
Oracle Berkeley DB

Berkeley DB
API Reference

for TCL

Release 4.8

.

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third-party
use is permitted without the express prior written consent of Oracle.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 8/14/2009

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents
Preface .. iii
1. Berkeley DB Tcl APIs .. 1

Tcl Methods .. 2
db close .. 4
db count ... 5
db cursor ... 6
db del .. 7
db get .. 8
db get_join ... 10
db get_type .. 11
db is_byteswapped .. 12
db join .. 13
berkdb open ... 14
db put ... 22
berkdb dbremove ... 24
berkdb dbrename ... 25
db stat .. 26
db sync .. 27
db truncate .. 28
dbc close ... 29
dbc del .. 30
dbc dup ... 31
dbc get .. 32
dbc put .. 36
env close ... 39
env dbremove ... 40
env dbrename ... 41
berkdb env ... 42
berkdb envremove .. 46
env txn .. 48
txn abort ... 49
env txn_checkpoint ... 50
txn commit ... 51
berkdb version ... 52

Page iiDB TCL8/14/2009

Preface
Welcome to Berkeley DB (DB). This document describes the Tcl API for DB, version 4.7. It is intended
to describe the DB API, including all classes, methods, and functions. As such, this document is intended
for Tcl developers who are actively writing or maintaining applications that make use of DB databases.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example: "berkdb open()
is a method on a DB handle."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

db put
 -append
 [-partial {doff dlen}]
 [-txn txnid]
 data

db put
 [-nooverwrite]
 [-partial {doff dlen}]
 [-txn txnid]
 key data

Finally, notes of interest are represented using a note block such as this.☞
For More Information

Beyond this manual, you may also find the following sources of information useful when building a DB
application:

• Getting Started with Transaction Processing for C [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf]

• Berkeley DB Getting Started with Replicated Applications for C [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf]

• Berkeley DB Programmer's Reference Guide [http://www.oracle.com/technology/documentation/
berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf]

• Berkeley DB C API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/C/BDB-C_APIReference.pdf]

Page iiiDB TCL8/14/2009

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf

Chapter 1. Berkeley DB Tcl APIs
This book documents the Tcl APIs that are available for working with Berkeley DB databases. This book
assumes you have some familiarity with Berkeley DB.

Page 1DB TCL8/14/2009

Tcl Methods

DescriptionDatabase Methods

Close a databasedb close

Return a count of the key's data itemsdb count

Delete items from the databasedb del

Get items from a databasedb get

Get items from a database joindb get_join

Return the database typedb get_type

Return if the underlying database is in host orderdb is_byteswapped

Create and open a database handleberkdb open

Store items into a databasedb put

Remove a databaseberkdb dbremove

Rename a databaseberkdb dbrename

Return database statisticsdb stat

Flush a database to stable storagedb sync

Truncate a databasedb truncate

Return version informationberkdb version

Cursor Methods

Open a cursor in the databasedb cursor

Perform a database join on cursorsdb join

Close a cursordbc close

Delete by cursordbc del

Duplicate a cursordbc dup

Retrieve by cursordbc get

Store by cursordbc put

Environment Methods

Close an environmentenv close

Remove an environmentenv dbremove

Rename a databaseenv dbrename

Create and open an environment handleberkdb env

Remove an environment handleberkdb envremove

Transaction Methods

Begin a transactionenv txn

Abort a transactiontxn abort

Checkpoint the environmentenv txn_checkpoint

Page 2DB TCL8/14/2009

Tcl Methods

DescriptionDatabase Methods

Commit a transactiontxn commit

Page 3DB TCL8/14/2009

Tcl Methods

db close
db close
 [-nosync]

The db close command flushes any cached database information to disk, closes any open cursors, frees
any allocated resources, and closes any underlying files. Because key/data pairs are cached in memory,
failing to sync the file with the db close or db sync command may result in inconsistent or lost
information.

The options are as follows:

• -nosync

Do not flush cached information to disk.

The -nosync flag is a dangerous option. It should only be set if the application is doing logging (with
transactions) so that the database is recoverable after a system or application crash, or if the database
is always generated from scratch after any system or application crash.

It is important to understand that flushing cached information to disk only minimizes the window of
opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either use transactions and logging with automatic
recovery, use logging and application-specific recovery, or edit a copy of the database; and after
all applications using the database have successfully called db close, atomically replace the original
database with the updated copy.

After db close has been called, regardless of its return, the DB handle may not be accessed again.

The db close command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 4DB TCL8/14/2009

db close

db count
db count key

The db count command returns a count of the number of duplicate data items for the key given. If the
key does not exist, a value of 0 is returned. If there are no duplicates, or if the database does not
support duplicates, but a key/data pair exists, a value of 1 is returned. If an error occurs, a Berkeley
DB error message is returned or a Tcl error is thrown.

Page 5DB TCL8/14/2009

db count

db cursor
db cursor
 [-txn txnid]

The db cursor command creates a database cursor. The returned cursor handle is bound to a Tcl
command of the form dbN.cX, where X is an integer starting at 0 (for example, db0.c0 and db0.c1).
It is through this Tcl command that the script accesses the cursor methods.

The options are as follows:

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the operation occurs in a
transactional database, the operation will be implicitly transaction protected.

In the case of error, a Tcl error is thrown.

Page 6DB TCL8/14/2009

db cursor

db del
db del
 [-glob]
 [-txn txnid]
 key

The db del command removes key/data pairs from the database.

In the presence of duplicate key values, all records associated with the designated key will be discarded.

The options are as follows:

• -glob

The specified key is a wildcard pattern, and all keys matching that pattern are discarded from the
database. The pattern is a simple wildcard, any characters after the wildcard character are ignored.
This option only works on databases using the Btree access method.

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the operation occurs in a
transactional database, the operation will be implicitly transaction protected.

The db del command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 7DB TCL8/14/2009

db del

db get
db get
 [-consume]
 [-consume_wait]
 [-glob]
 [-partial {doff dlen}]
 [-recno]
 [-rmw]
 [-txn txnid]
 key

db get
 -get_both
 [-partial {doff dlen}]
 [-rmw]
 [-txn txnid]
 key data

The db get command returns key/data pairs from the database.

In the presence of duplicate key values, db get will return all duplicate items. Duplicates are sorted
by insert order except where this order has been overridden by cursor operations.

The options are as follows:

• -consume

Return the record number and data from the available record closest to the head of the queue, and
delete the record. The cursor will be positioned on the deleted record. A record is available if it is
not deleted and is not currently locked. The underlying database must be of type Queue for -consume
to be specified.

• -consume_wait

The same as the -consume flag except that if the Queue database is empty, the thread of control
will wait until there is data in the queue before returning. The underlying database must be of type
Queue for -consume_wait to be specified.

