.@- THUNEN

EURAC

research

FONDAZIONE

EDMUND

MACH 0 TI B ‘ GERMAN NATIONAL LIBRARY OF
CENTRO RICEREA

¢ INNOVAZION SCIENCE AND TECHNOLOGY

Highlights

GRASS GIS (1] is a platform for geospatial computations.

algorithms or models).

Core libraries and algorithms implemented in C for high performance.

scripting to fine data editing.

It 1s simple to build graphical user interface.

NumPy or IPython can be used together with GRASS GIS Python APIs.

Automatic creation of GUI and CLI

able to use the XML to dynamically generate an interactive graphical dialog with unified styling.

#/module

#/, description: Adds the wvalues of two rasters (A + B)
#/, keywords: raster

#/, keywords: algebra

#/ keywords: sum

#/end

#n0ption G_OPT_R_INPUT

#/ key: araster

#/, description: Raster A im the expression A + B
#rend

#%option G_OPT_R_INPUT

#/ key: braster

#/, description: Raster B imn the expression A + B
#/end

#%option G_OPT_R_OUTPUT

#/end

@ - O r.plus [raster, algebra, sum]

S‘:V Adds the values of two rasters (A + B)

Required | Optional | Command output Description:
Adds the values of two rasters (A + B)

Name of input raster A inanexpression A + B:" (araster=name)

Keywords:
raster , algebra, sum

|ten1p_1 |L';

Name of input raster Binan expression A + B:" (braster=name)

Usage:

|tEﬂ1p . | = r.plus araster=name braster=name output=name

— S [--overwrite] [--help] [--verbosel

*

Name for output raster map: (output=name) Flags
[SLHH temperatures] - --0 Allow output files to overwrite existing files

= _— --h Print usage summary

--vV Verbose module output

--q Quiet module output
--ui Force launching GUI dialog

Close | L Run] | Copy

Parameters:

1 Close dialng on Finish araster Name of ?nput raster A ::Ln an express::Lon A + B
braster Name of input raster B in an expression A + B
output Name for output raster map

|r.|:-lu5 araster=temp_1 braster=temp_2 output=sum_temperatures

The functionality is divided into a set of modules (individual tools, functions,

Both the modules and the libraries are accessible through the Python API.
Specialized Python APIs support different use cases ranging from high level

The g.parser module provides full interface definition support for Python scripts including creation of stan-
dardized part of a help page and command line checking. Each script which uses the GRASS GIS parser can
publish definition of its parameters (options and flags) in XML. The GRASS GIS graphical user interface is

N N VA

N/ ____/

GRASS Scripting Library interface to GRASS GIS modules

The grass.script package offers simple and straightforward syntax to call GRASS GIS modules:
run_command (, input= .
output=)
method= , flags=)

PyGRASS interface to GRASS GIS modules

The grass.pygrass package provides a object-oriented way to work with GRASS GIS modules and their
parameters:
r_neighbors = Module(, input= .
output=)
method= , flags=)
get result with alternative method
r_neighbors.inputs.method =
r_neighbors.outputs.output =
r_neighbors.run ()

Additionally, the grass.pygrass package ofters simpler, Python oriented, way of accessing modules:
r_neighbors = r.neighbors(

input= , output=)
method= , flags=)

Using documentation for GRASS GIS modules

Documentation of GRASS GIS modules usually use Bash syntax to provide an example of usage, e.g.:
r.neighbors input=elevation output=elevation_smooth method=median -c
This syntax can be easily rewritten to the grass.script syntax or the grass.pygrass syntax shown above.

N
IPython Notebook

IPython Notebook is a web-based tool to develop, document, and execute code, as well as communicate the
results. In combination with GRASS GIS, it is an excellent tool to process and visualize your geospatial
data, integrate formulas, explanatory text and maps, and interact with remote servers and clusters.

: J U pyte’r ipythﬂn Session Last Checkpoint: 24 minutes ago (unsaved changes) P
File Edit View Insert Cell Kernel Help Python 2 O

+ = A B 4+ 4 » B C code v Cell Toolbar: Mone

IPython & GRASS

In [14]: g.region{raster='elevation', res=30.)
r.out png(input="'elevation', output='elevation.png', overwrite=True)
Image(filename="elevation.png')

Out[14]:

Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7

Vaclav Petras' Anna Petrasova' Yann Chemin® Pietro Zambelli’, Martin Landa’ Soren Gebbert’ Markus Neteler’, and Peter Lowe’

'North Carolina State University, Raleigh, USA (wenzeslaus@gmail.com, vpetras@nesu.edu), “International Water Management Institute, Pelawatta, Sri Lanka, *EURAC Research, Institute for Renewable Energy, Bolzano/Bozen, Italy, *Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic,
*Thiinen Institute of Climate-Smart Agriculture, Braunschweig, Germany, “Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy, "TIB Hannover - German National Library of Science and Technology, Hanover, Germany

