal = cursor. get Sear chKey(theKey, theData,
LockMbde. DEFAULT) ;

/1 Count the nunber of duplicates. If the count is greater than 1,

[/ print the duplicates.

if (cursor.count() > 1) {

while (retVal == QperationStatus. SUCCESS) {
String keyString = new String(theKey.getData(), "UTF-8"
String dataString = new String(theData.getData(), "UT
Systemout.printin("Key | Data : " + keyString + " |
dataString + "");

8/14/2009 Getting Started with DB Page 103

retVal = cursor.getNext Dup(theKey, theData, LockMde.DEFAULT);
}
}
} catch (Exception e) {
/] Exception handling goes here
} finally {

/1 NMake sure to close the cursor
cursor.close();

}

Putting Records Using Cursors

You can use cursors to put records into the database. DB's behavior when putting records into
the database differs depending on the flags that you use when writing the record, on the access
method that you are using, and on whether your database supports sorted duplicates.

Note that when putting records to the database using a cursor, the cursor is positioned at the
record you inserted.

o Cursor. put NoDupDat a()

If the provided key already exists in the database, then this method returns
Oper ati onSt at us. KEYEXI ST.

If the key does not exist, then the order that the record is put into the database is determined
by the insertion order in use by the database. If a comparison function has been provided
to the database, the record is inserted in its sorted location. Otherwise (assuming BTree),
lexicographical sorting is used, with shorter items collating before longer items.

This flag can only be used for the BTree and Hash access methods, and only if the database
has been configured to support sorted duplicate data items (DB_DUPSORT was specified at
database creation time).

This flag cannot be used with the Queue or Recno access methods.

For more information on duplicate records, see Allowing Duplicate Records (page 139).
e Cursor. put NoOverwrite()

If the provided key already exists in the database, then this method returns .

If the key does not exist, then the order that the record is put into the database is determined
by the BTree (key) comparator in use by the database.

e Cursor. putKeyFirst()

For databases that do not support duplicates, this method behaves exactly the same as if a
default insertion was performed. If the database supports duplicate records, and a duplicate
sort function has been specified, the inserted data item is added in its sorted location. If

8/14/2009

Getting Started with DB Page 104

the key already exists in the database and no duplicate sort function has been specified, the

inserted data item is added as the first of the data items for that key.
o Cursor. put KeyLast ()

Behaves exactly as if Cursor. put KeyFirst () was used, except that if th
in the database and no duplicate sort function has been specified, the i
added as the last of the data items for that key.

For example:
package db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Cperati onSt at us;

/I Create the data to put into the database
String keylstr = "M first string";

String datalstr = "M first data";

String key2str = "My second string";

String data2str = "My second data";

String data3str ="M third data";

Cursor cursor = null;
Dat abase myDat abase = nul | ;

try {

/| Database open onitted for brevity

Dat abaseEntry keyl = new Dat abaseEnt ry(keylstr. get Bytes("UTF-
Dat abaseEntry datal = new Dat abaseEntry(datalstr. getBytes("UTF-
Dat abaseEntry key2 = new Dat abaseEnt ry(key2str. get Byt es(" UTF-
Dat abaseEntry data2 = new Dat abaseEnt ry(dat a2str. get Byt es(" UTF-
Dat abaseEntry data3 = new Dat abaseEnt ry(dat a3str. get Byt es(" UTF-

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/1 Assuming an enpty dat abase.

OperationStatus retVal = cursor. put (keyl, datal); // SUCCESS

retVal = cursor.put(key2, data2); // SUCCESS

retVal = cursor.put(key2, data3); // SUCCESS if dups allowed,
/1 KEYEXI ST if not.

e key already exists
nserted data item is

8/14/2009

Getting Started with DB

Page 105

} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

}

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want to

delete and then call

For example:

package db. GettingStarted;

i mport
i mport
i mport
i mport
i mport

Cursor cursor = null;

com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .

db. Cursor;

db. Dat abase;

db. Dat abaseEnt ry;
db. LockMode;

db. Oper ati onSt at us;

Dat abase nyDat abase = nul | ;

try {

/| Database open onmitted for brevity

/] Create DatabaseEntry objects
/] searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor. lgnoring the return value for clarity
OperationStatus retVal = cursor. get Sear chKey(theKey, theData,
LockMde. DEFAULT) ;

[/ Count the nunber of records using the given key. If there is only
/1 one, delete that record.
if (cursor.count() == 1) {
Systemout.printIn("Deleting " +
new String(theKey.getData(), "UTF-8") +
e
new String(theData.getData(), "UTF-8"));

8/14/2009

Getting Started with DB Page 106

}

cursor.del ete();

} catch (Exception e) {
/] Exception handling goes here
} finally {
I/ Make sure to close the cursor
cursor.close();

}

Replacing Records Using Cursors

You replace the data for a database record by using Cursor. put Current ().

i mport
i mport
i mport
i mport
i mport

Cursor cursor = null;

com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .
com sl eepycat .

db. Cur sor;;

db. Dat abase;

db. Dat abaseEntry;
db. LockMode;

db. Qper ati onSt at us;

Dat abase nyDat abase = nul | ;

try {

/| Database open onitted for brevity

/I Create DatabaseEntry objects
/| searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEnt ry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/] Position the cursor. lgnoring the return value for clarity
OperationStatus retVal = cursor. get Sear chKey(theKey, theData,

/'l Repl acenent data

String replaceStr = "M repl acenent string";

Dat abaseEntry repl acenentData =
new Dat abaseEntry(repl aceStr. get Bytes("UTF-8"));
cursor. put Current (repl acement Dat a) ;

} catch (Exception e) {

/| Exception handling goes here

} finally {
/1 Make sure to close the cursor
cursor. close();

LockMode. DEFAULT) ;

8/14/2009

Getting Started with DB

Page 107

Note that you cannot change a record's key using this method; the key parameter is always
ignored when you replace a record.

When replacing the data portion of a record, if you are replacing a record that is a member of
a sorted duplicates set, then the replacement will be successful only if the new record sorts
identically to the old record. This means that if you are replacing a record that is a member
of a sorted duplicates set, and if you are using the default lexicographic sort, then the
replacement will fail due to violating the sort order. However, if you provide a custom sort
routine that, for example, sorts based on just a few bytes out of the data item, then potentially
you can perform a direct replacement and still not violate the restrictions described here.

Under these circumstances, if you want to replace the data contained by a duplicate record,
and you are not using a custom sort routine, then delete the record and create a new record
with the desired key and data.

Cursor Example

In Database Usage Example (page 84) we wrote an application that loaded two Dat abase objects
with vendor and inventory information. In this example, we will use those databases to display
all of the items in the inventory database. As a part of showing any given inventory item, we
will look up the vendor who can provide the item and show the vendor's contact information.

To do this, we create the Exanpl eDat abaseRead application. This application reads and displays
all inventory records by:

1. Opening the inventory, vendor, and class catalog Dat abase objects. We do this using the
MyDbs class. See Stored Class Catalog Management with MyDbs (page 88) for a description
of this class.

2. Obtaining a cursor from the inventory Dat abase.
3. Steps through the Dat abase, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 87) is used.

5. Dat abase. get () is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the Dat abaseEntry returned by the get () to a Vendor
object.

7. The contents of the Vendor object are displayed.

We implemented the Vendor class in Vendor.java (page 86). We implemented the I nventory
class in Inventory.java (page 84).