• -get_both key data

Retrieve the key/data pair only if both the key and data match the arguments.

• -glob

Return all keys matching the given key, where the key is a simple wildcard pattern. Where it is used,
it replaces the use of the key with the given pattern of a set of keys. Any characters after the wildcard
character are ignored. For example, in a database of last names, the command "db0 get Jones" will
return all occurrences of "Jones" in the database, and the command "db0 get -glob Jo*" will return
both "Jones" and "Johnson" from the database. The command "db0 get -glob *" will return all of the
key/data pairs in the database. This option only works on databases using the Btree access method.

Page 8DB TCL8/14/2009

db get

• -partial {doff dlen}

The dlen bytes starting doff bytes from the beginning of the retrieved data record are returned as
if they comprised the entire record. If any or all of the specified bytes do not exist in the record,
the command is successful and any existing bytes are returned.

• -recno

Retrieve the specified numbered key/data pair from a database. For -recno to be specified, the
specified key must be a record number; and the underlying database must be of type Recno or Queue,
or of type Btree that was created with the -recnum option.

• -rmw

Acquire write locks instead of read locks when doing the retrieval. Setting this flag may decrease
the likelihood of deadlock during a read-modify-write cycle by immediately acquiring the write lock
during the read part of the cycle so that another thread of control acquiring a read lock for the same
item, in its own read-modify-write cycle, will not result in deadlock.

Because the db get command will not hold locks across Berkeley DB interface calls in nontransactional
environments, the -rmw argument to the db get call is only meaningful in the presence of transactions.

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the operation occurs in a
transactional database, the operation will be implicitly transaction protected.

If the underlying database is a Queue or Recno database, the given key will be interpreted by Tcl as
an integer. For all other database types, the key is interpreted by Tcl as a byte array, unless indicated
by a given option.

A list of key/data pairs is returned. In the error case that no matching key exists, an empty list is
returned. In all other cases, a Tcl error is thrown.

Page 9DB TCL8/14/2009

db get

db get_join
db get_join
 [-txn txnid]
 {db key}
 {db key}
 ...

The db get_join command performs the cursor operations required to join the specified keys and
returns a list of joined {key data} pairs. See Equality Join in the Berkeley DB Programmer's Reference
Guide for more information on the underlying requirements for joining.

The options are as follows:

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the operation occurs in a
transactional database, the operation will be implicitly transaction protected.

In the case of error, a Tcl error is thrown.

Page 10DB TCL8/14/2009

db get_join

../../programmer_reference/am_cursor.html#am_join

db get_type
db get_type

The db get_type command returns the underlying database type, returning one of "btree", "hash",
"queue" or "recno".

In the case of error, a Tcl error is thrown.

Page 11DB TCL8/14/2009

db get_type

db is_byteswapped
db is_byteswapped

The db is_byteswapped command returns 0 if the underlying database files were created on an
architecture of the same byte order as the current one, and 1 if they were not (that is, big-endian on
a little-endian machine, or vice versa). This information may be used to determine if application data
needs to be adjusted for this architecture or not.

In the case of error, a Tcl error is thrown.

Page 12DB TCL8/14/2009

db is_byteswapped

db join
db join

db.cX
db.cY
db.cZ

 ...

The db join command joins the specified cursors and returns a cursor handle that can be used to iterate
through the joined {key data} pairs. The returned cursor handle is bound to a Tcl command of the form
dbN.cX, where X is an integer starting at 0 (for example, db0.c0 and db0.c1). It is through this Tcl
command that the script accesses the cursor methods.

The returned join cursor has limited cursor functionality, and only the dbc get and dbc close commands
will succeed.

See Equality Join in the Berkeley DB Programmer's Reference Guide for more information on the
underlying requirements for joining.

In a transaction-protected environment, all the cursors listed must have been created within the same
transaction.

In the case of error, a Tcl error is thrown.

Page 13DB TCL8/14/2009

db join

../../programmer_reference/am_cursor.html#am_join

berkdb open
berkdb open
 [-auto_commit]
 [-btree | -hash | -recno | -queue | -unknown]
 [-cachesize {gbytes bytes ncache}]
 [-create]
 [-delim delim]
 [-dup]
 [-dupsort]
 [-encrypt]
 [-encryptaes passwd]
 [-encryptany passwd]
 [-env env]
 [-errfile filename]
 [-excl]
 [-extent size]
 [-ffactor density]
 [-len len]
 [-mode mode]
 [-nelem size]
 [-pad pad]
 [-pagesize pagesize]
 [-rdonly]
 [-recnum]
 [-renumber]
 [-snapshot]
 [-source file]
 [-truncate]
 [-txn txnid]
 [--]
 [file [database]]

The berkdb open command opens and optionally creates a database. The returned database handle
is bound to a Tcl command of the form dbN, where N is an integer starting at 0 (for example, db0 and
db1). It is through this Tcl command that the script accesses the database methods.

The options are as follows:

• -auto_commit

Enclose the call within an implicit transaction (you do not need to provide a transaction handle as
a transaction is internally created and commited for you). If the call succeeds, the open operation
will be recoverable and all subsequent database modification operations based on this handle will
be transactionally protected. If the call fails, no database will have been created.

• -btree

Open/create a database of type Btree. The Btree format is a representation of a sorted, balanced
tree structure.

Page 14DB TCL8/14/2009

berkdb open

• -hash

Open/create a database of type Hash. The Hash format is an extensible, dynamic hashing scheme.

• -queue

Open/create a database of type Queue. The Queue format supports fast access to fixed-length records
accessed by sequentially or logical record number.

• -recno

Open/create a database of type Recno. The Recno format supports fixed- or variable-length records,
accessed sequentially or by logical record number, and optionally retrieved from a flat text file.

• -unknown

The database is of an unknown type, and must already exist.

• -cachesize {gbytes bytes ncache}

Set the size of the database's shared memory buffer pool (that is, the cache), to gbytes gigabytes
plus bytes. The cache should be the size of the normal working data set of the application, with
some small amount of additional memory for unusual situations. (Note: The working set is not the
same as the number of simultaneously referenced pages, and should be quite a bit larger!)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size less than
500MB is automatically increased by 25% to account for buffer pool overhead; cache sizes larger than
500MB are used as specified.

It is possible to specify caches to Berkeley DB that are large enough so that they cannot be allocated
contiguously on some architectures; for example, some releases of Solaris limit the amount of memory
that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated
contiguously in memory. If it is greater than 1, the cache will be broken up into ncache equally sized
separate pieces of memory.

For information on tuning the Berkeley DB cache size, see Selecting a Cache Size in the Berkeley DB
Programmer's Reference Guide.

Because databases opened within Berkeley DB environments use the cache specified to the
environment, it is an error to attempt to set a cache in a database created within an environment.

