
GRASS/OSGeo-News Vol. 4, December 2006

Linking GRASS with Chameleon
Geo-analysis on the web

by Massimiliano Cannata

Introduction

Nowadays Web-GIS services are one of the most
growing sector in the geographical information sys-
tem science. It’s popularity mainly reside in an
easy to use interface for non-specialist to access ge-
ographical information in order to take decision. In
most cases these web applications are focused on dis-
tributing geo-spatial information on the Internet in a
”static” way: users can access and navigate the dif-
ferent maps, build combination of layer and print
the results. More ”dynamic” applications are now
requested by different specialists: geologists ask for
digitalisation tools, hydrologists ask for watershed
analysis tools, and so on. Providing this kind of geo-
analysis tools requires full access to typical GIS func-
tionality like maps generation, map editing and map
analysis. In this paper a new procedure for linking
a package for deploying and managing Web map-
ping applications (Chameleon) and a package for
geospatial data management and analysis (GRASS)
is shown: such a procedure consist in the devel-
opment of custom Chameleon’s widgets accessing
GRASS functionalities. Because of the FOSS environ-
ment of both this two softwares, this is a free, trans-
parent and highly customised solution for develop-
ing ”Web-GIS analysis tool”.

Linking GRASS with Chameleon

Chameleon overview
Chameleon (DM Solution Group , 2006) is an highly
customisable and adaptable environment for deploy-
ing and managing Web mapping applications. By
using MapServer (University of Minnesota , 2006)
as the back-end mapping engine that generates map
images, manages mapped data and handles all of
the geographic processing, Chameleon Web Map-
ping Components (CWC) provide an html-like tag
system to incorporate in your current html pages
the required mapping functionalities called widgets.
In order to build a Web-GIS application with Ca-
maeleon the developer needs to handle three files:
the initialisation file (lunching the application), the
mapserver mapfile (defining the layer’s properties),
and the Chameleon template (designing the look and
the features of the application). This last file is the
place where all the desired geographical tools (wid-
gets) have to be inserted within the HTML, by using
the defined tags and properties, in order to design

the look of the Web interface. In the following lines
a simple chameleon template file is shown as an ex-
ample:

<html>

<head>

<title>CHAMELEON TEMPLATE</title>

</head>

<body onload="CWC2OnLoadFunction()">

<form>

<table>

<tr>

<td align="center">

<CWC2 TYPE="MapDHTML"

VISIBLE="true"

WIDTH="400"

HEIGHT="300"

ALLOWRESIZE="true"

MARQUEECOLOR="#FF3333"

MARQUEEWIDTH="2"

MINSCALE="1"/>

</td>

</tr>

</table>

</form>

</body>

</html>

Three elements can be noted : the FORM
enabling the user-server interaction, the
CWC2OnLoadFunction() enabling the processing of
the argument passed by the FORM, and the CWC2
defining a Chameleon widget (in this case the map
with the chosen options).

GRASS call requirements

Three facts need to be considered in order to allow
users to access GRASS functionality from the web in
a safe way:

1. GRASS need a particular environment setting
for running: this setting is based on particular
environmental variables values and files and is
generally set by the starting grass shell script.

2. GRASS allows just one user access for one
MAPSET at a time. As GRASS has been de-
signed for a desktop utilisation each MAPSET
has his own ”active” settings: multiple users
could result in changing this values affecting
all other running processes (i.e. two user using
two different extension parameters for grass
analysis).

3. Every web user needs to have his data pro-
tected (from other users) and available till the
active PHP session is alive.

ISSN 1614-8746 9



GRASS/OSGeo-News Vol. 4, December 2006

Technical solution

To handle with these requirements a specific PHP
class (grassOBJ) with the following methods has
been developed:

• in the constructor most of the object variables
are set;

• in the set_mapset_grassrc method a unique
MAPSET and a unique .grassrc6 file (contain-
ing some GRASS variable) for the active PHP
session are generated and set in the corre-
sponding object variables;

• in the set_grass_env method all the system en-
vironment variable to be able to run GRASS are
set;

• in the set_grass_region method the selected re-
gion is set as the active grass region.