The full implementation of Exanpl eDat abaseRead can be found in:

DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

8/14/2009

Getting Started with DB Page 108

Example 9.1. ExampleDatabaseRead.java

To begin, we import the necessary classes:

/1 file Exanpl eDat abaseRead. | ava
package db. GettingStarted;

inport java.io.File;
i nport java.io.lOException;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Cperati onSt at us;

Next we declare our class and set up some global variables. Note a MyDbs object is instantiated
here. We can do this because its constructor never throws an exception. See Database
Example (page 65) for its implementation details.

public class Exanpl eDat abaseRead {
private static String nyDbsPath ="./";

/1 Encapsul ates the database environnment and dat abases.
private static MyDbs nyDbs = new MyDbs();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBi nding;

Next we create the Exanpl eDat abaseRead. usage() and Exanpl eDat abaseRead. mai n() methods.
We perform almost all of our exception handling from Exanpl eDat abaseRead. mai n() , and so we
must catch Dat abaseExcepti on because the com sl eepycat . db. * APIs throw them.

private static void usage() {
Systemout. println("Exanpl eDat abaseRead [-h <env directory>]" +
"[-s <itemto locate>]");
Systemexit(-1);
}

public static void main(String args[]) {
Exanpl eDat abaseRead edr = new Exanpl eDat abaseRead() ;
try {
edr.run(args);
} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abaseRead: " + dbe.toString());
dbe. print StackTrace();

8/14/2009

Getting Started with DB Page 109

} finally {
myDbs. cl ose();
}

Systemout.printin("Al done.");
}

In Exanpl eDat abaseRead. run(), we call MyDbs. set up() to open our databases. Then we create
the bindings that we need for using our data objects with Dat abaseEnt ry objects.

private void run(String args[])
t hrows Dat abaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbs. set up(myDbsPat h) ;

Il Setup our bindings.
i nvent oryBi ndi ng = new | nventoryBindi ng();
vendor Bi ndi ng =
new Seri al Bi ndi ng(myDbs. get O assCat al og(),
Vendor . cl ass) ;

showAl | I nventory();
}

Now we write the loop that displays the | nvent ory records. We do this by opening a cursor on
the inventory database and iterating over all its contents, displaying each as we go.

private void showAl | I nventory()
t hrows Dat abaseException {
[/ Get a cursor
Cursor cursor = nyDbs. getlnventoryDB().openCursor(null, null);

/| DatabaseEntry objects used for reading records
Dat abaseEntry foundKey = new Dat abaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

try { // always want to make sure the cursor gets closed
while (cursor.getNext (foundKey, foundDat a,
LockMbde. DEFAULT) == Cperati onSt at us. SUCCESS) {
Inventory thelnventory =
(I'nventory)invent oryBi ndi ng. entryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);
}
} catch (Exception e) {
Systemerr.printIn("Error on inventory cursor:");
Systemerr.printin(e.toString());
e.print StackTrace()

} finally {
cursor. close();

8/14/2009 Getting Started with DB Page 110

}

We use Exanpl eDat abaseRead. di spl ayl nvent or yRecord() to actually show the record. This
method first displays all the relevant information from the retrieved Inventory object. It then
uses the vendor database to retrieve and display the vendor. Because the vendor database is
keyed by vendor name, and because each inventory object contains this key, it is trivial to
retrieve the appropriate vendor record.

private void displaylnventoryRecord(Dat abaseEntry theKey,
I nventory thel nventory)
throws Dat abaseException {

String theSKU = new String(theKey.getData(), "UTF-8");
Systemout.printin(theSKU + ":");
Systemout.printin("\t " + thelnventory.getltenmNanme());
Systemout.printin("\t " + thelnventory.getCategory());
Systemout.printin("\t " + thelnventory.getVendor());
Systemout.printin("\t\tNunber in stock: " +

t hel nvent ory. get Vendor | nvent ory());
Systemout.printin("\t\tPrice per unit: " +

t hel nvent ory. get Vendor Price());
Systemout.printin("\t\tContact: ");

Dat abaseEntry searchKey = nul | ;
try {
sear chKey =
new Dat abaseEnt ry(thel nventory. get Vendor (). get Byt es("UTF-8"));
} catch (1 OException willNeverCeccur) {}
Dat abaseEntry foundVendor = new Dat abaseEntry();

i f (myDbs. get Vendor DB(). get (nul |, searchKey, foundVendor,
LockMode. DEFAULT) !'= OperationStatus. SUCCESS) {
Systemout.println("Could not find vendor: " +
t hel nventory. get Vendor () + ".");
Systemexit(-1);
} else {
Vendor theVendor =
(Vendor) vendor Bi ndi ng. ent ryToQhj ect (f oundVendor) ;
Systemout.println("\t\t " + theVendor. get Address());
Systemout.printIn("\t\t " + theVendor.getCity() + ", " +
theVendor.get State() + " " + theVendor. getZi pcode());
Systemout.printIn("\t\t Business Phone: " +
t heVendor . get Busi nessPhoneNunber ());
Systemout.printIn("\t\t Sales Rep: " +
t heVendor . get RepNane()) ;
Systemout. printIn("\t\t "+
t heVendor . get RepPhoneNunber ()) ;

8/14/2009 Getting Started with DB Page 111

}

The remainder of this application provides a utility method used to parse the command line
options. From the perspective of this document, this is relatively uninteresting. You can see
how this is implemented by looking at:

DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

8/14/2009 Getting Started with DB Page 112

Chapter 10. Secondary Databases

Usually you find database records by means of the record's key. However, the key that you use
for your record will not always contain the information required to provide you with rapid
access to the data that you want to retrieve. For example, suppose your Dat abase contains
records related to users. The key might be a string that is some unique identifier for the person,
such as a user ID. Each record's data, however, would likely contain a complex object containing
details about people such as names, addresses, phone numbers, and so forth. While your
application may frequently want to query a person by user ID (that is, by the information stored
in the key), it may also on occasion want to locate people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn for a
given person's name, you create indexes based on names and then just search that index for
the name that you want. You can do this using secondary databases. In DB, the Dat abase that
contains your data is called a primary database. A database that provides an alternative set
of keys to access that data is called a secondary database In a secondary database, the keys
are your alternative (or secondary) index, and the data corresponds to a primary record's key.

You create a secondary database by using a Secondar yConfi g class object to identify an
implementation of a Secondar yKeyCr eat or class object that is used to create keys based on
data found in the primary database. You then pass this Secondar yConfi g object to the
Secondar yDat abase constructor.

Once opened, DB manages secondary databases for you. Adding or deleting records in your
primary database causes DB to update the secondary as necessary. Further, changing a record's
data in the primary database may cause DB to modify a record in the secondary, depending on
whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. To change the data referenced
by a Secondar yDat abase record, modify the primary database instead. The exception to this
rule is that delete operations are allowed on the Secondar yDat abase object. See Deleting
Secondary Database Records (page 121) for more information.

|:| Secondary database records are updated/created by DB only if the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method returns true. If fal se is returned,
then DB will not add the key to the secondary database, and in the event of a record
update it will remove any existing key.

See Implementing Key Creators (page 116) for more information on this interface and
method.

When you read a record from a secondary database, DB automatically returns the data and
optionally the key from the corresponding record in the primary database.

Opening and Closing Secondary Databases

You manage secondary database opens and closes using the Secondar yDat abase constructor.
Just as is the case with primary databases, you must provide the Secondar yDat abase()
constructor with the database’'s name and, optionally, other properties such as whether duplicate

8/14/2009 Getting Started with DB Page 113

records are allowed, or whether the secondary database can be created on open. In addition,
you must also provide:

» A handle to the primary database that this secondary database is indexing. Note that this
means that secondary databases are maintained only for the specified Dat abase handle. If
you open the same Dat abase multiple times for write (such as might occur when opening a
database for read-only and read-write in the same application), then you should open the
Secondar yDat abase for each such Dat abase handle.

» A Secondar yConfi g object that provides properties specific to a secondary database. The
most important of these is used to identify the key creator for the database. The key creator
is responsible for generating keys for the secondary database. See Secondary Database
Properties (page 120) for details.

|:| Primary databases must not support duplicate records. Secondary records point to primary
records using the primary key, so that key must be unique.

So to open (create) a secondary database, you:

1. Open your primary database.

2. Instantiate your key creator.

3. Instantiate your Secondar yConfi g object.

4. Set your key creator object on your Secondar yConfi g object.

5. Open your secondary database, specifying your primary database and your Secondar yConfi g
at that time.

For example:
package db. GettingStarted;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Secondar yDat abase;

i nport com sl eepycat . db. Secondar yConfi g;

i nport java.io.FileNot FoundExcepti on;

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myDbConfi g. set Al | owCreate(true);
myDbConfi g. set Type(Dat abaseType. BTREE) ;

8/14/2009

Getting Started with DB Page 114

SecondaryConfi g mySecConfig = new SecondaryConfig();
mySecConfi g. set Al l owCreate(true);

mySecConfi g. set Type(Dat abaseType. BTREE) ;

/] Duplicates are frequently required for secondary databases.
mySecConfi g. set Sort edDupl i cates(true);

/1 Cpen the primry
Dat abase nyDb = nul | ;
Secondar yDat abase mySecDb = nul | ;

try {

String dbNane = "nyPri maryDat abase";
nmyDb = new Dat abase(dbNane, null, myDbConfig);

/] A fake tuple binding that is not actually inplenented anywhere.
[/ The tuple binding i s dependent on the data in use.