• -create

Create any underlying files, as necessary. If the files do not already exist and the -create argument
is not specified, the call will fail.

• -delim delim

Set the delimiting byte used to mark the end of a record in the backing source file for the Recno
access method.

Page 15DB TCL8/14/2009

berkdb open

../../programmer_reference/general_am_conf.html#am_conf_cachesize

This byte is used for variable length records if the -source argument file is specified. If the -source
argument file is specified and no delimiting byte was specified, <newline> characters (that is, ASCII
0x0a) are interpreted as end-of-record markers.

• -dup

Permit duplicate data items in the tree, that is, insertion when the key of the key/data pair being
inserted already exists in the tree will be successful. The ordering of duplicates in the tree is
determined by the order of insertion unless the ordering is otherwise specified by use of a cursor or
a duplicate comparison function.

It is an error to specify both -dup and -recnum.

• -dupsort

Sort duplicates within a set of data items. A default lexical comparison will be used. Specifying that
duplicates are to be sorted changes the behavior of the db put operation as well as the dbc put
operation when the -keyfirst, -keylast and -current options are specified.

• -encrypt

Specify the database in an environment should be encrypted with the same password that is being
used in the environment.

• -encryptaes passwd

Specify the database should be encrypted with the given password using the Rijndael/AES (also known
as the Advanced Encryption Standard and Federal Information Processing Standard (FIPS) 197)
algorithm.

• -encryptany passwd

Specify the already existing database should be opened with the given password. This option is used
if the database is known to be encrypted, but the specific algorithm used is not known.

• -env env

If no -env argument is given, the database is standalone; that is, it is not part of any Berkeley DB
environment.

If a -env argument is given, the database is created within the specified Berkeley DB environment.
The database access methods automatically make calls to the other subsystems in Berkeley DB, based
on the enclosing environment. For example, if the environment has been configured to use locking,
the access methods will automatically acquire the correct locks when reading and writing pages of
the database.

• -errfile filename

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value is
returned by the function. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error especially during initial application debugging.

Page 16DB TCL8/14/2009

berkdb open

The -errfile argument is used to enhance the mechanism for reporting error messages to the
application by specifying a file to be used for displaying additional Berkeley DB error messages. In
some cases, when an error occurs, Berkeley DB will output an additional error message to the specified
file reference.

The error message will consist of a Tcl command name and a colon (":"), an error string, and a trailing
<newline> character. If the database was opened in an environment, the Tcl command name will be
the environment name (for example, env0), otherwise it will be the database command name (for
example, db0).

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For database handles opened inside of Berkeley DB environments, specifying the -errfile argument
affects the entire environment and is equivalent to specifying the same argument to the berkdb env
command.

• -excl

Return an error if the database already exists.

• -extent size

Set the size of the extents of the Queue database; the size is specified as the number of pages in an
extent. Each extent is created as a separate physical file. If no extent size is set, the default behavior
is to create only a single underlying database file.

For information on tuning the extent size, see Selecting an Extent Size in the Berkeley DB Programmer's
Reference Guide.

• -ffactor density

Set the desired density within the hash table.

The density is an approximation of the number of keys allowed to accumulate in any one bucket

• -len len

For the Queue access method, specify that the records are of length len.

For the Recno access method, specify that the records are fixed-length, not byte-delimited, and are
of length len.

Any records added to the database that are less than len bytes long are automatically padded (see
the -pad argument for more information).

Any attempt to insert records into the database that are greater than len bytes long will cause the
call to fail immediately and return an error.

• -mode mode

Page 17DB TCL8/14/2009

berkdb open

../../programmer_reference/rq_conf.html#am_conf_extentsize

On UNIX systems, or in IEEE/ANSI Std 1003.1 (POSIX) environments, all files created by the access
methods are created with mode mode (as described in chmod(2)) and modified by the process' umask
value at the time of creation (see umask(2)). The group ownership of created files is based on the
system and directory defaults, and is not further specified by Berkeley DB. If mode is 0, files are
created readable and writable by both owner and group. On Windows systems, the mode argument
is ignored.

• -nelem size

Set an estimate of the final size of the hash table.

If not set or set too low, hash tables will still expand gracefully as keys are entered, although a slight
performance degradation may be noticed.

• -pad pad

Set the padding character for short, fixed-length records for the Queue and Recno access methods.

If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

• -pagesize pagesize

Set the size of the pages used to hold items in the database, in bytes. The minimum page size is 512
bytes, and the maximum page size is 64K bytes. If the page size is not explicitly set, one is selected
based on the underlying filesystem I/O block size. The automatically selected size has a lower limit
of 512 bytes and an upper limit of 16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a Page Size in the Berkeley DB
Programmer's Reference Guide.

• -rdonly

Open the database for reading only. Any attempt to modify items in the database will fail, regardless
of the actual permissions of any underlying files.

• -recnum

Support retrieval from the Btree using record numbers.

Logical record numbers in Btree databases are mutable in the face of record insertion or deletion.
See the -renumber argument for further discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely the page
locations where the record counts are stored. In addition, the entire tree must be locked during both
insertions and deletions, effectively single-threading the tree for those operations. Specifying -recnum
can result in serious performance degradation for some applications and data sets.

It is an error to specify both -dup and -recnum.

• -renumber

Page 18DB TCL8/14/2009

berkdb open

../../programmer_reference/general_am_conf.html#am_conf_pagesize

Specifying the -renumber argument causes the logical record numbers to be mutable, and change
as records are added to and deleted from the database. For example, the deletion of record number
4 causes records numbered 5 and greater to be renumbered downward by one. If a cursor was
positioned to record number 4 before the deletion, it will refer to the new record number 4, if any
such record exists, after the deletion. If a cursor was positioned after record number 4 before the
deletion, it will be shifted downward one logical record, continuing to refer to the same record as
it did before.

Using the db put or dbc put interfaces to create new records will cause the creation of multiple
records if the record number is more than one greater than the largest record currently in the
database. For example, creating record 28 when record 25 was previously the last record in the
database, will create records 26 and 27 as well as 28.

If a created record is not at the end of the database, all records following the new record will be
automatically renumbered upward by one. For example, the creation of a new record numbered 8
causes records numbered 8 and greater to be renumbered upward by one. If a cursor was positioned
to record number 8 or greater before the insertion, it will be shifted upward one logical record,
continuing to refer to the same record as it did before.

For these reasons, concurrent access to a Recno database with the -renumber flag specified may
be largely meaningless, although it is supported.

• -snapshot

This argument specifies that any specified -source file be read in its entirety when the database is
opened. If this argument is not specified, the -source file may be read lazily.

• -source file

Set the underlying source file for the Recno access method. The purpose of the -source file is to
provide fast access and modification to databases that are normally stored as flat text files.

