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Resampling SRTM 03”-data with kriging

by Carlos Henrique Grohmann

Introduction

SRTM is now been widely used as source for DEMs.
The data is distributed at horizontal resolution of 30
meters (aprox. 1arcsec) for areas within the U.S.A.
and at 90 meters resolution (aprox. 3arcsec) for the
rest of the world.

A resolution of 90m can be considered suitable for
small or medium-scale analysis, but it is too coarse
for more detailed purposes. The present alterna-
tive is to interpolate the DEM at a finer resolution.
It won’t increase the level of detail of the original
DEM, but it will lead to a surface where there is co-
herence of angular properties (i.e., slope, aspect) be-
tween neighbouring pixels (Valeriano et al., 2006), an
important characteristic when dealing with terrain
analysis.

The purpose of this article is to present the steps
necessary to improve the resolution of a DEM us-
ing variogram modelling and kriging, as well as a
brief comparison of the results with those obtained
with interpolation by Regularised Splines with Ten-
sion (RST).

GRASS users must be aware of the half-pixel shift
in SRTM "finished" data from USGS web site 4 and
use proper tools to import SRTM data, as pointed by
Neteler (2005).

Geology and geomorphology of the
study area

The area used as example is located in southeastern
Brazil, southern region of São Paulo State (Fig. 1).
In general terms, local geology consists of NE-
SW trending metapelitic and metacalcareous rocks
(Fig. 2) of Precambrian age, deformed by the Brasil-
iano/Panafrican Orogenic Cycle (600-450 Ma) (Cam-
panha and Sadowski, 1999) and affected by Creta-
ceous brittle tectonics and basic dike emplacement.

Karstic landscapes developed over the carbon-
atic rocks, with altimetric differences up to 700m be-
tween non-carbonatic (pelitic, psamitic and granitic)
crests and karstic valley bottoms; the structural pat-
tern of the area, alternating elongated ranges of non-
carbonatic rocks and lowered karstic zones, gives ori-
gin to mixed recharge systems, with important allo-
genic water input (Karmann and Ferrari, 2000).
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Figure 1: Landsat 7 ETM+ image of the study area.
UTM Coordinate System, Zone 22, Southern Hemi-
sphere
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Figure 2: Simplified geology of study area (Cam-
panha, 2003).

Variogram modelling

In this section we will deal with variogram modelling
and kriging of a GRASS raster within the R statistical
language environment. If you are not familiar with the

4http://seamless.usgs.gov
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R interface, please refer to Bivand (2005). Kriging pro-
cedure is partially based on GRASS-WIKI5 and on the
Short draft introduction to R/GRASS interface6.

The variogram is a tool that allows to describe
quantitatively the variation, in space, of a regional
phenomenon. Elevation data are usually expected to
be high spatially dependent (high similarity of data
at short distances); the noise present in such data,
that is, low similarity of data at distances close to the
grid size, can be evaluated as the rate of nugget ef-
fect in variograms (Valeriano et al., 2006). Data with
smooth variations (such as water levels and land-
forms) often have variograms with a region of low
slope near the zero distance, that can be best mod-
elled by a Gaussian model (Burrough, 1987).

According to Valeriano (2002), variograms calcu-
lated with linear trend residues of topographic data
have adequate fits to classical variogram models,
which present a clear and defined sill. Residues of
trend surface analysis are used to guarantee geosta-
tionarity of data being modelled.

Since DEMs datasets can be very large, variogram
calculation and kriging interpolation can become a
very time-consuming tasks. The basic idea is to
choose a representative subset of the study area, and
calculate the variogram over this subset. This vari-
ogram model will then be used by kriging to inter-
polate the whole dataset at a finer resolution.

In this example, I worked with three regions:
karst (the original dataset at 90m resolution),
karstsub (a subset, 90m resolution), and karst30
(same extents as karst, 30m resolution).

>g.region n=7289760 s=7274730 w=726480 e=741870

res=90 save=karst

>g.region n=7284000 s=7280130 w=731630 e=735860

res=90 save=karstsub

>g.region n=7289760 s=7274730 w=726480 e=741870

res=30 save=karst30

We start working with the karstsub region. Start
the R session, call needed libraries, set up grid pa-
rameters and import the srtm raster file.