/1 Tupl e bindings are described earlier in this mnual.

Tupl eBi ndi ng nyTupl eBi ndi ng = new MyTupl eBi ndi ng() ;

/1 Open the secondary.
/] Key creators are described in the next section.
Ful | NameKeyCr eat or keyCreat or = new Ful | NameKeyCr eat or (nyTupl eBi ndi ng) ;

/] Get a secondary object and set the key creator on it.
mySecConfi g. set KeyCr eat or (keyCreator);

/] Performthe actual open
String secDbNane = "nySecondaryDat abase";
mySecDb = new Secondar yDat abase(secDoNanme, null, nyDb, nySecConfig);

} catch (DatabaseException de) {

/] Exception handling goes here ...

} catch (FileNot FoundException fnfe) {

}

/] Exception handling goes here ...

For example:

try {

if (nySecDb !'= null) {
mySecDb. cl ose();
}

if (nyDo !'=null) {
myDb. cl ose();

}
} catch (DatabaseException dbe) {

To close a secondary database, call its close() method. Note that for best results, you should
close all the secondary databases associated with a primary database before closing the primary.

8/14/2009

Getting Started with DB

Page 115

/] Exception handling goes here
}

Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary records.
You identify this class using the Secondar yConfi g. set KeyCreat or () method.

You can create keys using whatever data you want. Typically you will base your key on some
information found in a record's data, but you can also use information found in the primary
record's key. How you build your keys is entirely dependent upon the nature of the index that
you want to maintain.

You implement a key creator by writing a class that implements the Secondar yKeyCr eat or
interface. This interface requires you to implement the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method.

One thing to remember when implementing this method is that you will need a way to extract
the necessary information from the data's Dat abaseEnt ry and/or the key's Dat abaseEntry that
are provided on calls to this method. If you are using complex objects, then you are probably
using the Bind APIs to perform this conversion. The easiest thing to do is to instantiate the

Ent ryBi ndi ng or Tupl eBi ndi ng that you need to perform the conversion, and then provide this
to your key creator's constructor. The Bind APIs are introduced in Using the BIND APIs (page 73).

Secondar yKeyCr eat or . cr eat eSecondar yKey() returns a boolean. A return value of f al se indicates
that no secondary key exists, and therefore no record should be added to the secondary database
for that primary record. If a record already exists in the secondary database, it is deleted.

For example, suppose your primary database uses the following class for its record data:
package db. GettingStarted;

public class PersonData {
private String userlD;
private String surnang;
private String faniliarNane;

public PersonData(String userlD, String surnane, String famliarName) {
this.userlD = userlD;
this. surnane = surnane;
this.famliarName = familiarNang;

}

public String getUserlD() {
return userlD;

}

public String getSurname() {
return surnane;

}

8/14/2009

Getting Started with DB Page 116

public String getFam |iarName() {
return famliarNang;
}
}

Also, suppose that you have created a custom tuple binding, Per sonDat aBi ndi ng, that you use
to convert Per sonDat a objects to and from Dat abaseEnt ry objects. (Custom tuple bindings are
described in Custom Tuple Bindings (page 81).)

Finally, suppose you want a secondary database that is keyed based on the person's full name.

Then in this case you might create a key creator as follows:
package db. GettingStarted;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Secondar yKeyCr eat or ;
i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Secondar yDat abase;

i mport java.io.lOException;
public class Full NanmeKeyCreator inplenments SecondaryKeyCreator {
private Tupl eBinding theBi nding;

public Ful | NameKeyCr eat or (Tupl eBi ndi ng t heBi ndi ngl) {
t heBi ndi ng = t heBi ndi ng1;
}

publ i ¢ bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry,
Dat abaseEntry dataEntry,
Dat abaseEntry resul tEntry) {

try {
PersonData pd =

(PersonData) theBinding.entryToChj ect(dataEntry);
String full Name = pd. getFaniliarName() +" " +
pd. get Sur nane() ;
resul tEntry. set Data(ful | Name. get Byt es(" UTF-8"));
} catch (1 OException willNeverCccur) {}
return true;

}

Finally, you use this key creator as follows:

8/14/2009

Getting Started with DB Page 117

package db. GettingStarted;

i nport com sl eepycat.

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.

bi nd. t upl e. Tupl eBi ndi ng;

db. Dat abase;

db. Dat abaseExcepti on;
db. Dat abaseType;

db. Secondar yDat abase;
db. Secondar yConf i g;

inport java.io.FileNot FoundExcepti on;

Dat abase nyDb = nul | ;

Secondar yDat abase mySecDb = nul | ;

try {

[/ Primary database open omtted for brevity

Tupl eBi ndi ng nyDat aBi ndi ng = new MyTupl eBi ndi ng() ;
Ful | NameKeyCreat or fnkc = new Ful | NameKeyCr eat or (nyDat aBi ndi ng) ;

SecondaryConfi g nySecConfig = new SecondaryConfig();
mySecConfi g. set KeyCr eat or (f nkc) ;
mySecConfi g. set Type(Dat abaseType. BTREE) ;

[/ Performthe act
String secDoNane

mySecDb = new Secondar yDat abase(secDoNanme, null, nyDb, nySecConfig);

ual open
= "nmySecondar yDat abase";

} catch (DatabaseException de) {
/] Exception handling goes here

} catch (FileNot FoundException fnfe) {
/] Exception handling goes here

} finally {

try {
if (nmySecDb !

= null) {

mySecDb. cl ose();

}

if (myDb !'=null) {
myDb. cl ose();

}
} catch (DatabaseException dbe) {

Il Exception
}

handl i ng goes here

8/14/2009

Getting Started with DB

Page 118

Working with Multiple Keys

Until now we have only discussed indexes as if there is a one-to-one relationship between the
secondary key and the primary database record. In fact, it is possible to generate multiple
keys for any given record, provided that you take appropriate steps in your key creator to do
so.

For example, suppose you had a database that contained information about books. Suppose
further that you sometimes want to look up books by author. Because sometimes books have
multiple authors, you may want to return multiple secondary keys for every book that you
index.

To do this, you write a key creator that implements Secondar yMil ti KeyCr eat or instead of
Secondar yKeyCr eat or . The key difference between the two is that Secondar yKeyCr eat or uses
a single Dat abaseEnt ry object as the result, while Secondar yMil ti KeyCr eat or returns a set of
Dat abaseEnt ry objects (using j ava. util. Set). Also, you assign the Secondar yMil ti KeyCr eat or
implementation using Secondar yConfi g. set Mul ti KeyCreat or () instead of

SecondaryConfi g. set KeyCreator ().

For example:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Secondar yDat abase;

i nport com sl eepycat . db. Secondar yMul ti KeyCr eat or;

inport java.util.HashSet;
inport java.util. Set;

public class M/Mil ti KeyCreator inplenents SecondaryMiltiKeyCreator {

[/ Constructor not inplemented. How this is inplemented depends on
/1 how you want to extract the data for your keys.
M/Mul ti KeyCreator () {

}

/] Abstract nethod that we nust inplenent
public void createSecondaryKeys(SecondaryDat abase secDb,
Dat abaseEntry keyEntry, [l Fromthe primry
Dat abaseEntry dataEntry, // Fromthe primary
Set results) Il Results set
t hrows Dat abaseException {

try {
Il Create your keys, adding each to the set

/1 Creation of key "a'" not shown

8/14/2009

Getting Started with DB Page 119

resul ts. add(a)

/1 Creation of key 'b'" not shown
resul ts. add(b)

} catch (1 OException willNeverCeccur) {}

}

Secondary Database Properties

Secondary databases accept Secondar yConfi g objects. Secondar yConfi g is a subclass of
Dat abaseConfi g, so it can manage all of the same properties as does Dat abaseConfi g. See
Database Properties (page 60) for more information.