If the -source argument is give, it specifies an underlying flat text database file that is read to
initialize a transient record number index. In the case of variable length records, the records are
separated as specified by -delim. For example, standard UNIX byte stream files can be interpreted
as a sequence of variable length records separated by <newline> characters.

In addition, when cached data would normally be written back to the underlying database file (for
example, when the db close or db sync commands are called), the in-memory copy of the database
will be written back to the -source file.

By default, the backing source file is read lazily, that is, records are not read from the file until they
are requested by the application. If multiple processes (not threads) are accessing a Recno database
concurrently and either inserting or deleting records, the backing source file must be read in
its entirety before more than a single process accesses the database, and only that process should
specify the backing source argument as part of the berkdb open call. See the -snapshot argument
for more information.

Reading and writing the backing source file specified by -source cannot be transaction protected
because it involves filesystem operations that are not part of the Berkeley DB transaction
methodology. For this reason, if a temporary database is used to hold the records, it is possible to

Page 19DB TCL8/14/2009

berkdb open

lose the contents of the -source file, for example, if the system crashes at the right instant. If a file
is used to hold the database, that is, a filename was specified as the file argument to berkdb open,
normal database recovery on that file can be used to prevent information loss, although it is still
possible that the contents of -source file will be lost if the system crashes.

The -source file must already exist (but may be zero-length) when berkdb open is called.

It is not an error to specify a read-only -source file when creating a database, nor is it an error to
modify the resulting database. However, any attempt to write the changes to the backing source
file using either the db close or db sync commands will fail, of course. Specifying the -nosync
argument to the db close command will stop it from attempting to write the changes to the backing
file; instead, they will be silently discarded.

For all of the previous reasons, the -source file is generally used to specify databases that are
read-only for Berkeley DB applications, and that are either generated on the fly by software tools,
or modified using a different mechanism such as a text editor.

• -truncate

Physically truncate the underlying file, discarding all previous databases it might have held. Underlying
filesystem primitives are used to implement this flag. For this reason, it is only applicable to the
physical file and cannot be used to discard databases within a file.

The -truncate argument cannot be transaction-protected, and it is an error to specify it in a
transaction-protected environment.

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the -auto_commit flag is
specified, the operation will be implicitly transaction protected.

• --

Mark the end of the command arguments.

• file

The name of a single physical file on disk that will be used to back the database.

An in-memory database never intended to be preserved on disk may be created by not specifying a
file name. For example:

berkdb open -create -btree

creates an in-memory database.

• database

The database argument allows applications to have multiple databases inside of a single physical
file. This is useful when the databases are both numerous and reasonably small, in order to avoid

Page 20DB TCL8/14/2009

berkdb open

creating a large number of underlying files. It is an error to attempt to open a second database file
that was not initially created using a database name.

Applications opening multiple databases in a single file will almost certainly need to create a shared
database environment. See Opening multiple databases in a single file in the Berkeley DB Programmer's
Reference Guide for more information.

If more than one in-memory database is desired, it is necessary to specify an empty string as the
database name. For example:

berkdb open -create -btree "" foo
berkdb open -create -btree "" bar

will create two databases, neither of which will appear on disk.

The berkdb open command returns a database handle on success.

In the case of error, a Tcl error is thrown.

Page 21DB TCL8/14/2009

berkdb open

../../programmer_reference/am_opensub.html

db put
db put
 -append
 [-partial {doff dlen}]
 [-txn txnid]
 data

db put
 [-nooverwrite]
 [-partial {doff dlen}]
 [-txn txnid]
 key data

The db put command stores the specified key/data pair into the database.

The options are as follows:

• -append

Append the data item to the end of the database. For the -append option to be specified, the
underlying database must be a Queue or Recno database. The record number allocated to the record
is returned on success.

• -nooverwrite

Enter the new key/data pair only if the key does not already appear in the database.

• -partial {doff dlen}

The dlen bytes starting doff bytes from the beginning of the specified key's data record are replaced
by the data specified by the data and size structure elements. If dlen is smaller than the length of
the supplied data, the record will grow; if dlen is larger than the length of the supplied data, the
record will shrink. If the specified bytes do not exist, the record will be extended using nul bytes as
necessary, and the db put call will succeed.

It is an error to attempt a partial put using the db put command in a database that supports duplicate
records. Partial puts in databases supporting duplicate records must be done using a dbc put command.

It is an error to attempt a partial put with differing dlen and supplied data length values in Queue
or Recno databases with fixed-length records.

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the operation occurs in a
transactional database, the operation will be implicitly transaction protected.

The db put command returns either 0 or a record number for success (the record number is returned
if the -append option was specified). If an error occurs, a Berkeley DB error message is returned or a
Tcl error is thrown.

Page 22DB TCL8/14/2009

db put

If the underlying database is a Queue or Recno database, then the given key will be interpreted by Tcl
as an integer. For all other database types, the key is interpreted by Tcl as a byte array.

Page 23DB TCL8/14/2009

db put

berkdb dbremove
berkdb dbremove
 [-encrypt]
 [-encryptaes passwd]
 [-encryptany passwd]
 [-env env]
 [--]
 file
 [database]

Remove the Berkeley DB database specified by the database name file and [database] name arguments.
If no database is specified, the physical file represented by file is removed, incidentally removing all
databases that it contained.

No reference count of database use is maintained by Berkeley DB. Applications should not remove
databases that are currently in use.

The options are as follows:

• -encrypt

Specify the database in an environment is encrypted with the same password that is being used in
the environment.

• -encryptaes passwd

Specify the database is encrypted with the given password using the Rijndael/AES (also known as
the Advanced Encryption Standard and Federal Information Processing Standard (FIPS) 197) algorithm.

• -encryptany passwd

Specify the already existing database is encrypted with the given password. This option is used if
the database is known to be encrypted, but the specific algorithm used is not known.

• -env env

If a -env argument is given, the database in the specified Berkeley DB environment is removed.

• --

Mark the end of the command arguments.

The berkdb dbremove command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 24DB TCL8/14/2009

berkdb dbremove

berkdb dbrename
berkdb dbrename
 [-encrypt]
 [-encryptaes passwd]
 [-encryptany passwd]
 [-env env]
 [--]
 file
 [database
 newname]

Renames the Berkeley DB database specified by the database name file and [database] name arguments
to the new name given. If no database is specified, the physical file represented by file is renamed.

No reference count of database use is maintained by Berkeley DB. Applications should not rename
databases that are currently in use.

The options are as follows:

• -encrypt

Specify the database in an environment is encrypted with the same password that is being used in
the environment.

• -encryptaes passwd

Specify the database is encrypted with the given password using the Rijndael/AES (also known as
the Advanced Encryption Standard and Federal Information Processing Standard (FIPS) 197) algorithm.

• -encryptany passwd

Specify the already existing database is encrypted with the given password. This option is used if
the database is known to be encrypted, but the specific algorithm used is not known.

