
15 April 2017

ACTIVE LEARNING

Lucas Lefevre
Ecole Polytechnique de Bruxelles, ULB

ABSTRACT

This is a report on the development and implementation of an active learning add-on for GRASS GIS, a
free Geographic Information System (3). The aim of this add-on is the classification of remote sensing
images based on land cover with a semi-supervised machine learning algorithm. The classification
itself is performed with a support vector machine (SVM) and a heuristic query to a supervisor the
labels of the samples that would be the most informative to the classifier. This heuristic is based both
on an uncertainty criterion and a diversity criterion.

1. INTRODUCTION

A common problem in geography is to determine land
cover from remote sensing images. This can be achieved
very accurately by humans but the time and cost con-
straints often limits the number of samples that can be
labeled manually. Therefore, automatic classification of
remote sensing images is very often used. It is generally
performed by a supervised machine learning algorithm
that requires a lot of labeled data to train the classifier.
Gathering the training set is tedious and can be expen-
sive particularly if you have to go on site to label an area.
This is why we want to minimize the task of manually
labeling samples. This is of course in contradiction with
the accuracy of the classifier because the quantity and
quality of labeled samples is crucial to achieve an accu-
rate classification. If we want a training set as small as
possible while still reaching a good classification score,
a semi-supervised approach can be used. Such an ap-
proach known as active learning iteratively expands the
original training set by querying a supervisor to obtain
the true label of samples that would improve the most the
overall score. The number of labeled examples to learn
the classification is often much lower than the number of
examples needed in normal supervised algorithms.

2. BACKGROUND ON ACTIVE LEARNING

Let’s first define formally an active learning system.
It can be represented by a quintuple (C,Q,S,L,U) (1).
Where C is a supervised classifier trained on a labeled
data set L. Q is a query function used to select sam-
ples from a large unlabeled set U . These samples are
usually found in areas of uncertainty of the classifier. A
supervisor S (e.g. a human expert) is able to label them.

Active learning algorithms are iterative schemes. For a
given iteration, h samples are selected from U that would
maximize performance and reduce the uncertainty of the
classifier if it knew their true label. Once labeled by
the supervisor those samples are added to the training
set L and remove from the pool of candidates U . By
iterating this process, the training set is expanding after
each iteration only by the most informative examples.
This leads to a training set with a much better quality
than if is was composed of randomly selected samples.
But in order to choose the best samples to add to the
training set, we need a strategy to rank the candidates in
U . Multiple strategies (heuristics) can be used to perform
this ranking grouped in three main families (10) :

• Committee-based heuristics

• Large margin-based heuristics

• Posterior probability-based heuristics

These three families are briefly explained below.

2.1. Committee-based active learning

The strategy to quantify the uncertainty of a sample is
to consider a committee of multiple learners. The mem-
bers of the committee use different hypothesis to label
the samples in the pool. Every learner is trained sepa-
rately and assign a class to each candidate in the unla-
beled pool. The candidates showing maximum disagree-
ment between the learners in the committee are chosen to
be labeled by the supervisor. A disadvantage of this fam-
ily of heuristics is the computational overhead of training
multiple classifiers.

2.2. Large-margin-based active learning

These heuristics are specific to margin-based classifier.
SVMs are naturally a good example of such methods.
The key idea is to consider the distance to the separat-
ing hyperplane (absolute value of the decision function)
to quantify the uncertainty of a sample. Intuitively, a
sample away from the decision boundary has a high con-
fidence in the class assignment and will not be of much
help to the classifier. Conversely a sample close to the
decision boundary has a low confidence in the class pre-
diction. It is probably the easiest heuristic to implement
when working with SVM.

2.3. Posterior probability-based active learning

The third family of heuristics uses the estimation of
posterior probabilities of class membership (p(y|x)). The
probabilities give a level a confidence in the class assign-
ment. The most uncertain samples will have an near uni-
form probability of belonging to each class. SVM does
not directly provide probability estimates but they can
be computed via Platt’s method (7).