In addition to the Dat abaseConfi g properties, Secondar yConfi g also allows you to manage the
following properties:

» SecondaryConfig.set Al | owPopul ate()

If true, the secondary database can be auto-populated. This means that on open, if the
secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

» SecondaryConfig. set KeyCreator ()

Identifies the key creator object to be used for secondary key creation. See Implementing
Key Creators (page 116) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by using
the Secondar yDat abase. get () method, or by using a Secondar yCur sor . The main difference
between reading secondary and primary databases is that when you read a secondary database
record, the secondary record's data is not returned to you. Instead, the primary key and data
corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full name:
package db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Operati onSt at us;

i nport com sl eepycat . db. Secondar yDat abase;

Secondar yDat abase mySecondar yDat abase = nul | ;

try {
[/ Ortting all database opens

8/14/2009

Getting Started with DB Page 120

String searchName = "John Doe";
Dat abaseEntry searchKey =
new Dat abaseEnt ry(searchNane. get Byt es(" UTF-8"));
Dat abaseEntry primaryKey = new Dat abaseEntry();
Dat abaseEntry primaryData = new DatabaseEntry();

/] Get the primary key and data for the user 'John Doe'.
OperationStatus retVal = mySecondaryDat abase. get (nul |, searchKey,
pri maryKey,
pri maryDat a,
LockMbde. DEFAULT) ;
} catch (Exception e) {
/] Exception handling goes here

}

Note that, just like Dat abase. get (), if your secondary database supports duplicate records
then Secondar yDat abase. get () only return the first record found in a matching duplicates set.
If you want to see all the records related to a specific secondary key, then use a Secondar yCur sor
(described in Using Secondary Cursors (page 122)).

Deleting Secondary Database Records

In general, you will not modify a secondary database directly. In order to modify a secondary
database, you should modify the primary database and simply allow DB to manage the secondary
modifications for you.

However, as a convenience, you can delete Secondar yDat abase records directly. Doing so causes
the associated primary key/data pair to be deleted. This in turn causes DB to delete all
Secondar yDat abase records that reference the primary record.

You can use the Secondar yDat abase. del et () method to delete a secondary database record.
Note that if your Secondar yDat abase contains duplicate records, then deleting a record from
the set of duplicates causes all of the duplicates to be deleted as well.

|:| Secondar yDat abase. del et e() causes the previously described delete operations to occur
only if the primary database is opened for write access.
For example:

package db. GettingStarted;
i nport com sl eepycat . db. Dat abaseEnt ry;
i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Qperati onSt at us;
i nport com sl eepycat . db. Secondar yDat abase;

try {

8/14/2009

Getting Started with DB Page 121

Secondar yDat abase mySecondar yDat abase = nul | ;
[/ Omtting all database opens

String searchNane = "John Doe";
Dat abaseEntry searchKey =
new Dat abaseEnt ry(searchNane. get Byt es(" UTF-8"));

/] Delete the first secondary record that uses "John Doe" as

/] a key. This causes the primary record referenced by this secondary

[/ record to be deleted.

OperationStatus retVal = nySecondaryDat abase. del ete(null, searchKey);
} catch (Exception e) {

/] Exception handling goes here

}

Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors to
search for specific records in a database, to seek to the first or last record in the database, to
get the next duplicate record, and so forth. For a complete description on cursors and their
capabilities, see Using Cursors (page 96).

However, when you use secondary cursors:

» Any data returned is the data contained on the primary database record referenced by the
secondary record.

« SecondaryCursor. get Sear chBot h() and related methods do not search based on a key/data
pair. Instead, you search based on a secondary key and a primary key. The data returned is
the primary data that most closely matches the two keys provided for the search.

For example, suppose you are using the databases, classes, and key creators described in
Implementing Key Creators (page 116). Then the following searches for a person’'s name in the
secondary database, and deletes all secondary and primary records that use that name.

package db. GettingStarted,

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. LockMode;

i mport com sl eepycat . db. Operati onSt at us;

i nport com sl eepycat . db. Secondar yDat abase;
i nport com sl eepycat . db. Secondar yCur sor;

try {
Secondar yDat abase nySecondar yDat abase = nul | ;
/| Database opens onitted for brevity

8/14/2009

Getting Started with DB Page 122

String secondaryNanme = "John Doe";
Dat abaseEntry secondaryKey =
new Dat abaseEnt ry(secondar yNane. get Byt es(" UTF-8"));

Dat abaseEntry foundData = new Dat abaseEntry();

Secondar yCursor nySecCursor =
my Secondar yDat abase. openSecondar yCur sor (nul |, null);

OperationStatus retVal = mySecCursor. get Sear chKey(secondaryKey,
f oundDat a,
LockMbde. DEFAULT) ;
while (retVal == QperationStatus. SUCCESS) {
mySecCur sor. del ete();
retVal = mySecCursor. get Next Dup(secondar yKey,
f oundDat a,
LockMbde. DEFAULT) ;
}
} catch (Exception e) {
/| Exception handling goes here

}
Database Joins

If you have two or more secondary databases associated with a primary database, then you
can retrieve primary records based on the intersection of multiple secondary entries. You do

this using a Joi nCur sor .

Throughout this document we have presented a class that stores inventory information on
grocery That class is fairly simple with a limited number of data members, few of which would
be interesting from a query perspective. But suppose, instead, that we were storing information
on something with many more characteristics that can be queried, such as an automobile. In
that case, you may be storing information such as color, number of doors, fuel mileage,

automobile type, number of passengers, make, model, and year, to hame just a few.

In this case, you would still likely be using some unique value to key your primary entries (in
the United States, the automobile’s VIN would be ideal for this purpose). You would then create
a class that identifies all the characteristics of the automobiles in your inventory. You would
also have to create some mechanism by which you would move instances of this class in and
out of Java byt e arrays. We described the concepts and mechanisms by which you can perform

these activities in Database Records (page 68).

To query this data, you might then create multiple secondary databases, one for each of the
characteristics that you want to query. For example, you might create a secondary for color,
another for number of doors, another for number of passengers, and so forth. Of course, you
will need a unique key creator for each such secondary database. You do all of this using the

concepts and techniques described throughout this chapter.

8/14/2009 Getting Started with DB

Page 123

Once you have created this primary database and all interesting secondaries, what you have
is the ability to retrieve automobile records based on a single characteristic. You can, for
example, find all the automobiles that are red. Or you can find all the automobiles that have
four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example, you
might want to find all the automobiles that are red, and that were built by Toyota, and that
are minivans. You can do this using a Joi nCur sor class instance.

Using Join Cursors

To use a join cursor:

» Open two or more secondary cursors. These cursors for secondary databases that are
associated with the same primary database.

« Position each such cursor to the secondary key value in which you are interested. For example,
to build on the previous description, the cursor for the color database is positioned to the
red records while the cursor for the model database is positioned to the m ni van records,
and the cursor for the make database is positioned to Toyot a.

» Create an array of secondary cursors, and place in it each of the cursors that are participating
in your join query.

« Obtain a join cursor. You do this using the Dat abase. j 0i n() method. You must pass this
method the array of secondary cursors that you opened and positioned in the previous steps.

« Iterate over the set of matching records using Joi nCur sor. get Next () until Cperati onSt at us
is not SUCCESS.

 Close your join cursor.
« If you are done with them, close all your secondary cursors.

For example:

package db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Joi nCur sor;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Cperati onSt at us;

i nport com sl eepycat . db. Secondar yCur sor;

i nport com sl eepycat . db. Secondar yDat abase;

/| Database and secondary database opens onitted for brevity.
/1 Assume a primary database handl e:

8/14/2009

Getting Started with DB Page 124

[/ autonotiveDB
/1 Assume 3 secondary database handl es:

/1l autompt i veCol orDB -- index based on autonobile col or
[l autonotiveTypeDB -- index based on autonobile type
/1l aut onot i veMakeDB -- index based on the manufacturer

Dat abase autonotiveDB = nul | ;

Secondar yDat abase aut onotiveCol orDB = nul | ;
Secondar yDat abase aut onotiveTypeDB = nul | ;
Secondar yDat abase aut oot i veMakeDB = nul | ;

[l Query strings:

String theColor = "red";
String theType = "mnivan";
String theMake = "Toyota";
/| Secondary cursors used for the query:
Secondar yCursor col or SecCursor = null;
Secondar yCursor typeSecCursor = null;
Secondar yCur sor makeSecCursor = null;

/1 The join cursor
Joi nCursor joinCursor = null;

/| These are needed for our queries
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

[l Al cursor operations are enclosed in a try block to ensure that they

/1 get closed in the event of an exception.

try {
/| Database entries used for the query:

Dat abaseEntry col or = new Dat abaseEntry(theCol or. get Byt es("UT
Dat abaseEntry type = new Dat abaseEnt ry(theType. get Byt es(" UTF-
Dat abaseEntry make = new Dat abaseEnt ry(theMake. get Byt es(" UTF-