• -env env

If a -env argument is given, the database in the specified Berkeley DB environment is renamed.

• --

Mark the end of the command arguments.

The berkdb dbrename command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 25DB TCL8/14/2009

berkdb dbrename

db stat
db stat
 [-faststat]

The db stat command returns a list of name/value pairs comprising the statistics of the database.

The options are as follows:

• -faststat

Return only that information which does not require a traversal of the database.

In the case of error, a Tcl error is thrown.

Page 26DB TCL8/14/2009

db stat

db sync
db sync

The db sync command function flushes any database cached information to disk.

See db close for a discussion of Berkeley DB and cached data.

The db sync command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 27DB TCL8/14/2009

db sync

db truncate
db truncate
 [-txn txnid]

Empties the database, discarding all records it contains.

The options are as follows:

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the operation occurs in a
transactional database, the operation will be implicitly transaction protected.

The db truncate command returns the number of records discarded from the database on success.

In the case of error, a Tcl error is thrown.

Page 28DB TCL8/14/2009

db truncate

dbc close
dbc close

The dbc close command discards the cursor.

After dbc close has been called, regardless of its return, the cursor handle may not be used again.

The dbc close command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 29DB TCL8/14/2009

dbc close

dbc del
dbc del

The dbc del command deletes the key/data pair to which the cursor currently refers.

The cursor position is unchanged after a delete, and subsequent calls to cursor commands expecting
the cursor to refer to an existing key will fail.

The dbc del command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 30DB TCL8/14/2009

dbc del

dbc dup
dbc dup
 [-position]

The dbc dup command duplicates the cursor, creates a new cursor that uses the same transaction and
locker ID as the original cursor. This is useful when an application is using locking and requires two or
more cursors in the same thread of control.

The options are as follows:

• -position

The newly created cursor is initialized to refer to the same position in the database as the original
cursor and hold the same locks. If the -position flag is not specified, the created cursor is uninitialized
and will behave like a cursor newly created using the db cursor command.

The dbc dup command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 31DB TCL8/14/2009

dbc dup

dbc get
dbc get
 [-current]
 [-first]
 [-get_recno]
 [-join_item]
 [-last]
 [-next]
 [-nextdup]
 [-nextnodup]
 [-partial {offset length}]
 [-prev]
 [-prevnodup]
 [-rmw]

dbc get
 [-partial {offset length}]
 [-rmw]
 [-set]
 [-set_range]
 [-set_recno]
 key

dbc get
 -get_both
 [-partial {offset length}]
 [-rmw]
 key data

The dbc get command returns a list of {key value} pairs, except in the case of the -get_recno and
-join_item options. In the case of the -get_recno option, dbc get returns a list of the record number.
In the case of the -join_item option, dbc get returns a list containing the joined key.

The options follow, and are grouped by the action they perform.

The first group affects the position of the cursor in the database without regard for the key or data
item.

• -current

Return the key/data pair to which the cursor currently refers.

If the cursor key/data pair was deleted, dbc get will return an empty list.

• -first

The cursor is set to refer to the first key/data pair of the database, and that pair is returned. In the
presence of duplicate key values, the first data item in the set of duplicates is returned.

Page 32DB TCL8/14/2009

dbc get

If the database is a Queue or Recno database, dbc get using the -first option will skip any keys that
exist but were never explicitly created by the application, or were created and later deleted.

If the database is empty, dbc get will return an empty list.

• -last

The cursor is set to refer to the last key/data pair of the database, and that pair is returned. In the
presence of duplicate key values, the last data item in the set of duplicates is returned.

If the database is a Queue or Recno database, dbc get using the -last option will skip any keys that
exist but were never explicitly created by the application, or were created and later deleted.

If the database is empty, dbc get will return an empty list.

• -next

If the cursor is not yet initialized, the -next option is identical to -first.

Otherwise, the cursor is moved to the next key/data pair of the database, and that pair is returned.
In the presence of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, dbc get using the -next option will skip any keys that
exist but were never explicitly created by the application, or were created and later deleted.

If the cursor is already on the last record in the database, dbc get will return an empty list.

• -nextdup

If the next key/data pair of the database is a duplicate record for the current key/data pair, the
cursor is moved to the next key/data pair of the database, and that pair is returned. Otherwise, dbc
get will return an empty list.

• -nextnodup

If the cursor is not yet initialized, the -nextnodup option is identical to -first.

Otherwise, the cursor is moved to the next non-duplicate key/data pair of the database, and that
pair is returned.

If no non-duplicate key/data pairs occur after the cursor position in the database, dbc get will return
an empty list.

• -prev

If the cursor is not yet initialized, -prev is identical to -last.

Otherwise, the cursor is moved to the previous key/data pair of the database, and that pair is
returned. In the presence of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, dbc get using the -prev flag will skip any keys that
exist but were never explicitly created by the application, or were created and later deleted.

Page 33DB TCL8/14/2009

dbc get

If the cursor is already on the first record in the database, dbc get will return an empty list.

• -prevnodup

If the cursor is not yet initialized, the -prevnodup option is identical to -last.

Otherwise, the cursor is moved to the previous non-duplicate key/data pair of the database, and
that pair is returned.

If no non-duplicate key/data pairs occur before the cursor position in the database, dbc get will
return an empty list.

The next group of options are used to move the cursor to a location in the database based on
characteristics of the key and/or data items.

• -set

Move the cursor to the specified key/data pair of the database, and return the datum associated
with the given key.

In the presence of duplicate key values, dbc get will return the first data item for the given key.

If the database is a Queue or Recno database and the requested key exists, but was never explicitly
created by the application or was later deleted, dbc get will return an empty list.

If no matching keys are found, dbc get will return an empty list.

• -set_range

The -set_range option is identical to the -set option, except that the key is returned as well as the
data item, and, in the case of the Btree access method, the returned key/data pair is the smallest
key greater than or equal to the specified key (as determined by the comparison function), permitting
partial key matches and range searches.

• -get_both

The -get_both option is identical to the -set option, except that both the key and the data arguments
must be matched by the key and data item in the database.

For -get_both to be specified, the underlying database must be of type Btree or Hash.

The last group of options is a general collection of operations. Some of these involve positioning the
cursor to a location in the database based in information other than what can be found in the key
and/or data items. Others of these have to do with the cursor's behavior upon retrieving information.

• -set_recno

Move the cursor to the specific numbered record of the database, and return the associated key/data
pair. The key must be a record number.

For the -set_recno option to be specified, the underlying database must be of type Btree, and it
must have been created with the -recnum option.

Page 34DB TCL8/14/2009

dbc get

• -get_recno

Return a list of the record number associated with the current cursor position. No key argument
should be specified.

For -get_recno to be specified, the underlying database must be of type Btree, and it must have
been created with the -recnum option.