A special Chameleon widget called SharedResource
(that has no associated event but allows the setting
of common variables) is used to specify the general
GRASS variables values: an example of its structure
is shown in the next lines.

1. <!-- Shared Resource for GRASS setting-->

2. <cwc2type="SharedResource" name="GRASSConfig">

3. <gisbase value="/usr/src/grass-6.0.0/bin"/>

4. <gisdbase value="/var/www"/>

5. <location value="NorthAmerica"/>

6. <projection value="epsg:2163"/>

7. <g_errors value="/var/www/msg/"/>

8. <g_messages value="/var/www/msg/"/>

9. </cwc2>

Where: line 2 open and define the sharedresource
widget type and name; line 3 define the path to the
binary grass commands; line 4 - define the DBASE
path; line 5 define the LOCATION name; line 6 de-
fine the PROJ (epsg:XXXX) value for the grass LO-
CATION name (if not listed in the epsg file, just use
the GRASS command ”g.proj -j” and add the param-
eters in a new line with a new epsg number); line 7
define the path to the grass log error file; line 8 define
the path to the grass log message file; line 9 close the
sharedresource widget;
Taking advantage of the grassOBJ class new
chameleon’s widgets using GRASS functionalities
(herein referred to as ”GRASS widget”) can be de-
veloped. Knowing that every widget object has the
following base methods:

1. constructor - here the parent constructor is
called and the attributes of the specific widget
are defined;

2. InitDefaults, initialises the widget with the
right values (the object variables are set);

3. ParseURL - reads the posted variables and ex-
ecutes the different functions (the core of the
widget, where things happens);

4. DrawPublish - here the widget appearance
(button, list, box etc..) is defined;

By adding the GRASSConfig shared resource as a pa-
rameter of a new GRASS widget all the needed set-
ting will be available, therefore in the InitDefaults
function a new grassOBJ object can be generated.
Then in the ParseURL function the GRASS environ-
ment variable can be set by using the set_mapset_-
grassrc and set_grass_env methods. In the same
ParseURL function all the mapscript functionalities
and the GRASS commands text variable needed can
be generated and executed. The following lines show
how a GRASS widget calling the r.stats command
can be implemented.

class GrassStatistics extends CWCWidget {

//generic variables

var $moButton;

var $moPopup;

var $moLabel;

var $layer;

var $filename;

//variables for Grass

var $GrassConfigResource;

var $oGRASS;

var $config;

...

// constructor

function GrassStatistics() {

// invoke constructor of parent

parent::CWCWidget();

...

$this->maAttributes[’GRASSCONFIGRESOURCE’] =

new StringAttribute(’GRASSCONFIGRESOURCE’,true);

...

}

function InitDefaults() {

...

$this->GrassConfigResource =

$this->maParams[’GRASSCONFIGRESOURCE’];

$config =

&$this->maSharedResourceWidgets[ +

$this->GrassConfigResource]->maszContents;

$this->oGRASS =

new grassOBJ($config);

...

}

function ParseURL() {

ISSN 1614-8746 10



GRASS/OSGeo-News Vol. 4, December 2006

...

// initialize env.variable for GRASS

$this->oGRASS->set_mapset_grassrc();

$this->oGRASS->set_grass_env();

...

$cmd = "r.stats -acpln ".$this->layer;

$cmd .= " output=".$this->filename;

system($cmd)

...

}

}

Application example

In collaboration with Environmental Canada a Web-
GIS with watershed analysis tools has been devel-
oped in order to dynamically extract basins and
theirs land use statistical property (HYDRO1k ,
2006). The data used for this project are the ”North
American HYDRO1k data”, in particular the DEM,
the flow accumulation and the flow direction maps
(HYDRO1k , 2006), 1 Km resolution; the ”North
America Land Cover Characteristics” from USGS
(NALCC , 2006), 1 Km resolution; the Canada river
measurement stations table information (converted
in shapefile) and the Canada province boundary
shapefile. For this application 4 new widgets using
grass functionalities have been implemented (see fig-
ure 1), they allow the user to: extract a basin selecting
an existing river station as outlet (GrassWatershed-
Point); extract a basin selecting a generic point as
outlet (GrassWatershedPixel); derive and show sta-
tistical information of the land use classes in the ex-
tracted basin with a plot of an histogram of density
(GrassWatershedStatistics); and clear the extracted
basin (GrassWatershedClear).