F-8
"))
8"):

col or SecCursor = aut onot i veCol or DB. openSecondar yCursor (nul |, null);
t ypeSecCur sor = aut onot i veTypeDB. openSecondar yCursor (null, null);
makeSecCur sor = aut onot i veMakeDB. openSecondar yCur sor (nul |, null);

/] Position all our secondary cursors to our query val ues.
OperationStatus col orRet =

col or SecCur sor . get Sear chKey(col or, foundData, LockMdde. DEFAULT);

OperationStatus typeRet =

t ypeSecCur sor . get Sear chKey(type, foundData, LockMbde. DEFAULT);

OperationStatus makeRet =

makeSecCur sor . get Sear chKey(nake, foundData, LockMde. DEFAULT);

[/ If all our searches returned successfully, we can proceed

8/14/2009

Getting Started with DB

Page 125

if (colorRet == QperationStatus. SUCCESS &&

typeRet == QperationStatus. SUCCESS &&
makeRet == OperationStat us. SUCCESS) {

Il Get a secondary cursor array and popul ate it with our
Il positioned cursors
SecondaryCursor[] cursorArray = {col or SecCursor,
t ypeSecCursor,
makeSecCur sor};

Il Create the join cursor
joinCursor = autonotiveDB.join(cursorArray, null);

Il Now iterate over the results, handling each in turn
whil e (joinCursor.getNext (foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

/1 Do something with the key and data retrieved in
/1 foundKey and foundDat a

}

}
} catch (DatabaseException dbe) {
[/ Error reporting goes here
} catch (Exception e) {
[/ Error reporting goes here

} finally {
try {

}

Il Make sure to close out all our cursors
if (colorSecCursor !'=null) {
col or SecCursor. cl ose();

}

if (typeSecCursor != null) {
typeSecCursor. cl ose();

}

if (makeSecCursor != null) {
makeSecCur sor. cl ose();

}

if (joinCursor !'=null) {
joinCursor.close();

}

} catch (DatabaseException dbe) {

}

Il Error reporting goes here

JoinCursor Properties

You can set Joi nCur sor properties using the Joi nConfi g class. Currently there is just one
property that you can set:

8/14/2009

Getting Started with DB

Page 126

« Joi nConfig.setNoSort ()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted from
the one that refers to the least number of data items to the one that refers to the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with fewer
data items. Turning off sorting permits applications to specify cursors in the proper order
given this scenario.

The default value is f al se (automatic cursor sorting is performed).

For example:

[/ Al database and environments onitted

Joi nConfig config = new Joi nConfig();

config.set NoSort(true);

Joi nCursor joinCursor = myDb.join(cursorArray, config);

Secondary Database Example

In previous chapters in this book, we built applications that load and display several DB
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

« In Stored Class Catalog Management with MyDbs (page 88) we built a class that we can use
to open several Dat abase objects. In Opening Secondary Databases with MyDbs (page 128) we
will extend that class to also open and manage a Secondar yDat abase.

« In Cursor Example (page 108) we built an application to display our inventory database (and
related vendor information). In Using Secondary Databases with
ExampleDatabaseRead (page 132) we will extend that application to show inventory records
based on the index we cause to be loaded using Exanpl eDat abaselLoad.

Before we can use a secondary database, we must implement a class to extract secondary keys
for us. We use | t emNaneKeyCr eat or for this purpose.

Example 10.1. ItemNameKeyCreator.java

This class assumes the primary database uses | nvent ory objects for the record data. The
I nvent ory class is described in Inventory.java (page 84).

In our key creator class, we make use of a custom tuple binding called | nvent or yBi ndi ng. This
class is described in InventoryBinding.java (page 87).

You can find | nvent or yBi ndi ng. j ava in:
DB I NSTALL/ exanpl es_j aval/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

8/14/2009

Getting Started with DB Page 127

package db. GettingStarted;

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.

db. Dat abaseEnt ry;

db. Dat abaseExcepti on;
db. Secondar yDat abase;

db. Secondar yKeyCr eat or ;
bi nd. t upl e. Tupl eBi ndi ng;

inport java.io.lOException;

public class ItenNameKeyCreator inplenments SecondaryKeyCreator {

private TupleBindi ng theBinding;

/] Use the constructor to set the tuple binding
I't emNanmeKeyCr eat or (Tupl eBi ndi ng bi ndi ng) {

t heBi nding =
}

bi ndi ng;

/] Abstract nethod that we nust inplenent

publ i ¢ bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry, [l Fromthe primry
Dat abaseEntry dataEntry, // Fromthe primary
Dat abaseEntry resultEntry) // set the key data on this.
throws Dat abaseException {

try {

/1 Convert dataEntry to an Inventory object
Inventory inventoryltem =
(I'nventory) theBinding.entryToChject(dataEntry);
Il Get the itemname and use that as the key
String theltem= inventoryltem getltenmName();
resul t Entry. set Data(thel tem get Bytes(" UTF-8"));
} catch (1OException willNeverCeccur) {}

return true;

}

Now that we have a key creator, we can use it to generate keys for a secondary database. We
will now extend MyDbs to manage a secondary database, and to use | t enNameKeyCr eat or to
generate keys for that secondary database.

Opening Secondary Databases with MyDbs

In Stored Class Catalog Management with MyDbs (page 88) we built MyDbs as an example of a
class that encapsulates Dat abase opens and closes. We will now extend that class to manage

a Secondar yDat abase.

8/14/2009

Getting Started with DB

Page 128

Example 10.2. SecondaryDatabase Management with MyDbs

We start by importing two additional classes needed to support secondary databases. We also
add a global variable to use as a handle for our secondary database.

[l File MyDbs.java

package db. GettingStarted;

i nport java.io.FileNot FoundExcepti on;

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat
i nport com sl eepycat.
i nport com sl eepycat.

public class MDbs {

/| The dat abases
private Database
private Database
private Database

bi nd. serial . St oredd assCat al og;
bi nd. t upl e. Tupl eBi ndi ng;

db. Dat abase;

db. Dat abaseConfi g;

db. Dat abaseExcepti on;

. db. Dat abaseType;

db. Secondar yConfi g;
db. Secondar yDat abase;

that our application uses
vendorDb = nul | ;
inventoryDb = nul | ;
classCatal ogDb = nul | ;

private SecondaryDat abase itenmNamel ndexDb = nul | ;

private String vendordb = "Vendor DB. db";
private String inventorydb = "l nventoryDB. db";

private String cl
private String it

/1 Needed for obj

asscatal ogdb = "C assCat al ogDB. db";
emanei ndexdb = "I tenNanel ndexDB. db";

ect serialization

private Storedd assCatal og cl assCatal og;

/1 Qur constructor does nothing

public MDbs() {}

Next we update the MyDbs. set up() method to open the secondary database. As a part of this,
we have to pass an | t emNaneKeyCr eat or object on the call to open the secondary database.
Also, in order to instantiate It emNameKeyCr eat or , we need an | nvent or yBi ndi ng object (we
described this class in InventoryBinding.java (page 87)). We do all this work together inside of

MyDbs. set up() .

public void setup(String databasesHone)
throws Dat abaseException {
Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
Secondar yConfig nySecConfig = new SecondaryConfig();

myDbConfi g. set Error Strean(Systemerr);

8/14/2009

Getting Started with DB Page 129

mySecConfi g. set Error Strean(Systemerr);
myDbConfi g. set ErrorPrefix("MDbs");
mySecConfi g. set ErrorPrefix("MDbs");
myDbConfi g. set Type(Dat abaseType. BTREE) ;
mySecConfi g. set Type(Dat abaseType. BTREE) ;
myDbConfig. set Al | owCreate(true);
mySecConfi g. set Al | owCreate(true);

Il Now open, or create and open, our databases
Il Open the vendors and inventory databases

try {
vendordb = databasesHone + "/" + vendor db;
vendor Db = new Dat abase(vendor db,
nul I,
myDbConfi g) ;

i nvent orydb
i nvent oryDb

dat abasesHone + "/" + inventorydb;
new Dat abase(i nvent orydb,

null,

myDbConfi g);

/1 Open the class catalog db. This is used to
[l optimze class serialization.
cl asscat al ogdb = dat abasesHome + "/" + cl asscat al ogdb;
cl assCat al ogDb = new Dat abase(cl asscat al ogdb,
null,
myDbConfi g) ;

} catch(FileNot FoundException fnfe) {
Systemerr.printIn("MDbs: " + fnfe.toString());
Systemexit(-1);

}

Il Create our class catal og
classCatal og = new StoredCd assCat al og(cl assCat al ogDb) ;

Il Need a tuple binding for the Inventory class.