• -join_item

Do not use the data value found in all the cursors as a lookup key for the primary database, but
simply return it in the key parameter instead. The data parameter is left unchanged.

For -join_item to be specified, the cursor must have been created by the db join command.

• -partial {offset length}

The dlen bytes starting doff bytes from the beginning of the retrieved data record are returned as
if they comprised the entire record. If any or all of the specified bytes do not exist in the record,
the command is successful and any existing bytes are returned.

• -rmw

Acquire write locks instead of read locks when doing the retrieval. Setting this flag may decrease
the likelihood of deadlock during a read-modify-write cycle by immediately acquiring the write lock
during the read part of the cycle so that another thread of control acquiring a read lock for the same
item, in its own read-modify-write cycle, will not result in deadlock.

If a key is specified, and if the underlying database is a Queue or Recno database, the given key will
be interpreted by Tcl as an integer. For all other database types, the key is interpreted by Tcl as a
byte array, unless indicated by a given option.

In the normal error case of attempting to retrieve a key that does not exist an empty list is returned.

In the case of error, a Tcl error is thrown.

Page 35DB TCL8/14/2009

dbc get

dbc put
dbc put
 [-after]
 [-before]
 [-current]
 [-partial {doff dlen}]
 data

dbc put
 [-keyfirst]
 [-keylast]
 [-partial {doff dlen}]
 key data

The dbc put command stores the specified key/data pair into the database. One of the following options
must be specified:

• -after

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately after the current cursor
position. It is an error to specify -after if the underlying Btree or Hash database was not created
with the -dup option. No key argument should be specified.

In the case of the Recno access method, it is an error to specify the -after option if the underlying
Recno database was not created with the -renumber option. If the -renumber option was specified,
a new key is created, all records after the inserted item are automatically renumbered, and the key
of the new record is returned in the structure to which the key argument refers. The initial value of
the key parameter is ignored. See berkdb open for more information.

In the case of the Queue access method, it is always an error to specify -after.

If the current cursor record has already been deleted, and the underlying access method is Hash,
dbc put will throw a Tcl error. If the underlying access method is Btree or Recno, the operation will
succeed.

• -before

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately before the current
cursor position. It is an error to specify -before if the underlying Btree or Hash database was not
created with the -dup option. No key argument should be specified.

In the case of the Recno access method, it is an error to specify -before if the underlying Recno
database was not created with the -before option. If the -before option was specified, a new key
is created, the current record and all records after it are automatically renumbered, and the key of
the new record is returned in the structure to which the key argument refers. The initial value of
the key parameter is ignored. See berkdb open for more information.

Page 36DB TCL8/14/2009

dbc put

In the case of the Queue access method, it is always an error to specify -before.

If the current cursor record has already been deleted and the underlying access method is Hash, dbc
put will throw a Tcl error. If the underlying access method is Btree or Recno, the operation will
succeed.

• -current

Overwrite the data of the key/data pair to which the cursor refers with the specified data item. No
key argument should be specified.

If the -dupsort option was specified to berkdb open and the data item of the key/data pair to which
the cursor refers does not compare equally to the data parameter, dbc put will throw a Tcl error.

If the current cursor record has already been deleted and the underlying access method is Hash, dbc
put will throw a Tcl error. If the underlying access method is Btree, Queue, or Recno, the operation
will succeed.

• -keyfirst

In the case of the Btree and Hash access methods, insert the specified key/data pair into the database.

If the key already exists in the database, and the -dupsort option was specified to berkdb open,
the inserted data item is added in its sorted location. If the key already exists in the database, and
the -dupsort option was not specified, the inserted data item is added as the first of the data items
for that key.

The -keyfirst option may not be specified to the Queue or Recno access methods.

• -keylast

In the case of the Btree and Hash access methods, insert the specified key/data pair into the database.

If the key already exists in the database, and the -dupsort option was specified to berkdb open,
the inserted data item is added in its sorted location. If the key already exists in the database, and
the -dupsort option was not specified, the inserted data item is added as the last of the data items
for that key.

The -keylast option may not be specified to the Queue or Recno access methods.

• -partial {doff dlen}

The dlen bytes starting doff bytes from the beginning of the specified key's data record are replaced
by the data specified by the data and size structure elements. If dlen is smaller than the length of
the supplied data, the record will grow; if dlen is larger than the length of the supplied data, the
record will shrink. If the specified bytes do not exist, the record will be extended using nul bytes as
necessary, and the dbc put call will succeed.

It is an error to attempt a partial put using the dbc put command in a database that supports duplicate
records. Partial puts in databases supporting duplicate records must be done using a dbc put command.

Page 37DB TCL8/14/2009

dbc put

It is an error to attempt a partial put with differing dlen and supplied data length values in Queue
or Recno databases with fixed-length records.

If a key is specified, and if the underlying database is a Queue or Recno database, the given key will
be interpreted by Tcl as an integer. For all other database types, the key is interpreted by Tcl as a
byte array.

If dbc put fails for any reason, the state of the cursor will be unchanged. If dbc put succeeds and an
item is inserted into the database, the cursor is always positioned to refer to the newly inserted item.

The dbc put command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 38DB TCL8/14/2009

dbc put

env close
env close

Close the Berkeley DB environment, freeing any allocated resources and closing any underlying
subsystems.

This does not imply closing any databases that were opened in the environment.

Where the environment was initialized with the -txn option, calling env close does not release any
locks still held by the closing process, providing functionality for long-lived locks.

After env close has been called the env handle may not be accessed again.

The env close command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 39DB TCL8/14/2009

env close

env dbremove
env dbremove
 [-auto_commit]
 [-txn txnid]
 [--]
 file

Remove the Berkeley DB database file.

The options are as follows:

• -auto_commit

Enclose the call within an implicit transaction (you do not need to provide a transaction handle as
a transaction is internally created and commited for you). If the call succeeds, changes made by the
operation will be recoverable. If the call fails, the operation will have made no changes.

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the -auto_commit flag is
specified, the operation will be implicitly transaction protected.

The env dbremove command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 40DB TCL8/14/2009

env dbremove

env dbrename
env dbrename
 [-auto_commit]
 [-txn txnid]
 [--]
 file
 newname

Rename the Berkeley DB database file to newname.

The options are as follows:

• -auto_commit

Enclose the call within an implicit transaction (you do not need to provide a transaction handle as
a transaction is internally created and commited for you). If the call succeeds, changes made by the
operation will be recoverable. If the call fails, the operation will have made no changes.

• -txn txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from env txn. If no transaction handle is specified, but the -auto_commit flag is
specified, the operation will be implicitly transaction protected.