N

PyGRASS interface to C libraries

Examples of using the API to convert a raster map to a NumPy array and back to raster:
import numpy as np

from grass.pygrass.raster 1import RasterRow

from grass.pygrass.raster.buffer import Buffer

from grass.pygrass.gis.region import Region

def raster2numpy(name, mapset):

with RasterRow(name, mapset, mode=) as array:
return np.array(array)

def numpy2raster (array, mtype, name):

reg = Region ()

if (reg.rows, reg.cols) != array.shape:

msg =

raise TypeError(msg 7 ((reg.rows, reg.cols), array.shape))
with RasterRow(name, mode= , mtype=mtype) as new:

newrow = Buffer ((array.shapel[l]l,), mtype=mtype)
for row in array:
newrow[:] = rowl[:] # cast array to raster type
new.put_row(newrow) # write row to raster map
note that there 15 a specialized package which implements this functionalrty

In addition to PyGRASS interface, advanced programmers can use ctypes interface to access C functions

from GRASS GIS libraries directly.

Testing the algorithms

To show that all promised functionality is available and algorithm works as expected every module should

be supplied with a test. This also ensures that functionality can be simply tested any time in the future [3].
run the series wnterpolation module w1m a highly controlled way
self.assertModule (,

input=[,], datapos=(0.0, 1.0),

output=[, , 1,

samplingpos=(0.25, 0.5, 0.75), method=)
check the interpolated raster prec_2 for minimum and maximum (same here)
self.assertRasterMinMax (map= , refmin=200, refmax=200)

Tests can use standardize datasets or use custom reference data. It is very easy to write a sophisticated test
just by checking a statistical summary of computation results.

GRASS GIS modules, addons and Python scripts

A Python script can by turned into a GRASS GIS module by adding a definition of the interface using
GRASS GIS parser mechanism. Another difference is that GRASS GIS modules expect to be executed in
GRASS GIS session. Python scripts which are using GRASS GIS can be written in a way that GRASS GIS
session is not required; the setup of a necessary environment is done in the script itself in this case.

The GRASS GIS Addon repository contains modules from wide range ot contributors and ensures vendor-
independent long-term preservation of the code and ensures an easy distribution of module to individual

users. Well maintained modules in Addons can be moved to GRASS GIS core.

Alternatives to Python

GRASS GIS API is not limited only to Python. GRASS GIS modules are command line tools, so they can
be used in shell scripting (e.g. Bash) and as subprocesses in virtually any language as long as the proper
environment is set. The GRASS GIS library provides a C API which is commonly used to create GRASS
GIS modules in C and C++ programming languages. Finally, GRASS GIS modules can be used within R
statistical environment using the rgrass7 package.

A4

GRASS GIS

GRASS GIS Temporal Framework

The GRASS GIS Temporal Framework implements the temporal GIS functionality and provides a
Python API to implement spatio-temporal processing modules. The framework introduces space-
time datasets that represent time series of raster, 3D raster or vector maps. An API example:

Import and wi1nttialize the GRASS GIS temporal framework
import grass.temporal as tgis
tgis.init ()
Open an existing space time raster dataset (STRDS)
temp_strds = tgis.open_old_stds (name= :
type=)
Shi1ft all registered raster map layer 2 days i1n the future
temp_strds.shift()
Open an extrtsing time stamped raster map as map object
temp_24Mar77 = tgis.RasterDataset(
Unregister the raster map from the STRDS
temp_strds.unregister_map(temp_24Mar77)
Get a list of all Tregistered raster map layers with
a start time later 1990-05-22 from the STRDS
maps = temp_strds.get_registered_maps_as_objects (\
where=)
Create a temporal buffer of 6h for each map in the l1st
for map in maps:
map . temporal_buffer (, update=True)
Compute mew spatio-temporal extent and granularity
temp_strds.update_from_registered_maps ()
Get the granuartty of the STRDS
gran = temp_strds.get_granularity ()

References and Acknowledgements

1] Neteler, M., Bowman, M. H., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose open source
GIS. Environmental Modelling & Software, 31, 124-130.

2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environmental
Modelling & Software 53, 1-12.

3] Petras, V., Gebbert, S., 2014. Testing framework for GRASS GIS: ensuring reproducibility of scientific
geospatial computing. Poster presented at: AGU Fall Meeting, December 15-19, 2014, San Francisco,
USA.

4] Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Program-
ming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Informa-
tion System (GIS). ISPRS International Journal of Geo-Information 2, 201-219.

Acknowledgements

(’\ GRASS GIS is a OS5Geo project. OSGeo provides infrastructure for project websites,
\’* 0OSGeo mailing lists and source code management.

GO Ie Initial development of pygrass and gunittest packages was done during Google Summer
8 of Code 2012 and 2014.

Luca Delucchi, Italy, contributed significantly to development of Python interfaces for GRASS GIS 7 through

extensive testing in early stages of development, documenting the APIs and general contributions to the code
itself.

More information

AR RASS QIS website