Figure 1: Chameleon widgets using GRASS func-
tionalities (from left to right: GrassWatershedPoint,
GrassWatershedPixel,GrassWatershedStatistics,
GrassWatershedClear).

Used in conjunction with the ROI (Region Of In-
terest) widgets they provide a watershed analysis
tool bar; standard widget are used in order to derive
a navigation tools, a legend and some other function-
ality (print, help and error report). In figure 2 you
can see a screenshot of the application where all these
tools are clearly visible.

Figure 2: Screenshot of the example application.

As the rasters data to process is very large ( 73
million cells each), to prevent a too long response
time of the server, as well as too big file generation,
the GRASS principle of region has been used: a user
in order to make analysis has to select a region with
the ROI tools by drawing on the map a rectangle (see
figure 3). GrassWatershedPixel or GrassWatershedPoint
widgets will set this region (after reprojecting it in the
current GRASS LOCATION projection) as the active
analysis region in GRASS.

Figure 3: Analysis area selection by using the ROI
tools.

In case of use of the GrassWatershedPixel or
GrassWatershedPoint widgets without a selected re-
gion an error dialog box is popped-up and the calcu-

ISSN 1614-8746 11



GRASS/OSGeo-News Vol. 4, December 2006

lation is not performed.
Once a region is selected is it possible to calculate a
basin by selecting a station or by selecting a pixel on
the map, figures 4 and 5 show the basins calculated
with both these methods.

Figure 4: Basin calculated with GrassWatershed-
Pixel.

Figure 5: Basin calculated with GrassWatershed-
Point.

In order to avoid too small basin calculation
a new GRASS command has been developed
(r.nearest.coord). Given a coordinate pairs, a map,
a threshold and a search radius it return the coor-
dinate of the nearest cell in the raster within the
specified radius having a value bigger or equal than
the threshold. Because of a river network can be

derived from a flow accumulation map by select-
ing the cells with a value higher than a threshold,
if we use r.nearest.coord with such a map by us-
ing the the appropriate threshold value it will give
us the coordinate of the nearest cell being on the
river. This command, like the one for basin extrac-
tion (r.water.outlet), could result time consuming
because of the high number of cells to handle: a key
point in reducing calculation time is the use of an
appropriate search radius parameter.
Once extracted a basin it is possible to calculate its
statistical information based on another raster map
by using the developed GrassWatershedStatistics
widget: in the application a land use map is used.
Once the widget is called a pop-up with three box is
opened (see figure 6): the first box on the top shows
the land use classes distribution (class number, class
definition, area in square meters, number of cells
and approximate percentage), the middle box shows
some statistical parameters of the classes distribution
(min, max, mean, standard deviation, etc.) and the
bottom box shows a plot of the classes density (class
vs. numerousity). All this values are related to the
the current basin area calculated. Also in this case
an error handling procedure is used and if this wid-
get is clicked with no basin selected the boxes will
show the warning message ”WATERSHED NOT SE-
LECTED !”. The GrassWatershedClear widget sim-
ply allows a user to remove from the loaded map
the basin calculated, as every new basin calculated
has been load with a MapServer layer group value
”GRASS”: this command simply search and set the
layer status property of these layers to MS_DELETE.

Figure 6: Watershed statistics calculated with the
GrassWatershedStatistics widget.

ISSN 1614-8746 12



GRASS/OSGeo-News Vol. 4, December 2006

Conclusions

A link between Chameleon and GRASS has been
generated, showing how a Web-GIS with analysis
functionalities can be easily developed in a fully free
and open source environment that guarantee an ac-
cessible system, both in terms of coding and cost-
ing. Analysis procedures require time to be executed:
considering that these tools has been developed for
specific users (and not for the mass) the resulting
waiting time for the application is acceptable, being
in the order of a couples of seconds (to give an idea
GrassWatershedPixel processing time to analyse a re-
gion of 1492 cols * 1006 rows is 8 seconds and for a
region of 604 cols * 652 rows it takes 3 seconds). Be-
cause this solution has not been thought to provide
a full GIS server service, but just to add specific GIS
capabilities to the Web application, in order not to
overload the server itself, a restricted users access-
ing procedure should be considered, as well as other
technicals solution like the selection of a limited re-
gion for raster analysis used in the application exam-
ple.