The env dbrename command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 41DB TCL8/14/2009

env dbrename

berkdb env
berkdb env
 [-cachesize {gbytes bytes ncache}]
 [-create]
 [-data_dir dirname]
 [-encryptaes passwd]
 [-encryptany passwd]
 [-errfile filename]
 [-home directory]
 [-log_dir dirname]
 [-mode mode]
 [-private]
 [-recover]
 [-recover_fatal]
 [-shm_key shmid]
 [-system_mem]
 [-tmp_dir dirname]
 [-txn [nosync]]
 [-txn_max max]
 [-use_environ]
 [-use_environ_root]

The berkdb env command opens and optionally creates a database environment. The returned
environment handle is bound to a Tcl command of the form envN, where N is an integer starting at 0
(for example, env0 and env1). It is through this Tcl command that the script accesses the environment
methods. The command automatically initializes the Shared Memory Buffer Pool subsystem. This
subsystem is used whenever the application is using any Berkeley DB access method.

The options are as follows:

• -cachesize {gbytes bytes ncache}

Set the size of the database's shared memory buffer pool (that is, the cache), to gbytes gigabytes
plus bytes. The cache should be the size of the normal working data set of the application, with
some small amount of additional memory for unusual situations. (Note: The working set is not the
same as the number of simultaneously referenced pages, and should be quite a bit larger!)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size less than
500MB is automatically increased by 25% to account for buffer pool overhead; cache sizes larger than
500MB are used as specified.

It is possible to specify caches to Berkeley DB that are large enough so that they cannot be allocated
contiguously on some architectures; for example, some releases of Solaris limit the amount of memory
that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated
contiguously in memory. If it is greater than 1, the cache will be broken up into ncache equally sized
separate pieces of memory.

For information on tuning the Berkeley DB cache size, see Selecting a Cache Size in the Berkeley DB
Programmer's Reference Guide.

Page 42DB TCL8/14/2009

berkdb env

../../programmer_reference/general_am_conf.html#am_conf_cachesize

• -create

Cause Berkeley DB subsystems to create any underlying files, as necessary.

• -data_dir dirname

Specify the environment's data directory as described in Berkeley DB File Naming in the Berkeley DB
Programmer's Reference Guide.

• -encryptaes passwd

Specify the database should be encrypted with the given password using the Rijndael/AES (also known
as the Advanced Encryption Standard and Federal Information Processing Standard (FIPS) 197)
algorithm.

• -encryptany passwd

Specify the already existing environment should be opened with the given password. This option is
used if the environment is known to be encrypted, but the specific algorithm used is not known.

• -errfile filename

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value is
returned by the function. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error especially during initial application debugging.

The -errfile argument is used to enhance the mechanism for reporting error messages to the
application by specifying a file to be used for displaying additional Berkeley DB error messages. In
some cases, when an error occurs, Berkeley DB will output an additional error message to the specified
file reference.

consist of the environment command name (for example, env0) and a colon (":"), an error string,
and a trailing <newline> character.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

• -home directory

The -home argument is described in Berkeley DB File Naming in the Berkeley DB Programmer's
Reference Guide.

• -log_dir dirname

Specify the environment's logging file directory as described in Berkeley DB File Naming in the Berkeley
DB Programmer's Reference Guide.

• -mode mode

On UNIX systems, or in IEEE/ANSI Std 1003.1 (POSIX) environments, all files created by Berkeley DB
are created with mode mode (as described in chmod(2)) and modified by the process' umask value
at the time of creation (see umask(2)). The group ownership of created files is based on the system

Page 43DB TCL8/14/2009

berkdb env

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

and directory defaults, and is not further specified by Berkeley DB. If mode is 0, files are created
readable and writable by both owner and group. On Windows systems, the mode argument is ignored.

• -private

Specify that the environment will only be accessed by a single process (although that process may
be multithreaded). This flag has two effects on the Berkeley DB environment. First, all underlying
data structures are allocated from per-process memory instead of from shared memory that is
potentially accessible to more than a single process. Second, mutexes are only configured to work
between threads.

This flag should not be specified if more than a single process is accessing the environment, as it is
likely to cause database corruption and unpredictable behavior. For example, if both a server
application and the Berkeley DB utility db_stat will access the environment, the -private option
should not be specified.

• -recover

Run normal recovery on this environment before opening it for normal use. If this flag is set, the
-create option must also be set because the regions will be removed and re-created.

• -recover_fatal

Run catastrophic recovery on this environment before opening it for normal use. If this flag is set,
the -create option must also be set since the regions will be removed and re-created.

• -shm_key key

Specify a base segment ID for Berkeley DB environment shared memory regions created in system
memory on systems supporting X/Open-style shared memory interfaces, for example, UNIX systems
supporting shmget(2) and related System V IPC interfaces. See Shared Memory Regions in the Berkeley
DB Programmer's Reference Guide for more information.

• -system_mem

Allocate memory from system shared memory instead of memory backed by the filesystem. See
Shared Memory Regions in the Berkeley DB Programmer's Reference Guide for more information.

• -tmp_dir dirname

Specify the environment's tmp directory, as described in Berkeley DB File Naming in the Berkeley
DB Programmer's Reference Guide.

• -txn [nosync]

Initialize the Transaction subsystem. This subsystem is used when recovery and atomicity of multiple
operations and recovery are important. The -txn option implies the initialization of the logging and
locking subsystems as well.

If the optional nosync argument is specified, the log will not be synchronously flushed on transaction
commit. This means that transactions exhibit the ACI (atomicity, consistency, and isolation) properties,

Page 44DB TCL8/14/2009

berkdb env

../C/db_stat.html
../../programmer_reference/env_region.html
../../programmer_reference/env_region.html
../../programmer_reference/env_naming.html

but not D (durability); that is, database integrity will be maintained, but it is possible that some
number of the most recently committed transactions may be undone during recovery instead of being
redone.

The number of transactions that are potentially at risk is governed by how often the log is checkpointed
(see db_checkpoint in the Berkeley DB C API guide for more information) and how many log updates
can fit on a single log page.

• -txn_max max

Set the maximum number of simultaneous transactions that are supported by the environment, which
bounds the size of backing files. When there are more than the specified number of concurrent
transactions, calls to env txn will fail (until some active transactions complete).

• -use_environ

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming in the Berkeley DB Programmer's Reference Guide. Because
permitting users to specify which files are used can create security problems, environment information
will be used in file naming for all users only if the -use_environ flag is set.

• -use_environ_root

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming in the Berkeley DB Programmer's Reference Guide. As
permitting users to specify which files are used can create security problems, if the -use_environ_root
flag is set, environment information will be used for file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on IEEE/ANSI Std 1003.1 (POSIX) systems).

The berkdb env command returns an environment handle on success.

In the case of error, a Tcl error is thrown.