/1 W use the InventoryBinding class

/1 that we inplenented for this purpose.

Tupl eBi ndi ng i nvent or yBi ndi ng = new | nvent oryBi ndi ng();

Il Open the secondary database. W& use this to create a
Il secondary index for the inventory database

[/ W want to maintain an index for the inventory entries based
Il on the itemname. So, instantiate the appropriate key creator
/'l and open a secondary dat abase.
| t emNaneKeyCreat or keyCreator =

new |t emNameKeyCr eat or (new | nvent or yBi ndi ng());

8/14/2009

Getting Started with DB

Page 130

Next we need an additional getter method for returning the secondary database.

/1 Set up additional secondary properties

Il Need to allow duplicates for our secondary database
mySecConfi g. set Sort edDupl i cat es(true);

mySecConfi g. set Al | owPopul ate(true); // Al ow autopopul ate
mySecConfi g. set KeyCreat or (keyCreator);

/1 Now open it
try {
i t ermanei ndexdb = dat abasesHome + "/" + itemanei ndexdb;
i t emNanmel ndexDb = new Secondar yDat abase(it ermanei ndexdb,
null,
i nvent oryDb,
mySecConfi g) ;

} catch(FileNot FoundException fnfe) {
Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

publ i ¢ SecondaryDat abase get Nanel ndexDB() {

}

return itenmNamel ndexDb;

Finally, we need to update the M/Dbs. cl ose() method to close the new secondary database.
We want to make sure that the secondary is closed before the primaries. While this is not
necessary for this example because our closes are single-threaded, it is still a good habit to

adopt.

public void close() {

try {
if (itemNamelndexDb != null) {

i t emNamel ndexDb. cl ose();
}

if (vendorDb != null) {
vendor Db. cl ose();

}

if (inventoryDb != null) {
i nvent oryDb. cl ose();

}

if (classCatalogDb !'= null) {
cl assCat al ogDb. cl ose();

}

} catch(DatabaseException dbe) {
Systemerr.printin("Error closing MDbs: " +

8/14/2009

Getting Started with DB

Page 131

dbe.toString());
Systemexit(-1);

}

That completes our update to MyDbs. You can find the complete class implementation in:

DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

Using Secondary Databases with ExampleDatabaseRead

Because we performed all our secondary database configuration management in MyDbs, we do
not need to modify Exanpl eDat abaseLoad at all in order to create our secondary indices. When
Exanpl eDat abaseLoad calls MyDbs. set up(), all of the necessary work is performed for us.

However, we still need to take advantage of the new secondary indices. We do this by updating
Exanpl eDat abaseRead to allow us to query for an inventory record based on its name. Remember
that the primary key for an inventory record is the item's SKU. The item's name is contained
in the I nvent ory object that is stored as each record's data in the inventory database. But our
new secondary index now allows us to easily query based on the item's name.

For this update, we modify Exanpl eDat abaseRead to accept a new command line switch, -s,
whose argument is the name of an inventory item. If the switch is present on the command
line call to Exanpl eDat abaseRead, then the application will use the secondary database to look
up and display all the inventory records with that item name. Note that we use a

Secondar yCur sor to seek to the item name key and then display all matching records.

Remember that you can find Exanpl eDat abaseRead. j ava in:
DB I NSTALL/ exanpl es_j aval/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

Example 10.3. SecondaryDatabase usage with ExampleDatabaseRead

First we need to import an additional class in order to use the secondary cursor:

package db. GettingStarted;
inport java.io.lOException;

i nport com sl eepycat . bi nd. Ent ryBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. LockMode;

8/14/2009

Getting Started with DB Page 132

i nport com sl eepycat . db. Operati onSt at us;
i nport com sl eepycat . db. Secondar yCur sor;

Next we add a single global variable:

public class Exanpl eDat abaseRead {
private static String nyDbsPath ="./";

/'l Encapsul ates the database environment and dat abases.
private static MyDbs nyDbs = new MyDbs();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBinding;

[l The itemto locate if the -s switch is used
private static String |ocateltem

Next we update Exanpl eDat abaseRead. run() to check to see if the | ocat el t emglobal variable
has a value. If it does, then we show just those records related to the item name passed on
the - s switch.

private void run(String args[])
throws Dat abaseException {
Il Parse the argunents |i st
par seArgs(args);

myDbs. set up(myDbsPat h) ;

Il Setup our bindings.
i nvent oryBi ndi ng = new | nventoryBindi ng();
vendor Bi ndi ng =
new Seri al Bi ndi ng(myDbs. get O assCat al og(),
Vendor . cl ass) ;

if (locateltem!= null) {
showl ten() ;

} else {
showAl | I nvent ory();

1

}

Finally, we need to implement Exanpl eDat abaseRead. show t en() . This is a fairly simple method
that opens a secondary cursor, and then displays every primary record that is related to the
secondary key identified by the | ocat el t emglobal variable.

private void show tem) throws DatabaseException {
SecondaryCursor secCursor = null;
try {
Il searchKey is the key that we want to find in the
/'l secondary db.

8/14/2009

Getting Started with DB Page 133

Dat abaseEntry searchKey =
new Dat abaseEnt ry(| ocateltem getBytes("UTF-8"));

/1 foundKey and foundData are popul ated fromthe primry
Il entry that is associated with the secondary db key.
Dat abaseEnt ry foundKey = new DatabaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

/'l open a secondary cursor
secCQursor =
myDbs. get Nanel ndexDB() . openSecondar yCur sor (nul |, null);

Il Search for the secondary database entry.
QperationStatus retVal =
secCur sor. get Sear chKey(sear chKey, foundKey,
foundData, LockMbde. DEFAULT);

Il Display the entry, if one is found. Repeat until no nore
/'l secondary duplicate entries are found
while(retVal == OperationStatus. SUCCESS) {
Inventory thelnventory =
(I'nventory)inventoryBi ndi ng. entryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);
retVal = secCursor. get Next Dup(sear chKey, foundKey,
foundData, LockMbde. DEFAULT);
}
} catch (Exception e) {
Systemerr.printIn("Error on inventory secondary cursor:");
Systemerr.printin(e.toString());
e.print StackTrace()
} finally {
if (secCursor !'=null) {
secCursor. close();

}

}

The only other thing left to do is to update Exanpl eDat abaseRead. par seArgs() to support the
-s command line switch. To see how this is done, see Exanpl eDat abaseRead. j ava in:

DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

8/14/2009 Getting Started with DB Page 134

Chapter 11. Database Configuration

This chapter describes some of the database and cache configuration issues that you need to
consider when building your DB database. In most cases, there is very little that you need to
do in terms of managing your databases. However, there are configuration issues that you need
to be concerned with, and these are largely dependent on the access method that you are
choosing for your database.

The examples and descriptions throughout this document have mostly focused on the BTree
access method. This is because the majority of DB applications use BTree. For this reason,
where configuration issues are dependent on the type of access method in use, this chapter
will focus on BTree only. For configuration descriptions surrounding the other access methods,
see the Berkeley DB Programmer's Reference Guide.

Setting the Page Size

Internally, DB stores database entries on pages. Page sizes are important because they can
affect your application’s performance.

DB pages can be between 512 bytes and 64K bytes in size. The size that you select must be a
power of 2. You set your database's page size using Dat abaseConfi g. set PageSi ze() .

Note that a database's page size can only be selected at database creation time.
When selecting a page size, you should consider the following issues:

» Overflow pages.

 Locking

« Disk I/0.

These topics are discussed next.

Overflow Pages

Overflow pages are used to hold a key or data item that cannot fit on a single page. You do
not have to do anything to cause overflow pages to be created, other than to store data that
is too large for your database's page size. Also, the only way you can prevent overflow pages
from being created is to be sure to select a page size that is large enough to hold your database
entries.

Because overflow pages exist outside of the normal database structure, their use is expensive
from a performance perspective. If you select too small of a page size, then your database will
be forced to use an excessive number of overflow pages. This will significantly harm your
application's performance.

