
pointee and indirect reference

Author: David Abrahams
Contact: dave@boost-consulting.com
Organization: Boost Consulting
Date: 2005-02-27
Copyright: Copyright David Abrahams 2004.

abstract: Provides the capability to deduce the referent types of pointers, smart pointers
and iterators in generic code.

Overview

Have you ever wanted to write a generic function that can operate on any kind of dereferenceable object?
If you have, you’ve probably run into the problem of how to determine the type that the object “points
at”:

template <class Dereferenceable>
void f(Dereferenceable p)
{

what-goes-here? value = *p;
...

}

pointee

It turns out to be impossible to come up with a fully-general algorithm to do determine what-goes-here
directly, but it is possible to require that pointee<Dereferenceable>::type is correct. Naturally,
pointee has the same difficulty: it can’t determine the appropriate ::type reliably for all Derefer-
enceables, but it makes very good guesses (it works for all pointers, standard and boost smart pointers,
and iterators), and when it guesses wrongly, it can be specialized as necessary:

namespace boost
{
template <class T>
struct pointee<third_party_lib::smart_pointer<T> >
{

typedef T type;
};

}

indirect_reference

indirect_reference<T>::type is rather more specialized than pointee, and is meant to be used to
forward the result of dereferencing an object of its argument type. Most dereferenceable types just

1

mailto:dave@boost-consulting.com
http://www.boost-consulting.com

return a reference to their pointee, but some return proxy references or return the pointee by value.
When that information is needed, call on indirect_reference.

Both of these templates are essential to the correct functioning of indirect_iterator.

Reference

pointee

template <class Dereferenceable>
struct pointee
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed
it shall neither be ambiguous nor shall it violate access control, and Dereference-
able::element_type shall be an accessible type. Otherwise iterator_traits<Dereferenceable>::value_type
shall be well formed. [Note: These requirements need not apply to explicit or partial
specializations of pointee]

type is determined according to the following algorithm, where x is an object of type Dereference-
able:

if (++x is ill-formed)
{

return ‘‘Dereferenceable::element_type‘‘
}
else if (‘‘*x‘‘ is a mutable reference to

std::iterator_traits<Dereferenceable>::value_type)
{

return iterator_traits<Dereferenceable>::value_type
}
else
{

return iterator_traits<Dereferenceable>::value_type const
}

indirect_reference

template <class Dereferenceable>
struct indirect_reference
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed
it shall neither be ambiguous nor shall it violate access control, and pointee<Dereferenceable>::type&
shall be well-formed. Otherwise iterator_traits<Dereferenceable>::reference
shall be well formed. [Note: These requirements need not apply to explicit or partial
specializations of indirect_reference]

type is determined according to the following algorithm, where x is an object of type Dereference-
able:

2

file:indirect_iterator.html

if (++x is ill-formed)
return ‘‘pointee<Dereferenceable>::type&‘‘

else
std::iterator_traits<Dereferenceable>::reference

3

	Overview
	pointee
	indirect_reference

	Reference
	pointee
	indirect_reference