Page 45DB TCL8/14/2009

berkdb env

../C/db_checkpoint.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

berkdb envremove
berkdb envremove
 [-data_dir directory]
 [-force]
 [-home directory]
 [-log_dir directory]
 [-tmp_dir directory]
 [-use_environ]
 [-use_environ_root]

Remove a Berkeley DB environment.

The options are as follows:

• -data_dir dirname

Specify the environment's data directory, as described in Berkeley DB File Naming in the Berkeley
DB Programmer's Reference Guide.

• -force

If there are processes that have called berkdb env without calling env close (that is, there are
processes currently using the environment), berkdb envremove will fail without further action,
unless the -force flag is set, in which case berkdb envremove will attempt to remove the environment
regardless of any processes still using it.

• -home directory

The -home argument is described in Berkeley DB File Naming in the Berkeley DB Programmer's
Reference Guide.

• -log_dir dirname

Specify the environment's log directory, as described in Berkeley DB File Naming in the Berkeley DB
Programmer's Reference Guide.

• -tmp_dir dirname

Specify the environment's tmp directory, as described in Berkeley DB File Naming in the Berkeley
DB Programmer's Reference Guide.

• -use_environ

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming in the Berkeley DB Programmer's Reference Guide. Because
permitting users to specify which files are used can create security problems, environment information
will be used in file naming for all users only if the -use_environ flag is set.

• -use_environ_root

Page 46DB TCL8/14/2009

berkdb envremove

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

The Berkeley DB process' environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming in the Berkeley DB Programmer's Reference Guide. As
permitting users to specify which files are used can create security problems, if the -use_environ_root
flag is set, environment information will be used for file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on IEEE/ANSI Std 1003.1 (POSIX) systems).

The berkdb envremove command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 47DB TCL8/14/2009

berkdb envremove

../../programmer_reference/env_naming.html

env txn
env txn
 [-nosync]
 [-nowait]
 [-parent txnid]
 [-sync]

The env txn command begins a transaction. The returned transaction handle is bound to a Tcl command
of the form env.txnX, where X is an integer starting at 0 (for example, env0.txn0 and env0.txn1). It
is through this Tcl command that the script accesses the transaction methods.

The options are as follows:

• -nosync

Do not synchronously flush the log when this transaction commits or prepares. This means the
transaction will exhibit the ACI (atomicity, consistency, and isolation) properties, but not D
(durability); that is, database integrity will be maintained, but it is possible that this transaction
may be undone during recovery instead of being redone.

This behavior may be set for an entire Berkeley DB environment as part of the berkdb env call.

• -nowait

If a lock is unavailable for any Berkeley DB operation performed in the context of this transaction,
throw a Tcl error immediately instead of blocking on the lock.

• -parent txnid

Create the new transaction as a nested transaction, with the specified transaction indicated as its
parent. Transactions may be nested to any level.

• -sync

Synchronously flush the log when this transaction commits or prepares. This means the transaction
will exhibit all of the ACID (atomicity, consistency, isolation, and durability) properties.

This behavior is the default for Berkeley DB environments unless the -nosync option was specified
to the berkdb env call.

The env txn command returns a transaction handle on success.

In the case of error, a Tcl error is thrown.

Page 48DB TCL8/14/2009

env txn

txn abort
txn abort

The txn abort command causes an abnormal termination of the transaction.

The log is played backward, and any necessary recovery operations are performed. After recovery is
completed, all locks held by the transaction are acquired by the parent transaction in the case of a
nested transaction, or released in the case of a non-nested transaction. As is the case for txn commit,
applications that require strict two-phase locking should not explicitly release any locks.

In the case of nested transactions, aborting the parent transaction causes all children of that transaction
to be aborted.

After txn abort has been called, regardless of its return, the txn handle may not be accessed again.

The txn abort command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 49DB TCL8/14/2009

txn abort

env txn_checkpoint
env txn_checkpoint
 [-force]
 [-kbyte kb]
 [-min minutes]

The env txn_checkpoint command writes a checkpoint.

The options are as follows:

• -force

The checkpoint will occur regardless of activity level.

• -kbyte kb

The checkpoint will occur only if at least the specified number of kilobytes of log data has been
written since the last checkpoint.

• -min minutes

The checkpoint will occur only if at least the specified number of minutes has passed since the last
checkpoint.

In the case of error, a Tcl error is thrown.

Page 50DB TCL8/14/2009

env txn_checkpoint

txn commit
txn commit
 [-nosync]
 [-sync]

The txn commit command ends the transaction.

In the case of nested transactions, if the transaction is a parent transaction with unresolved (neither
committed or aborted) child transactions, the child transactions are aborted and the commit of the
parent will succeed.

In the case of nested transactions, if the transaction is a child transaction, its locks are not released,
but are acquired by its parent. Although the commit of the child transaction will succeed, the actual
resolution of the child transaction is postponed until the parent transaction is committed or aborted;
that is, if its parent transaction commits, it will be committed, and if its parent transaction aborts, it
will be aborted.

If the -nosync option is not specified, a commit log record is written and flushed to disk, as are all
previously written log records.

The options are as follows:

• -nosync

Do not synchronously flush the log. This means the transaction will exhibit the ACI (atomicity,
consistency, and isolation) properties, but not D (durability); that is, database integrity will be
maintained, but it is possible that this transaction may be undone during recovery instead of being
redone.

This behavior may be set for an entire Berkeley DB environment as part of the berkdb env call.

• -sync

Synchronously flush the log. This means the transaction will exhibit all of the ACID (atomicity,
consistency, isolation and durability) properties.

This behavior is the default for Berkeley DB environments unless the -nosync option was specified
to the berkdb env or env txn calls.

After txn commit has been called, regardless of its return, the txn handle may not be accessed again.
If txn commit encounters an error, this transaction and all child transactions of this transaction are
aborted.

The txn commit command returns 0 on success, and in the case of error, a Tcl error is thrown.

Page 51DB TCL8/14/2009

txn commit

berkdb version
berkdb version
 [-string]

Return a list of the form {major minor patch} for the major, minor and patch levels of the underlying
Berkeley DB release.

The options are as follows:

• -string

Return a string with formatted Berkeley DB version information.

In the case of error, a Tcl error is thrown.

Page 52DB TCL8/14/2009

berkdb version

	Berkeley DB TCL API Reference
	Table of Contents
	Preface
	Chapter 1. Berkeley DB Tcl APIs
	Tcl Methods
	db close
	db count
	db cursor
	db del
	db get
	db get_join
	db get_type
	db is_byteswapped
	db join
	berkdb open
	db put
	berkdb dbremove
	berkdb dbrename
	db stat
	db sync
	db truncate
	dbc close
	dbc del
	dbc dup
	dbc get
	dbc put
	env close
	env dbremove
	env dbrename
	berkdb env
	berkdb envremove
	env txn
	txn abort
	env txn_checkpoint
	txn commit
	berkdb version