>R

>system("g.region region=karstsub");

>library(spgrass6);library(spatial);library(gstat);

>G <- gmeta6();

>grd <- GridTopology(cellcentre.offset=

c(G\$west+(G\$ewres/2), G\$south+(G\$nsres/2)),

cellsize=c(G\$ewres, G\$nsres),

cells.dim=c(G\$cols, G\$rows));

>mask_SG <- SpatialGridDataFrame(grd,

data=list(k=rep(1, G\$cols*G\$rows)),

proj4string=CRS(G\$proj4));

>srtm <- readFLOAT6sp("srtm_v2");

> names(srtm)

[1] "srtm_v2"

Now we can calculate a variogram and see how
it looks (Fig. 3).

>variog1<-variogram(srtm\$srtm_v2~coords[,1]+

coords[,2],loc=srtm, srtm);

>plot(variog1);

Figure 3: Calculated variogram

We can fit a first model "by eye"(Fig. 4).

>vrg.eye<-(vgm(psill=11000,model="Gau",range=800,

nugget=50));

>plot(variog1, model=vrg.eye);

We can check if our eyes are good and ask gstat to
calculate the model parameters.

>vrg.fit<-fit.variogram(variog1,vrg.eye);

>vrg.fit;

model psill range

1 Nug 378.0942 0.0000

2 Gau 9982.4331 673.9686

Figure 4: Calculated variogram and adjusted Gaus-
sian model

5http://grass.gdf-hannover.de/wiki/How_to_interpolate_point_value_using_kriging_method_with_R_and_GRASS_6
6http://www.geog.uni-hannover.de/grass/statsgrass/grass_geostats.html
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If we want, we can adjust the parameters accord-
ing to those given by gstat. Since the initial part
of the curve of the Gaussian model and the nugget
effect will both have the effect of smoothing the in-
terpolated surface, we can concentrate on adjust just
this part of the model(Fig. 5). Using a nugget ef-
fect value of zero would result in a very noisy sur-
face, while a large value produces a smooth surface,
maybe at the cost of loosing detail.

>vrg.eye2<-(vgm(psill=9000, model="Gau", range=550,

nugget=5));

>plot(variog1, model=vrg.eye2);

Figure 5: Gaussian model adjusted to the initial part
of the curve

After the variogram model is adjusted, it is time
to interpolate the new DEM. First, we need to set
the region back to the full area of the DEM, but
with finer resolution, re-set (in this case, overwrite)
the gmeta6() parameters and import the srtm_v2
raster. Then, we need to add a very small ran-
dom variation into the coordinates of the points,
to avoid interpolation artifacts later. We add the
noise with jitter, and create a new object of class
SpatialPointsDataFrame.

>system("g.region region=karst30");

>G <- gmeta6();

>grd <- GridTopology(cellcentre.offset=

c(G\$west+(G\$ewres/2), G\$south+(G\$nsres/2)),

cellsize=c(G\$ewres, G\$nsres),

cells.dim=c(G\$cols, G\$rows));

>mask_SG <- SpatialGridDataFrame(grd,

data=list(k=rep(1, G\$cols*G\$rows)),

proj4string=CRS(G\$proj4));

>srtm <- readFLOAT6sp("srtm_v2");

>coords<-coordinates(srtm);

>jcoords <- cbind(jitter(coords[,1]),

jitter(coords[,2]));

>cat<-as.data.frame(srtm\$srtm_v2);

>srtm2<-SpatialPointsDataFrame(jcoords,cat,

proj4string=CRS(G\$proj4));

Now we can (finally) use kriging to interpolate
the new surface. The maxdist parameter specifies
that only points within this distance are used for in-
terpolation. We can visualise it with image (Fig. 6).

>OK_pred <- krige(srtm\$cat~1, loc=srtm2,

newdata=mask_SG, model=vrg.eye2, maxdist=210);

>names(OK_pred);

>image(OK_pred,"var1.pred");

>image(OK_pred,"var1.pred",xlim=c(731630,735860),

ylim=c(7280130,7284000), col=topo.colors(80))

Figure 6: Interpolated surface, image display

The levelplot function of the lattice library
lets you control the aspect ratio and draws a legend
by default (Fig. 7).

>library(lattice);

>levelplot(OK_pred\$var1.pred~OK_pred@coords[,1]+

OK_pred@coords[,2], OK_pred, aspect = "iso",

main = "ordinary kriging predictions", xlab="",

ylab="",scales = list(y = list(rot = 90)),

col.regions=topo.colors(80))

Let’s send the raster back to GRASS, and finish our R
session for now.