For this reason, you want to select a page size that is at least large enough to hold multiple
entries given the expected average size of your database entries. In BTree's case, for best
results select a page size that can hold at least 4 such entries.

8/14/2009

Getting Started with DB Page 135

You can see how many overflow pages your database is using by obtaining a Dat abaseSt at s
object using the Dat abase. get St at s() method, or by examining your database using the db_st at
command line utility.

Locking

Locking and multi-threaded access to DB databases is built into the product. However, in order
to enable the locking subsystem and in order to provide efficient sharing of the cache between
databases, you must use an environment. Environments and multi-threaded access are not
fully described in this manual (see the Berkeley DB Programmer's Reference Manual for
information), however, we provide some information on sizing your pages in a
multi-threaded/multi-process environment in the interest of providing a complete discussion
on the topic.

If your application is multi-threaded, or if your databases are accessed by more than one
process at a time, then page size can influence your application's performance. The reason
why is that for most access methods (Queue is the exception), DB implements page-level
locking. This means that the finest locking granularity is at the page, not at the record.

In most cases, database pages contain multiple database records. Further, in order to provide
safe access to multiple threads or processes, DB performs locking on pages as entries on those
pages are read or written.

As the size of your page increases relative to the size of your database entries, the number of
entries that are held on any given page also increase. The result is that the chances of two or
more readers and/or writers wanting to access entries on any given page also increases.

When two or more threads and/or processes want to manage data on a page, lock contention
occurs. Lock contention is resolved by one thread (or process) waiting for another thread to
give up its lock. It is this waiting activity that is harmful to your application's performance.

It is possible to select a page size that is so large that your application will spend excessive,
and noticeable, amounts of time resolving lock contention. Note that this scenario is particularly
likely to occur as the amount of concurrency built into your application increases.

Oh the other hand, if you select too small of a page size, then that that will only make your
tree deeper, which can also cause performance penalties. The trick, therefore, is to select a
reasonable page size (one that will hold a sizeable number of records) and then reduce the
page size if you notice lock contention.

You can examine the number of lock conflicts and deadlocks occurring in your application by
examining your database environment lock statistics. Either use the method, or use the db_st at
command line utility. The number of unavailable locks that your application waited for is held
in the lock statistic's st _| ock_wait field.

IO Efficiency

Page size can affect how efficient DB is at moving data to and from disk. For some applications,
especially those for which the in-memory cache can not be large enough to hold the entire
working dataset, 10 efficiency can significantly impact application performance.

8/14/2009 Getting Started with DB Page 136

Most operating systems use an internal block size to determine how much data to move to and
from disk for a single 1/0 operation. This block size is usually equal to the filesystem's block
size. For optimal disk /0 efficiency, you should select a database page size that is equal to
the operating system's I/0 block size.

Essentially, DB performs data transfers based on the database page size. That is, it moves data
to and from disk a page at a time. For this reason, if the page size does not match the I/0
block size, then the operating system can introduce inefficiencies in how it responds to DB's
I/0 requests.

For example, suppose your page size is smaller than your operating system block size. In this
case, when DB writes a page to disk it is writing just a portion of a logical filesystem page. Any
time any application writes just a portion of a logical filesystem page, the operating system
brings in the real filesystem page, over writes the portion of the page not written by the
application, then writes the filesystem page back to disk. The net result is significantly more
disk I/0 than if the application had simply selected a page size that was equal to the underlying
filesystem block size.

Alternatively, if you select a page size that is larger than the underlying filesystem block size,
then the operating system may have to read more data than is necessary to fulfill a read
request. Further, on some operating systems, requesting a single database page may result in
the operating system reading enough filesystem blocks to satisfy the operating system's criteria
for read-ahead. In this case, the operating system will be reading significantly more data from
disk than is actually required to fulfill DB's read request.

|:| While transactions are not discussed in this manual, a page size other than your filesystem'’s
block size can affect transactional guarantees. The reason why is that page sizes larger
than the filesystem's block size causes DB to write pages in block size increments. As a
result, it is possible for a partial page to be written as the result of a transactional commit.
For more information, see http://www.oracle.com/technology/documentation/
berkeley-db/db/ref/transapp/reclimit.html.

Page Sizing Advice

Page sizing can be confusing at first, so here are some general guidelines that you can use to
select your page size.

In general, and given no other considerations, a page size that is equal to your filesystem block
size is the ideal situation.

If your data is designed such that 4 database entries cannot fit on a single page (assuming
BTree), then grow your page size to accommodate your data. Once you've abandoned matching
your filesystem's block size, the general rule is that larger page sizes are better.

The exception to this rule is if you have a great deal of concurrency occurring in your application.
In this case, the closer you can match your page size to the ideal size needed for your
application's data, the better. Doing so will allow you to avoid unnecessary contention for page
locks.

8/14/2009

Getting Started with DB Page 137

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/reclimit.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/reclimit.html

Selecting the Cache Size

Cache size is important to your application because if it is set to too small of a value, your
application's performance will suffer from too much disk [/0. On the other hand, if your cache
is too large, then your application will use more memory than it actually needs. Moreover, if
your application uses too much memory, then on most operating systems this can result in your
application being swapped out of memory, resulting in extremely poor performance.

You select your cache size using either Dat abaseConfi g. set CacheSi ze(), or

Envi ronnment Confi g. set CacheSi ze(), depending on whether you are using a database environment
or not. You cache size must be a power of 2, but it is otherwise limited only by available
memory and performance considerations.

Selecting a cache size is something of an art, but fortunately you can change it any time, so
it can be easily tuned to your application's changing data requirements. The best way to
determine how large your cache needs to be is to put your application into a production
environment and watch to see how much disk 1/0 is occurring. If your application is going to
disk quite a lot to retrieve database records, then you should increase the size of your cache
(provided that you have enough memory to do so).

You can use the db_st at command line utility with the - moption to gauge the effectiveness of
your cache. In particular, the number of pages found in the cache is shown, along with a
percentage value. The closer to 100% that you can get, the better. If this value drops too low,
and you are experiencing performance problems, then you should consider increasing the size
of your cache, assuming you have memory to support it.

BTree Configuration

In going through the previous chapters in this book, you may notice that we touch on some
topics that are specific to BTree, but we do not cover those topics in any real detail. In this
section, we will discuss configuration issues that are unique to BTree.

Specifically, in this section we describe:
« Allowing duplicate records.

» Setting comparator callbacks.

8/14/2009

Getting Started with DB Page 138

Allowing Duplicate Records

BTree databases can contain duplicate records. One record is considered to be a duplicate of
another when both records use keys that compare as equal to one another.

By default, keys are compared using a lexicographical comparison, with shorter keys collating
higher than longer keys. You can override this default using the
Dat abaseConfi g. set Bt r eeConpar at or () method. See the next section for details.

By default, DB databases do not allow duplicate records. As a result, any attempt to write a
record that uses a key equal to a previously existing record results in the previously existing
record being overwritten by the new record.

Allowing duplicate records is useful if you have a database that contains records keyed by a
commonly occurring piece of information. It is frequently necessary to allow duplicate records
for secondary databases.

For example, suppose your primary database contained records related to automobiles. You
might in this case want to be able to find all the automobiles in the database that are of a
particular color, so you would index on the color of the automobile. However, for any given
color there will probably be multiple automobiles. Since the index is the secondary key, this
means that multiple secondary database records will share the same key, and so the secondary
database must support duplicate records.

Sorted Duplicates

Duplicate records can be stored in sorted or unsorted order. You can cause DB to automatically
sort your duplicate records by setting Dat abaseConfi g. set Sort edDupl i cates() totrue. Note
that this property must be set prior to database creation time and it cannot be changed
afterwards.

If sorted duplicates are supported, then the j ava. util. Conparat or implementation identified
to Dat abaseConfi g. set Dupl i cat eConpar at or () is used to determine the location of the duplicate
record in its duplicate set. If no such function is provided, then the default lexicographical
comparison is used.

Unsorted Duplicates

For performance reasons, BTrees should always contain sorted records. (BTrees containing
unsorted entries must potentially spend a great deal more time locating an entry than does a
BTree that contains sorted entries). That said, DB provides support for suppressing automatic
sorting of duplicate records because it may be that your application is inserting records that
are already in a sorted order.