3. TECHNIQUE USED

This section presents the strategy that is used here to
select the most informative samples from the unlabeled
pool of samples. The supervised classifier C used is a
SVM which naturally leads to an active learning tech-
nique based on large-margin. The heuristic used here

2 Lefevre L.

goes further than the ideas presented above and com-
bines two criteria to select samples from the pool of can-
didates. The first criterion is based on the uncertainty
of class assignments and the second is based on the di-
versity among uncertain samples. The query function
Q selects h samples at each iteration and works in two
stages. First it will find the m > h most uncertain sam-
ples from the unlabeled pool U . Next it will extract h
samples out of the m selected samples at the first stage
such that only the most diverse samples are kept. This
has the effect of removing the most redundant samples.
The two stages are detailed in the following subsections.

3.1. Uncertainty criterion

The most straight forward way to quantify uncertainty
in a binary classification problem is to consider the dis-
tance of a sample xi from the SVM hyperplane (8)

f(xi) =

n∑
j=i

αjyjK(xj ,xi) + b

where xj are the support vectors (samples with non-
zero αj Lagrangian multipliers. K(xj ,xi) is a kernel
function which is a similarity measure between xi and
a support vector xj . b ∈ R is the intercept term and the
labels yj of the support vectors are +1 if xj belongs to the
positive class and −1 if it belongs to the negative class.
The closer a sample is to the separating hyperplane, the
more uncertain its classification is.

Unfortunately in the case of determining land cover,
instances are classified between more than two classes
and this method must be generalized to multiclass prob-
lems (MC). In a multiclass problem with N classes
ω = 1, . . . , N and a ”One-versus-All” setting, there is
actually N hyperplanes, one per class. Each hyperplane
separates samples belonging to one class from the rest of
the samples. With that in mind, we can define f(xi, ω)
as the distance between the sample xi and the separating
hyperplane for the class ω.

Using this new distance function we can extend the
idea from binary to multiclass classifiers to find the most
uncertain sample. The strategy is to consider the dif-
ference between the first and the second largest distance
values to the hyperplanes (2) :

x̂ = arg min
xi∈U

f(xi)
MC

with

f(xi)
MC = max

ω∈N
f(xi, ω)− max

ω∈N\{ω+}
f(xi, ω)

Where ω+ is the class predicted by the classifier for xi.
Intuitively, f(xi)

MC computes the uncertainty be-
tween the two most likely classes. If this value is high,
it means that the classifier has a high confidence in the
predicted class ω+. On the contrary, if it is small, there
is a possible conflict with the two most probable classes
e.i. the sample x̂ is close to the boundary between the
two classes. Thus, this sample is selected by the query
function because it is considered uncertain.

The query function selects a subset XQ of m samples
with this uncertainty criterion.

Note that this exact strategy can be used with a ”One-
versus-One” setting if you change the distances to the
hyperplanes by the class membership probabilities. The
probabilities can be estimated with Platt’s method (7)
but it involves a computation overhead.

3.2. Diversity criterion

Labeling at each iteration a batch of h samples selected
on the basis of uncertainty alone is not necessarily bet-
ter than labeling a single sample because they may be
very similar and not bring much more information to the
model. This is why the query function first selects m
uncertain samples (with m > h) and then reduces this
number to keep only the h most diverse samples.

This process iteratively removes the most redundant
sample x̂d from XQ until only h samples are left. To find
this sample x̂d that is more similar to all other samples
we consider both the distance to its closest neighbour
and the average distance to all others (1).

x̂d = arg max
xj∈XQ

[
λ max

xi∈XQ
K(xj ,xi)+(1−λ)

1

m

∑
xk∈XQ\{xj}

K(xj ,xk)

]
λ is a parameter that tunes the weight between the dis-

tance to the closest neighbour and the average distance
to other samples.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The algorithm presented above was implemented using
the python package scikit-learn for SVM computations
(9) and Numpy (6) for the active learning heuristic. The
implementation was integrated into a GIS GRASS add-
on (3). This enable to launch this algorithm directly
from GRASS and easily specify input parameters from
an automatically generated graphical user interface. You
can find the user manual accompanying this add-on in
the appendix section. It briefly describes its purpose and
its input parameters and options.

The input data is composed of features extracted from
the different region areas (also called objects) that the
algorithm have to classify. The i.segment (5) add-on for
GRASS is used to identify the objects from the imagery
data (groups similar pixels into unique objects). Object
features are statistical measures (such as spectral channel
means and variances, min/max values, region size and
shape, , ...) computed from the different regions with
the i.segment.stats add-on (4).