>writeRast6sp(OK_pred,"karst.krig",

zcol="var1.pred");

>quit()

Results and Discussion

Interpolation by RST has been successfully used for
void filling of SRTM data, and can also be used to in-
terpolate the DEM at a finer resolution. For more on
this subject, please refer to Neteler (2005).
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Figure 7: Interpolated surface, levelplot display
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Figure 8: Original SRTM V2 data

As a means of comparison with the results ob-
tained with kriging, the SRTM dataset was also in-
terpolated at 30m resolution using RST (with default
values). Figure 8 is the original SRTM data, with in-
trinsic noise, artifacts and voids; figures 10 and 11 are
shaded relief maps for the interpolated DEMs with
RST and kriging, respectively.

From the figures above, we can see that RST map
has a sharper look and does a better job about void
filling (note the dark areas in the upper right corner
of kriging map), but linear artifacts are still present.
The krigged map has a smoother appearance, with
crests not so well defined as in the RST map, but the
linear artifacts were essentially removed.
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Figure 9: Difference map of krigged and RST values

In order to compare both interpolations, the
difference between them was calculated with
r.mapcalc as krigged_map minus RST_map. In Fig-
ure 9, positive values (areas where kriging values are
higher than RST ones) have colors ranging from blue
to red and negative values have colors from cyan
to yellow; The greatest differences are in valley bot-
toms and in crests due the smoothing behaviour of
the kriging function.

To better evaluate the differences of interpo-
lated products, standard deviation (SD) maps where
calculated with a 7x7 moving window (using
r.neighbours). From Figure 12, we see that the SD of
kriging interpolation is a little smaller than the SD of
RST. If a difference map is made from the SD map (as
kriging_SD minus RST_SD, Figure 13),the presence of
artifacts in RST interpolation is enhanced; the ex-
treme values are related to areas of voids in the orig-
inal data, that were not completely filled by kriging.

Table 10 presents a statistical summary of the in-
terpolated DEMs and their derivatives slope, aspect
and standard deviation (all derivatives were calcu-
lated with a 7x7 window).

The purpose of this article was to present a sim-
ple guide on how to increase SRTM data resolution
using kriging within the R environment. Also, a brief
comparison with results obtained by RST was made.

Conclusions

RST interpolation is a strong method, suitable for
void filling, and produces good results, although it
does not eliminates the artifacts inherent to SRTM
data. A more detailed study concerning the fine-
tuning of RST parameters may point interesting di-
rections on the use of this tool.
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Figure 10: Shaded Relief of RST interpolated
DEM, illuminant at 315◦, 30◦ above the horizon
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Figure 11: Shaded Relief of kriging interpolated
DEM, illuminant at 315◦, 30◦ above the horizon

Kriging interpolation may be a more laborious
task, since it involves variogram modelling prior to
interpolation. Care must be taken on all steps of
the process. The use of the maxdist option allows
the user to perform a good adjust of the variogram
model just on the initial part of the curve, but larger
voids will became anomaly areas or will remain un-
filled. Nugget effect will act as a smoothing factor;
a small value is sufficient to eliminate noise, while a
larger one may obliterate terrain features.

In case of large voids in SRTM data, one pos-
sible approach is to first fill the voids with RST
(r.fillnulls) and then resample with kriging.
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Figure 12: Density functions for standard deviation
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Figure 13: Difference map for standard deviations
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Interview with Michael Barton

Michael Barton is is geoarchaeologist by training.
His research interests are on long-term human ecol-
ogy and human-environmental interaction at re-
gional scales. He is professor & curator of archae-
ology/ethnology at the Arkansas State University,
Tempe, USA

Welcome to the first interview series in 2006.
Could you start by telling us a bit about yourself,
what is your profession, where do you live, which
OS, GRASS version are you using etc? How did you

first get into contact with GRASS?

Macintosh is my preferred computing platform.
When the Mac OS switched to BSD Unix, I was in-
terested in trying GRASS which I had heard of for
many years. My colleagues and collaborators at the
University of Valencia were also interested in GRASS
at that time and beginning to work with Linux. By
2001, I was increasingly frustrated with ArcView,
both the functioning of the program and the lack
of Mac support. In fact, I wrote a letter to ESRI
customer support about the lack of Mac support in
particular and lack of support in general which sur-
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