That is, if the database is configured to support unsorted duplicates, then the assumption is
that your application will manually perform the sorting. In this event, expect to pay a significant
performance penalty. Any time you place records into the database in a sort order not know
to DB, you will pay a performance penalty

8/14/2009

Getting Started with DB Page 139

That said, this is how DB behaves when inserting records into a database that supports non-sorted
duplicates:

« If your application simply adds a duplicate record using Dat abase. put (), then the record is
inserted at the end of its sorted duplicate set.

« If a cursor is used to put the duplicate record to the database, then the new record is placed
in the duplicate set according to the actual method used to perform the put. The relevant
methods are:

» Cursor.putAfter()

The data is placed into the database as a duplicate record. The key used for this operation
is the key used for the record to which the cursor currently refers. Any key provided on
the call is therefore ignored.

The duplicate record is inserted into the database immediately after the cursor's current
position in the database.

e Cursor. putBefore()

Behaves the same as Cur sor. put Aft er () except that the new record is inserted immediately
before the cursor's current location in the database.

e Cursor. putKeyFirst()

If the key already exists in the database, and the database is configured to use duplicates
without sorting, then the new record is inserted as the first entry in the appropriate
duplicates list.

e Cursor. putKeylLast ()

Behaves identically to Cursor. put KeyFirst () except that the new duplicate record is
inserted as the last record in the duplicates list.

Configuring a Database to Support Duplicates

Duplicates support can only be configured at database creation time. You do this by specifying
the appropriate Dat abaseConf i g method before the database is opened for the first time.

The methods that you can use are:
« Dat abaseConfi g. set Unsort edDupl i cat es()

The database supports non-sorted duplicate records.
« Dat abaseConfi g. set Sort edDupl i cat es()

The database supports sorted duplicate records.

The following code fragment illustrates how to configure a database to support sorted duplicate
records:

8/14/2009

Getting Started with DB Page 140

package db. GettingStarted;
inport java.io.FileNot FoundExcepti on;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

Dat abase nyDb = nul | ;

try {
/] Typical configuration settings

Dat abaseConfi g nyDbConfi g = new Dat abaseConfi g();
myDbConf i g. set Type(Dat abaseType. BTREE) ;
myDbConfig. set Al | owCreat e(true);

[/ Configure for sorted duplicates
myDbConf i g. set Sort edDupl i cates(true);

Il QOpen the database
myDb = new Dat abase("nydb. db", null, nyDbConfig);

} catch(Dat abaseException dbe) {
Systemerr.println("MDbs: " + dbe.toString());
Systemexit(-1);

} catch(FileNot FoundException fnfe) {
Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

}

Setting Comparison Functions

By default, DB uses a lexicographical comparison function where shorter records collate before
longer records. For the majority of cases, this comparison works well and you do not need to
manage it in any way.

However, in some situations your application's performance can benefit from setting a custom
comparison routine. You can do this either for database keys, or for the data if your database
supports sorted duplicate records.

Some of the reasons why you may want to provide a custom sorting function are:

» Your database is keyed using strings and you want to provide some sort of language-sensitive
ordering to that data. Doing so can help increase the locality of reference that allows your
database to perform at its best.

 You are using a little-endian system (such as x86) and you are using integers as your database's
keys. Berkeley DB stores keys as byte strings and little-endian integers do not sort well when

8/14/2009

Getting Started with DB Page 141

viewed as byte strings. There are several solutions to this problem, one being to provide a
custom comparison function. See http://www.oracle.com/technology/documentation/
berkeley-db/db/ref/am_misc/fag.html for more information.

» You you do not want the entire key to participate in the comparison, for whatever reason.
In this case, you may want to provide a custom comparison function so that only the relevant
bytes are examined.

Creating Java Comparators

You set a BTree's key comparator using Dat abaseConfi g. set Bt reeConpar at or () . You can also
set a BTree's duplicate data comparison function using
Dat abaseConfi g. set Dupl i cat eConparator ().

If the database already exists when it is opened, the comparator provided to these methods
must be the same as that historically used to create the database or corruption can occur.

You override the default comparison function by providing a Java Conpar at or class to the
database. The Java Conpar at or interface requires you to implement the Conpar at or . conpar g()
method (see http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

DB hands your Conpar at or . conpar e() method the byt e arrays that you stored in the database.
If you know how your data is organized in the byt e array, then you can write a comparison
routine that directly examines the contents of the arrays. Otherwise, you have to reconstruct
your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses St ri ng. conpar eTo(),
which performs a Unicode comparison of two strings (note that for single-byte roman characters,
Unicode comparison and UTF-8 byte-by-byte comparisons are identical - this is something you
would only want to do if you were using multibyte unicode characters with DB). In this case,
your comparator would look like the following:

package db. GettingStarted;

inport java.util.Conparator;

public class MDataConparator inplenents Conparator {
publ i ¢ MyDat aConparator() {}
public int conpare(Cbject dl, oject d2) {

byte[] bl
byte[] b2

= (byte[])d1;
= (byte[])d2;
String s1 = new String(bl);
String s2 = new String(b2);
return sl.conpareTo(s2);

8/14/2009

Getting Started with DB Page 142

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_misc/faq.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_misc/faq.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html

}

To use this comparator:

package db. GettingStarted;

i nport java.io.FileNot FoundExcepti on;
inport java.util.Conparator;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;

Dat abase nyDat abase = nul | ;

try {
/] Get the database configuration object
Dat abaseConfi g nmyDbConfi g = new Dat abaseConfig();
myDbConfi g. set Al | owCreat e(true);

/1 Set the duplicate conparator class
MyDat aConpar at or nmdc = new MyDat aConpar at or () ;
myDbConf i g. set Dupl i cat eConpar at or (ntc) ;

/1 Qpen the database that you will use to store your data
myDbConf i g. set Sort edDupl i cat es(true);
nyDat abase = new Dat abase("nyDb", null, myDbConfig);
} catch (DatabaseException dbe) {
/1 Exception handling goes here
} catch (FileNot FoundException fnfe) {
/1 Exception handling goes here
1

8/14/2009 Getting Started with DB Page 143

	Getting Started with Berkeley DB
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction to Berkeley DB
	About This Manual
	Berkeley DB Concepts
	Environments
	Key-Data Pairs
	Storing Data
	Storing Data in the DPL
	Storing Data using the Base API

	Duplicate Data
	Replacing and Deleting Entries
	Secondary Keys
	Using Secondaries with the DPL
	Using Secondaries with the Base API.

	Which API Should You Use?

	Access Methods
	Selecting Access Methods
	Choosing between BTree and Hash
	Choosing between Queue and Recno

	Database Limits and Portability
	Exception Handling
	Error Returns
	Getting and Using DB

	Chapter 2. Database Environments
	Opening Database Environments
	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Part I. Programming with the Direct Persistence Layer
	Chapter 3. Direct Persistence Layer First Steps
	Entity Stores
	Opening and Closing Environments and Stores

	Persistent Objects
	Saving a Retrieving Data

	Chapter 4. Working with Indices
	Accessing Indexes
	Accessing Primary Indices
	Accessing Secondary Indices

	Creating Indexes
	Declaring a Primary Indexes
	Declaring Secondary Indexes
	Foreign Key Constraints

	Chapter 5. Saving and Retrieving Objects
	A Simple Entity Class
	SimpleDA.class
	Placing Objects in an Entity Store
	Retrieving Objects from an Entity Store
	Retrieving Multiple Objects
	Cursor Initialization
	Working with Duplicate Keys
	Key Ranges

	Join Cursors
	Deleting Entity Objects
	Replacing Entity Objects

	Chapter 6. A DPL Example
	Vendor.java
	Inventory.java
	MyDbEnv
	DataAccessor.java
	ExampleDatabasePut.java
	ExampleInventoryRead.java

	Part II. Programming with the Base API
	Chapter 7. Databases
	Opening Databases
	Closing Databases
	Database Properties
	Administrative Methods
	Error Reporting Functions
	Managing Databases in Environments
	Database Example

	Chapter 8. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Database Usage Example

	Chapter 9. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 10. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Working with Multiple Keys

	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbs
	Using Secondary Databases with ExampleDatabaseRead

	Chapter 11. Database Configuration
	Setting the Page Size
	Overflow Pages
	Locking
	IO Efficiency
	Page Sizing Advice

	Selecting the Cache Size
	BTree Configuration
	Allowing Duplicate Records
	Sorted Duplicates
	Unsorted Duplicates
	Configuring a Database to Support Duplicates

	Setting Comparison Functions
	Creating Java Comparators