Acknowledgement

This work has been realized thanks to the funding of
the ”DRIN - Dottorati di Ricerca, Industria e Nuova
impresa” project by Fondazione Politecnico di Mi-
lano. Special thanks to Prof. Maria Antonia Brovelli
(Politecnico di Milano), to the DM Solution Group
staff (Ottawa, Canada), and to Environment Canada
for their support.

Bibliography
DM Solution Group (2006) Chameleon http://www.dmsolutions.

ca/technology/chameleon.html

S. K. Jenson and J. O Domingue (1988) Extracting Topographic
Structure from Digital Elevation Data for Geographic Informa-
tion Systems Analysis Photogrammetric Engineering and Remote
Sensing 54 (11): 1593-1600.

C. Ehlschlaeger (1989) Using the A\uT\d Search Algorithm to De-
velop Hydrologic Models from Digital Elevation Data Proceed-
ings of International Geographic Information Systems (IGIS) Sympo-
sium (Baltimore, MD, 18-19 March 1989): 275-281.

R. Blazek and L. Nardelli (2004) The GRASS Server Proceedings
of the FOSS/GRASS Users Conference 2004 - Bangkok, Thailand,
12-14 September 2004 http://gisws.media.osaka-cu.ac.jp/

grass04/viewpaper.php?id=30

J. Y. Choi and B. A. Engel Real-Time Watershed Delineation Sys-
tem Using Web-GIS Journal Computing in Civil Engineering 17
(3):189-196

University of Minnesota (2006) Mapserver http://mapserver.

gis.umn.edu

HYDRO1k Elevation Derivative Database (2006) USGS http:

//edcdaac.usgs.gov/gtopo30/hydro/namerica.asp

NALCC, North America Land Cover Characteristics (2006) USGS
http://edcsns17.cr.usgs.gov/glcc/na_int.html

Hydro demo, watershed analysis demo site (2006) IST http:

//w3.ist.supsi.ch:8001/geomatica/

Massimiliano Cannata
Institute of Earth Sciences (IST-SUPSI)
http: // w3. ist. supsi. ch: 8001/ geomatica/

massimiliano.cannata AT supsi DOT ch

Simultaneous simulation of hydrological
and carbon cycle processes in a GIS
framework
Integration of an existing distributed, process-
oriented ecosystem model into GRASS GIS in com-
bination with R

by Oliver Sonnentag

Introduction

The application of modeling techniques is a promis-
ing and widely used approach to many environmen-
tal problems and tasks in academia and industry, es-
pecially under circumstances in which direct mea-

surements are not feasible and also for prediction
purposes. Process-oriented models simulate physi-
cal processes based on fundamental principles, often
with some degree of empirical generalization.
The simultaneous simulation of carbon cycle and
controlling hydrological processes using a distributed,
process-oriented ecosystem model such as the Boreal
Ecosystem Productivity Simulator (BEPS) developed
by Liu et al. (1997, 1999, 2002) is very data-intensive.
A variety of software including GIS, remote sensing
image processing, and statistical packages has to be
employed to pre-process the required input data sets

ISSN 1614-8746 13

http://www.dmsolutions.ca/technology/chameleon.html
http://www.dmsolutions.ca/technology/chameleon.html
http://gisws.media.osaka-cu.ac.jp/grass04/viewpaper.php?id=30
http://gisws.media.osaka-cu.ac.jp/grass04/viewpaper.php?id=30
http://mapserver.gis.umn.edu
http://mapserver.gis.umn.edu
http://edcdaac.usgs.gov/gtopo30/hydro/namerica.asp
http://edcdaac.usgs.gov/gtopo30/hydro/namerica.asp
http://edcsns17.cr.usgs.gov/glcc/na_int.html
http://w3.ist.supsi.ch:8001/geomatica/
http://w3.ist.supsi.ch:8001/geomatica/
http://w3.ist.supsi.ch:8001/geomatica/
mailto:massimiliano.cannata AT supsi DOT ch