To assess the performance of this solution and the ben-
efits of iteratively expanding the training set with the
most informative samples, several experiments were car-
ried out. In particular the advantage of active learn-
ing compared to normal supervised learning (e.i. the
training set is randomly generated) and the advantage
of adding the diversity criterion over the uncertainty cri-
terion alone. The experiments were conducted with a
data set of 1450 samples of 52 features each classified in
9 classes. The initial training set was composed of 60 la-
beled samples with at least 5 samples per class. At each
iteration the training set grows by h = 5 samples and
the number of pre-selected samples before applying the
diversity criterion is m = 15. In order to obtain statis-
tically significant results, 80 trials were run varying the

GRASS active learning 3

Figure 1. Comparison between normal supervised learning (yel-
low), active learning with only the uncertainty criterion (blue) and
active learning with both the uncertainty and diversity criterion
(green).The curves show classification scores as a function of the
size of the training set. m = 15, h = 5, λ = 0.25

Figure 2. Same experiment as in Figure 1, but the data has been
linearly scaled instead of centered to the mean and component wise
scaled to unit variance.

initial training set (randomly selecting samples from the
pool).

The results in Figure 1 show that the size to reach the
same classification score can be much smaller with the
technique used compared to normal supervised learning.
For example the training set needed to reach a score of
0.7 is reduces by 32% from around 220 labeled samples to
150. The benefits of the diversity criterion is also clearly
visible.

Note that a preprocessing stage scales the data such
that all features are centered around zero and have unit
variance. Linearly scaling the data such that the 5th

percentile goes to 0 and the 95th to 1 was also tired but
it resulted in a lower score as shown in Figure 2.

5. CONCLUSION

In this report we presented an active learning algo-
rithm to perform multiclass SVM classification of land

cover in remote sensing images. The algorithm is able to
reduce the number of labeled sample needed to train the
classifier compared to normal supervised learning tech-
niques. The proposed strategy successfully selects the
most informative samples from the unlabeled pool based
on their class prediction uncertainty and the diversity
among them. Experimental results proved the effective-
ness of this strategy applied to remote sensing images
but it could also be applied to many other types of data.
Especially the diversity criterion could be adapted with
classifier other than SVM and could be the goal of a fu-
ture work.

REFERENCES
[1]Bruzzone, L., and Persello, C. Active learning for

classification of remote sensing images. Tech. rep., Department
of Information Engineering and Computer Science, University
of Trento, 2009.

[2]Demir, B., Persello, C., and Bruzzone, L. Batch-mode
active-learning methods for the interactive classification of
remote sensing images. IEEE Transactions on Geoscience and
Remote Sensing 49, 3 (2011).

[3]GRASS. Add-ons. https://grass.osgeo.org/download/addons/.
[Online; accessed 10-April-2017].

[4]Lennert, M. i.segment.stats.
https://grass.osgeo.org/grass72/manuals/addons/i.segment.stats.html.
[Online; accessed 15-April-2017].

[5]Momsen, E. i.segment.
https://grass.osgeo.org/grass73/manuals/i.segment.html.
North Dakota State University, [Online; accessed
15-April-2017].

[6]Numpy. http://www.numpy.org. [Online; accessed
10-April-2017].

[7]Platt, J. C. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In
ADVANCES IN LARGE MARGIN CLASSIFIERS (1999),
MIT Press, pp. 61–74.

[8]Schölkopf, B., and Smola, A. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
Adaptive Computation and Machine Learning. MIT Press,
Cambridge, MA, USA, Dec. 2002.

[9]Scikit-Learn. Support vector machines. http://scikit-
learn.org/stable/modules/svm.htmlsupport-vector-machines.
[Online; accessed 10-April-2017].

[10]Tuia, D., Volpi, M., Copa, L., Kanevski, M., and
Munoz-Mari, J. A survey of active learning algorithms for
supervised remote sensing image classification. IEEE Journal
of Selected Topics in Signal Processing 5, 3 (2011), 606–617.

APPENDIX

USER MANUAL

DESCRIPTION

This module uses SVM from the scikit-learn python package to perform classification on regions of raster maps.
These regions can be the output of i.segment or r.clump.

The module enables learning with only a small initial labeled data set via active learning. This semi-supervised
learning algorithm interactively query the user to label the regions that are most useful to improve the overall classi-
fication score. With this technique, the number of examples to learn the classification is often much lower than the
number of examples needed in normal supervised algorithms. You should start the classification with a small training
set and run the module multiple times to label new informative samples to improve the classification score.

4 Lefevre L.

The samples that are chosen to be labeled are the ones where the class prediction is the most uncertain. Moreover,
from the more uncertain samples, only the most different samples are kept. This diversity heuristic takes into account
for each uncertain sample the distance to its closest neighbour and the average distance to all other samples. This
ensures that newly labeled samples are not redundant with each other.

The learning data should be composed of features extracted from the regions, for example with the i.segment.stats
module. The features of the training set, the test set and the unlabeled set should be in three different files in csv
format. The first line of each file must be a header containing the features’ name. Every regions should be uniquely
identified by the first attribute. The classes for the training and test examples should be the second attribute.

Example of a training and test files :

cat,Class_num,attr1,attr2,attr3
167485,4,3.546,456.76,6.76
183234,6,5.76,1285.54,9.45
173457,2,5.65,468.76,6.78

Example of an unlabeled file :

cat,attr1,attr2,attr3
167485,3.546,456.76,6.76
183234,5.76,1285.54,9.45
173457,5.65,468.76,6.78

The training set can be easily updated once you have labeled new samples. Create a file to specify what label you
give to which sample. This file in csv format should have a header and two attributes per line : the ID of the sample
you have labeled and the label itself. The module will transfer the newly labeled samples from the unlabeled set to
the training set, adding the class you have provided. This is done internally and does not modify your original files. If
the user wants to save the changes in new files according to the updates, add the -u flag and new files will be created
with the new labeled samples added to the training file and removed from the unlabeled file. You can specify the path
of those output files in the parameters (training updated, unlabeled updated, update updated) or leave the default
paths. If the transfer of a sample is successful, the corresponding line is deleted in the new update file.

Example of an update file :

cat,Class_num
194762,2
153659,6
178350,2

Here are more details on a few parameters :

• learning steps : This is the number of samples that the module will ask to label at each run.

• nbr uncertainty : Number of uncertain samples to choose before applying the diversity filter. This number should
be lower than learning steps.

• diversity lambda : Parameter used in the diversity heuristic. If close to 0 only take into account the average
distance to all other samples. If close to 1 only take into account the distance to the closest neighbour.

• c SVM : Penalty parameter C of the error term. If it is too large there is a risk of overfitting the training data.
If it is too small you may have underfitting.

• gamma SVM : Kernel coefficient. 1/features is often a good value to start with. If C or gamma is left empty (or
both), a good value based on the data distribution is found by cross-validation (at least 3 samples per class in
the training set is needed, more is better). This automatic parameter tuning requires more computation time as
the training set grows.

• search iter :Number of parameter settings that are sampled in the automatic parameter search (C, gamma).
search iter trades off runtime vs quality of the solution.

EXAMPLES

The following examples are based on the data files found in this module repository.

SIMPLE RUN WITHOUT AN UPDATE FILE

>>>r.objects.activelearning training_set=/path/to/training_set.csv

test_set=/path/to/test_set.csv unlabeled_set=/path/to/unlabeled_set.csv

GRASS active learning 5

Parameters used : C=146.398423284, gamma=0.0645567086567, lambda=0.25
12527959
9892568
13731120
15445003
13767630
Class predictions written to predictions.csv
Training set : 70
Test set : 585
Unlabeled set : 792
Score : 0.321367521368

WITH AN UPDATE FILE

The five samples output at the previous example have been labeled and added to the update file.

>>>r.objects.activelearning training_set=/path/to/training_set.csv test_set=/path/to/test_set.csv

unlabeled_set=/path/to/unlabeled_set.csv update=/path/to/update.csv

Parameters used : C=101.580687073, gamma=0.00075388337475, lambda=0.25
Class predictions written to predictions.csv
Training set : 75
Test set : 585
Unlabeled set : 787
Score : 0.454700854701
8691475
9321017
14254774
14954255
15838185

NOTES

This module requires the scikit-learn python package. This module needs to be installed in your GRASS GIS Python
environment. Please refer to r.learn.ml’s Notes to install this package. The memory usage for 1450 samples of 52
features each is around 650 kb. This number can vary due to the unpredictablity of the garbage collector’s behaviour.
Everything is computed in memory; therefore the size of the data is limited by the amount of RAM available.

